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Revija Presek je nedavno pisala o nalogi, ki naj bi jo zastavljali kandidatom za službo

pri Microsoftu (glej |2|). V prispevku si bomo ogledali, kako lahko uženemo še nekoliko

bolj splošno nalogo enakega tipa. Rezultat je bil prikazan tudi v [1].

JOB AT MICROSOFT? NO PROBLEM!

A generalization of U2-Flashlight Microsoft 5- Minute Puzzle is described and ana-

Iyzed in detail.

Opis naloge

Naloga, objavljena v Preseku |2|, se (v posplošeni obliki) glasi takole.

Imamo skupino n ljudi, ki želi prečkati brv. Za vsakega od njih vemo, koliko

časa potrebuje za prečkanje. Brv lahko hkrati prečkata največ dve osebi.

Par prečka brv v času, ki ga potrebuje počasnejši iz para. Vsaka oseba

oziroma par, ki gre čez brv, mora imeti s seboj svetilko. Ker ima celotna

skupina le eno svetilko, jo mora po vsakem prečkanju nekdo prinesti nazaj

(metanje in podobne zvijače niso dovoljeni). Vprašanje je preprosto: kako

naj osebe iz skupine prečkajo brv, da bo celotna skupina čim hitreje na

drugi strani.

V originalni nalogi, objavljeni v Preseku, je bila skupina sestavljena

iz štirih oseb — članov glasbene skupine U2: Bono, Edge, Adam in Larry.

Za prečkanje brvi po vrsti potrebujejo 1, 2, 5 in 10 minut. BS krajšim

premislekom (in morda nekaj poskušanja) kaj hitro ugotovimo, da za prehod

brvi potrebujejo vsaj 17 minut. V 17 minutah pa pridejo čez brv na primer

takole: Najprej se odpravita Bono in Edge (2 minuti). S svetilko se vrne

Bono (1 minuta). Nato se odpravita Adam in Larry (10 minut), s svetilko pa

se vrne Edge (2 minuti), ki je medtem čakal na drugi strani brvi. Nazadnje

se čez brv zopet podata Bono in Edge (2 minuti).

Posvetimo se sedaj posplošeni nalogi. Čez brv želimo karseda hitro
spraviti n oseb. Za lažjo razlago naj bodo osebe oštevilčene s števili od

1 do n. S t; bomo označili čas, ki ga za prehod brvi potrebuje oseba z.

Predpostavimo lahko, daje 0 < ty < ta < -:- < tno < in. Najkrajši čas,

ki ga za prehod potrebuje celotna skupina, bomo označili s T(t;,...,t,).

Vsakemu zaporedju prehodov, s katerim celotno skupino spravimo čez brv

v času T'(ti,...,t,), bomo rekli optimalno zaporedje prehodov.

Oglejmo si najprej nekaj osnovnih lastnosti naloge, ki jo rešujemo. Čas,
ki ga skupina potrebuje za prehod brvi, je monoton glede na čase, ki jih

potrebujejo posamezne osebe. Natančneje:

(1) Imejmo dve skupini n oseb, pri čemer osebe iz prve skupine potrebujejo

za prehod brvi čase t;,...,%,, osebe iz druge skupine pa čase t],...,t,,.
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Označimo T — T(ti,...,tn) in T" — T(tj,...,t,).. Če za vsak i,
1 < i < n, velja t; < tj, potem je tudi T < 7". |

O veljavnosti lastnosti (i) se ni težko prepričati: Vzamemo optimalno

zaporedje prehodov za drugo skupino in enako zaporedje prehodov opravimo

z osebami iz prve skupine. Zaradi predpostavk porabljeni čas gotovo ni

daljši od 7". Seveda pa se lahko zgodi, da je T' < T", čeprav v prvi skupini

obstaja oseba, ki je strogo hitrejša od pripadajoče osebe iz druge skupine.

Preprost tak primer sta skupini z dvema osebama, kjer je ty < t; < ta —t,.

Tedaj je T(ti,ta) < T(ij,t) < ta.
Zanimivo je, da lahko čas, potreben za prehod skupine, precej skrajša-

mo, če skupino razširimo s ,,hitro" osebo ali parom ,,hitrih" oseb. Imejmo

skupino n oseb, kjer je t; — t, 1 < i < n. Optimalno zaporedje prehodov

za to skupino je sestavljeno iz n — l prečkanj parov in n — 2 vračanj

posameznikov. 'Torej je

TG,...,th <s(n-l t4£(n—2) -it<(2n—3)-t.

n

Razširimo skupino z novo osebo, ki za prehod brvi potrebuje čas ec, kjer

je e < t. Razširjeno skupino lahko spravimo čez brv z zaporedjem prehodov,

pri katerih brv vedno prečka par, ki vključuje novo osebo, ta oseba pa se

nato s svetilko vrne nazaj čez brv. Ker potrebujemo n takih parov prehodov,

pri čemer pri zadnjem prehodu vrnitev svetilke ni potrebna, imamo

Ti(e,t,...,t) <n-td(n—1)-e.
Non pome!

n

Če je z dovolj majhen in n dovolj velik, je čas prečkanja skoraj pol krajši kot
pri začetni skupini n oseb, Če v skupino dodamo še drugo , hitro" osebo,

lahko za prehod brvi uporabimo še nekoliko drugačno strategijo. Najprej čez

brv pošljemo obe , hitri" osebi, ena od njiju se vrne nazaj s svetilko. Nato

gre čez brv par , počasnih" oseb, druga ,,hitra" oseba, ki je čakala na drugi

strani brvi, pa se vrne s svetilko. 'Tako čez brv spravimo par , počasnih"

oseb, in sicer v času t -- 3e. Postopek ponavljamo, dokler niso na drugi

strani brvi vse osebe. Ce je oseb liho, zadnja , počasna" oseba prečka brv v

paru s , hitro" osebo. Tako dobimo

n-1l

2
Tle,e,t,...,t)< |

Va, —

Nn

res (Ul A)

Za majhen e in velik n je tako zaporedje prehodov brvi skoraj štirikrat

hitrejše od prehoda skupine n , počasnih" oseb. V nadaljevanju bomo

pokazali, da za vsako skupino oseb obstaja optimalno zaporedje prehodov,

ki je primerna kombinacija obeh opisanih , osnovnih" načinov: uporabe ene

,hitre" osebe ter uporabe para , hitrih" oseb.
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O optimalnih zaporedjih prehodov

Zaporedje prehodov, s katerim skupina oseb prečka brv, je sestavljeno

iz dveh vrst prehodov: prečkanj, kjer gre oseba ali par oseb z začetne na

končno stran brvi, in vračanj, pri katerih se oseba oziroma par oseb skupaj

s svetilko vrne s končne na začetno stran brvi. Prehodu, pri katerem gre čez

brv z začetne na končno stran ena sama oseba ali pa se prek brvi s končne

na začetno stran vrne par oseb, bomo rekli nenavadn prehod.

(ii) Če sta v skupini vsaj dve osebi, potem nobeno optimalno zaporedje
prehodov ne vsebuje nenavadnega prehoda.

Dokaz. Vzemimo optimalno zaporedje prehodov in predpostavimo, da

vsebuje nenavadni prehod. Pokazali bomo, da lahko tedaj zaporedje spre-

menimo tako, da dobimo zaporedje, s katerim celotna skupina še hitreje

prečka brv, kar je v protislovju z optimalnostjo začetnega zaporedja preho-

dov.

Poglejmo zadnji nenavadni prehod v zaporedju. Ločimo dve možnosti.

Vzemirno najprej, da gre za prečkanje brvi, pri katerem se prek brvi odpravi

le oseba x. To gotovo ni zadnji prehod v zaporedju, saj bi bila tedaj bodisi

z edina oseba v skupini ali pa bi bile pred vrnitvijo, kateri sledi prečkanje

osebe z, že vse osebe na drugi strani brvi. Naj torej prečkanju osebe z sledi

vrnitev osebe yy (vrne se le ena oseba, saj je prehod osebe z zadnji nenavadni

prehod). Zaradi optimalnosti zaporedja prehodov je z Z y. Oba prehoda,

prečkanje osebe x in vrnitev osebe y, izpustimo iz zaporedja. Dobimo

novo zaporedje, ki pa ga ni mogoče izvesti (v enem od naslednjih prehodov

pošljemo v paru čez brv osebo y, ki pa je sedaj na drugi strani brvi, ali

pa želimo prek brvi vrniti osebo' x, ki pa je še vedno na začetni strani).

Poglejmo prvi prehod, ki ga ni mogoče izvesti. Če gre za vrnitev osebe r,
potem namesto nje prek brvi vrnemo osebo y. Če pa gre za prečkanje para,

ki vsebuje osebo y, namesto osebe y pošljemo osebo x. V obeh primerih je

vse nadaljnje prehode mogoče izvesti. S spremenjenim zaporedjem prehodov

celotna skupina hitreje prečka brv (prihranek časa je vsaj 2mminjt,,t,!), kar

je protislovje.

Druga možnost je, da je zadnji nenavadni prehod vrnitev para, recimo

oseb z in y. Poglejmo prvi naslednji prehod, v katerem sodeluje oseba z ali

oseba y. Ce gre za prečkanje para 4, y, potem iz zaporedja izpustimo tako

vrnitev kot tudi prečkanje tega para. Dobimo zaporedje prehodov, s katerim

celotna skupina hitreje prečka brv, kar je spet protislovje. Sicer pa lahko

predpostavimo, da gre za prečkanje para z, z, kjer je z z£ y. Tedaj zaporedje

prehodov spremenimo tako, da se namesto para z, y vrne le oseba y, kasneje

pa namesto para 4, z brv prečka le oseba z. S spremenjenim zaporedjem

prehodov skupina kvečjemu hitreje prečka brv (namesto časa maxjt,, ty?

- maxjtc,t,j porabimo čas t, --t,). Toda po že dokazanem spremenjeno

zaporedje ni optimalno, saj vsebuje nenavadni prehod (prečkanje osebe z),

to pa je protislovje. m
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Vsako optimalno zaporedje prehodov za skupino n oseb (n > 2) je tako

sestavljeno iz 2n — 3 prehodov: n — l prečkanj parov, med posameznimi

prečkanji pa so vračanja posameznikov (teh je skupaj n — 2). Zgornji opis

velja tudi za n < 1, le da tedaj pri (edinem) prehodu brv prečka le ena

oseba in ne par.

Kaj pa lahko rečemo o osebah, ki pri optimalnih zaporedjih prehodov

vračajo svetilko s končne na začetno stran brvi? Domnevamo lahko, da

je to (običajno) najhitrejša oseba (oziroma ena od najhitrejših oseb, če je

kandidatov več), ki se nahaja na končni strani brvi. Vračanju, pri katerem

svetilke ne prinese nazaj ena od najhitrejših razpoložljivih oseb, bomo rekli

nenavadno vračanje.

(iti) Za vsako skupino oseb obstaja optimalno zaporedje prehodov, ki ne

vsebuje nenavadnih vračanj.

Dokaz. Vzemimo optimalno zaporedje prehodov in predpostavimo, da

vsebuje nenavadno vračanje. Opisali bomo spremembe, s katerimi začetno

zaporedje preoblikujemo v optimalno zaporedje brez nenavadnih vračanj.

Oglejmo si prvo nenavadno vračanje v zaporedju. Recimo, da ga opravi

oseba y, na končni strani brvi pa naj bo tedaj tudi oseba z, za katero velja

tz < ty. Privzamemo lahko, da je z najhitrejša oseba na končni strani brvi.

Zamenjajmo vrnitev osebe y z vrnitvijo osebe x. Dobljenega zaporedja

prehodov ni mogoče izpeljati. Poglejmo prvi prehod, ki nam to preprečuje.

Imamo dve možnosti. Ce gre za prečkanje para, ki vsebuje osebo y, potem v

paru osebo y zamenjamo z osebo 4 in dobimo zaporedje prehodov, s katerim

skupina hitreje prečka brv. 'To pa je v protislovju z optimalnostjo začetnega

zaporedja prehodov, zato ta možnost odpade. Druga možnost je prehod,

v katerem se oseba 4 vrne prek brvi. Tokrat osebo x zamenjamo z osebo

y in dobimo zaporedje prehodov, s katerim skupina prečka brv v enakem

času kot z začetnim zaporedjem prehodov. Novo zaporedje prehodov bodisi

ne vsebuje več nobenega nenavadnega vračanja ali pa se prvo nenavadno

vračanje v njem pojavi kasneje kot v začetnem zaporedju. Z zaporedjem

sprememb opisane oblike lahko torej začetno optimalno zaporedje prehodov

preoblikujemo v optimalno zaporedje prehodov brez nenavadnih vračanj. s

Preprosta posledica lastnosti (ili) je, da vedno obstaja optimalno zapo-

redje prehodov, v katerem oseba n (najpočasnejša oseba) le prečka brv in

se ne vrne več nazaj. (To dejstvo bi sicer lahko dokazali tudi precej prepro-

steje.)

Seveda pa vsa optimalna zaporedja prehodov niso brez nenavadnih

vračanj. Ze v rešitvi originalne naloge iz Preseka, ki smo jo podali v uvodu,

bi lahko zamenjali prvi vračanji: namesto Bona bi se najprej vrnil Edge, po

naslednjem prečkanju pa bi se namesto Edgea vrnil Bono. Oziroma nekoliko

bolj splošno: kadar za prehod para ,, počasnih" oseb uporabimo par , hitrih"

oseb, je vseeno, katera ,, hitra" oseba se vrne prva in katera počaka na drugi

strani brvi.

4 | Obzornik mat. fiz. 47 (2000) 1



Čeprav navedena dokaza lastnosti (ii) in (ili) nista zelo kratka, pa sta
sami lastnosti preprosti in pričakovani. Res pa je tudi, da nam o optimalnih

zaporedjih prehodov ne povesta dovolj, da bi lahko le z njuno pomočjo

hitro rešili nalogo. Precej bolj natančen opis nekega optimalnega zaporedja

prehodov nam podaja naslednja lastnost.

(iv) Za vsako skupino oseb obstaja optimalno zaporedje prehodov z nasled- .

njima lastnostma:

(a) Zaporedje ne vsebuje nenavadnih vračanj.

(b) Prečkanja parov v zaporedju so dveh oblik: prečkanja parov oblike

1, z in prečkanja parov oblike z, y, pri čemer z,y € 1,2].

Prečkanje druge oblike ne nastopi na začetku zaporedja, par, ki ne-

posredno pred parom 1, y prečka brv, pa mora biti par 1, 2.

Dokaz. 'Vzemimo poljubno optimalno zaporedje prehodov. Zaradi

lastnosti (iii) lahko predpostavimo, da zaporedje ne vsebuje nenavadnih

vračanj. Lastnost (a) je s tem zagotovljena. V nadaljevanju bomo pazili,

da spremembe, ki jih bomo opravili v zaporedju, tega ne bodo pokvarile.

Privzamemo tudi lahko, da se tedaj, ko je za vrnitev prek brvi več enako

hitrih kandidatov, izmed njih vedno vrne oseba z najmanjšo oznako. Od

tod sledi, da je po vsakem vračanju oseba 1 na začetni strani brvi. Zadnji

prehod v zaporedju je torej prečkanje para 1, z.

Vzemimo prvi prehod v zaporedju, ki ne ustreza opisu iz (iv). Ker v

zaporedju ni nenavadnih vračanj, gre za prečkanje brvi. Recimo, da gre za

prečkanje para 2, x, kjer je x 7€ l. Zaradi predpostavk je naslednji prehod

v zaporedju vračanje osebe 2. Potem pa prečkanje para 2, z in vračanje

osebe 2 lahko nadomestimo s prečkanjem para 1, 4 in vračanjem osebe 1.

Druga možnost je, da točka (b) ni izpolnjena zaradi prečkanja para 1,

y, kjer z,y £ 41,2%. Če gre za prvi prehod v zaporedju, potem mu sledi
vračanje osebe x ali y. Zopet lahko v obeh prehodih osebo, ki se vrne,

nadomestimo z osebo 1 in dobimo novo optimalno zaporedje, v katerem prvi

prehod, ki ne ustreza opisu iz lastnosti (iv), nastopi kasneje kot v začetnem

zaporedju. Ostane še možnost, ko prečkanje para £, y ni prvi prehod v

zaporedju. To prečkanje tudi ni zadnji prehod. Vračanje, ki sledi, naj opravi

oseba z. Seveda je z x 1, lahko pa je z — 2. Glede na to, kako je oseba z

nazadnje prišla na končno stran brvi, ločimo dve možnosti:

— Oseba z je prečkala brv v paru z osebo 1. 'Tedaj zaporedje preho-

dov vsebuje prehode (1,z),1,...,(4z,y), z. Ker oseba z ne sodeluje pri

,, vmesnih" prehodih, ti so označeni s tremi pikami, lahko zamenjamo

vrstni red prehodov ter prečkanje para 1, z in vračanje osebe 1 opra-

vimo tik pred prečkanjem para z, y. Tako dobimo zaporedne prehode

(1, z),1,(4£,y), z, pri čemer prejšnji prehodi še vedno izpolnjujejo zah-

teve iz točke (b). Osebo z še zamenjamo z osebo 2 (če je z 7 2; seveda

mora. biti %, < to, sicer pridemo v protislovje z optimalnostjo) in tudi

prečkanje para z, y dobi želeno obliko.
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— Oseba z je prečkala brv v paru z osebo z', pri čemer z' £ 1. Ker

prečkanje para z, z' ustreza točki (b), imamo v zaporedju prehode

(1,2),1,(z,z'),2,...,(2,y),z. "Te prehode nadomestimo s prehodi

(1,z),1,...,(1,2),1,(x,y),2. Novo zaporedje prehodov je zopet opti-

malno (veljati mora tudi t, < t,, sicer pridemo v protislovje z optimal-

nostjo), prečkanja para 4, y in parov pred njim pa imajo želeno obliko.

Z zaporedno uporabo opisanih sprememb tako lahko poiščemo opti-

malno zaporedje prehodov, ki izpolnjuje zahteve iz točk (a) in (b). m

Iz točk (a) in (b) v (iv) tudi sledi, da v vsakem optimalnem zaporedju

prehodov, ki ustreza (iv), vsa vračanja prek brvi opravita osebi 1 in 2. Pri

tem se oseba 2 vrne prek brvi natanko sedaj, ko je prečkanje pred tem

opravil PAT z, y, kjer z,y £ 41,2). Osebe 3,...,n le enkrat prečkajo brv in

se ne vrnejo več prek nje.

Iskanje rešitve

Naj bo n > 2. Vzemimo optimalno zaporedje prehodov, ki izpolnjuje

zahteve iz (iv). Množico oseb 43,...,n) razdelimo v dve skupini: v množici

A naj bodo tiste osebe, ki prečkajo brv v paru z osebo 1, v množici B pa

tiste, ki prečkajo brv v paru z osebo, različno od 1 in 2. Po konstrukciji

sestavlja množico B sodo število oseb. Označimo a < |A| in b < |B//2.

Velja torej n — 2 <— a -- 2h. Celotno zaporedje prehodov je sestavljeno iz

a parov prehodov (1,4), 1, kjer z preteče množico A, b četverk prehodov

(1,2), 1, (z,y), 2, kjer z in y skupaj pretečeta množico B, in iz prečkanja

para 1, 2 (edino prečkanje osebe 2, ki sledi zadnjemu prečkanju para, ki ne

vsebuje niti osebe 1 niti osebe 2).

Čas, ki ga potrebujemo za izvedbo takega zaporedja prehodov, je enak

(4-5) ty (2041) :ta 4 > t, 4 Tg, (1)
TEA

pri čemer smo s Tp označili čas, potreben za b prečkanj parov, sestavljenih

iz oseb iz množice 5. Naj bodo 0 < s; < ':: < so, časi, ki jih za prehod

brvi potrebujejo osebe iz množice 5. Trdimo, da je

b

Tg > sa.
il

Dokaz. Oceno bomo dokazali z indukcijo po b. Za 5 <— 0 in b < 1 ocena

očitno drži. Privzemimo, da ocena velja za b— 1, in naj bo 5 množica 2b

oseb. Označimo z z najpočasnejšo osebo v množici B. Oseba x naj prečka

brv v paru z osebo y. Oseba y naj za prehod brvi potrebuje čas s;. Naj bo

B'! — BY4r,yh. Potem je Tp <— Tpgr -- sa5. Po indukcijski predpostavki je
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> S, kjer je s — sjzaj< kin sj — sjya zak S j S 2b—2. Vedno
je torej s; > sj. Tako dobimo

Indukcijski korak je s tem dokazan.

Spodnjo mejo za čas 7p lahko dosežemo. 'To storimo tako, da čez brv

pošiljamo pare, sestavljene iz oseb, ki za prehod brvi potrebujejo čase sa;. 1,

Ugotovili smo, kako je pri dani množici oseb B treba sestaviti pare,

ki bodo skupaj prečkali brv, da bo čas prečkanja čim krajši. Kaj pa, če

poznamo le število b (oziroma moč množice B)? Kako je treba izbrati

množico B, da bo čas prečkanja skupine čim krajši? Čas, potreben za
prečkanje oseb iz množice 5, bo najkrajši, če množico B sestavimo iz 2b

najhitrejših oseb. Toda tedaj bo čas, potreben za prečkanje oseb iz množice

A, najdaljši. Poglejmo izraz ((1)) nekoliko natančneje. Prvi in drugi člen

sta odvisna le od moči množice B, nič pa od elementov, ki so v njej. Vsota

tretjega in četrtega člena pa je enaka skupni vsoti časov >;..5 t;, zmanjšani

za vsoto časov tistih oseb iz množice B, ki so hitrejše od svojega partnerja

pri prečkanju brvi (če sta obe osebi v paru enako hitri, kot hitrejšo vzamemo

tisto, ki ima manjšo oznako). Odšteta vsota je (pri že uporabljenih oznakah)

navzgor omejena z mam Soj-1. Največjo vrednost doseže, če množico B
sestavimo iz 25 najpočasnejših oseb.

Možne vrednosti za b so števila 0,1,..., ai Ker nam ena od njih
gotovo določa optimalno zaporedje prehodov, imamo

T(ti,...,tn) <

n—2b

— min ((n —2—b).ti (241) :ta 4 S taA
O<b<| BE? | i—3 —( (2)

n b—1

<(>3t) 4 min ((n—-8—6).ti b2b:b — $ tunin).
izl 0Sbs[| "75 | izo

Zanimivo je, da nam za izračun vrednosti T(t,,...,%,) ni treba poznati vseh

vrednosti t;, 1 < z < n. Formula ((2)) pravi, da zadošča, če poznamo vsoto

t-jev, ti, to m vrednosti t, 1,in—3,tn—5,...

Naj bo minimum v formuli (2) dosežen pri vrednosti b". Optimalno za-

poredje prehodov, ki pripada tej vrednosti, sestavimo iz dveh delov. Najprej

čez brv spravimo 25" najpočasnejših oseb, in sicer ob pomoči ,,hitrega" para

1, 2. Preostalih n — 25" — 1 oseb (poleg osebe 1) pospremi čez brv , hitra"

Obzornik mat. fiz. 47 (2000) 1 7



oseba 1. 'To je tudi že v uvodnem razdelku omenjena primerna kombinacija

obeh ,osnovnih" strategij.

In kako hitro poiščemo vrednost b"? Če natančneje pogledamo izraz
znotraj minimuma v (2), opazimo, da se prva člena izraza pri povečanju

vrednosti b-ja za l skupaj povečata za 213 — ti. Zadnji del izraza pa se

pri spremembi vrednosti b-ja z b na b - l spremeni za t,.25-,. Ker so

vrednosti %t,.1,%n—3,... monotono padajoče, se izraz znotraj minimuma

zmanjšuje toliko časa, dokler je , 25, > 2t2—ti. Vrednost b" je tako enaka

najmanjšemu 0-ju, za katerega je %,.25-1 < 2t2 — ti. Tak b gotovo obstaja,

saj je za b — | 2] izraz n — 25 — 1 enak 1 (če je n sod) oziroma 2 (če je

n lih), velja pa ty, < ts < 2ts — t;. Če imamo podano urejeno tabelo t-jev,
lahko tako določen 5" poiščemo v logaritemskem času z varianto bisekcije.

Poglejmo, kako zgornji razmislek uporabimo pri nalogi iz Preseka. Časi,
ki jih za prehod porabijo posamezne osebe, so podani s t < (1,2,5,10). Ker

je 2ta — t; < 3, tz < 5 > 3, dobimo 5" < 1. Po ((2)) je torej

T(1,2,5,10) <18-40:t; -2:ta — tz — 17.

Iz opisa optimalnega zaporedja prehodov (pa tudi s pomočjo formule

((2))) lahko pokažemo tudi rekurzivno zvezo za vrednosti T; < T(ti,...,1;),

1 < 1 < n. Velja namreč

TI; sti, Dsto, Mm T,; —<tj -t; - min4T;.,,2ta - T;oa) Za 3Z <?< n.

Pri tem prvi izraz v minimumu ustreza primeru, ko oseba % prečka brv v

paru z osebo 1, drugi izraz pa predstavlja prečkanje para i—1, z ob pomoči

, hitrega" para 1, 2.

Obravnavana naloga omogoča še mnoge posplošitve. 'Tako lahko po-

večamo število svetilk, ki jih ima skupina na voljo, in s tem zmanjšamo

število potrebnih vračanj prek brvi, povečamo lahko tudi nosilnost brvi in

dopustimo, da jo hkrati prečkajo tri ali celo več oseb, spremenimo pa lahko

tudi kriterij za čas, ki ga za prehod brvi potrebuje skupina oseb: namesto

časa najpočasnejše osebe iz skupine lahko vzamemo povprečni čas ali kakšno

drugo funkcijo časov oseb iz skupine.

Zahvala: Zahvaljujem se kolegu Marku Petkovšku, ker me je opozoril

na vir [1].
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V članku so opisani najosnovnejši elementi teorije linearno urejenih množic. Podrob-

neje so obdelane linearno urejene množice, ki jih je mogoče urejenostno vložiti v naravno

urejeno realno os. Podane so urejenostne karakterizacije standardno urejenih množic N,

Z, O in R.

LINEAR ORDER NAD THE REAL LINE

In this note some basic elements of the theory of linearly ordered sets are presented.

Linearly ordered sets that are order embeddable in the naturally ordered real line are

described. Order characterizations of standardly ordered sets N, Z, 0 and MR are given.

1. Osnovne poteze linearne urejenosti

Ena od temeljnih relacij na podmnožicah realne osli je urejenost števil

po velikosti. Osnovne lastnosti relacije < na teh množicah lahko strnemo

v splošen pojem linearne urejenosti. Naj bo A poljubna neprazna množica.

Binarno relacijo < (manjše ali enako) na A imenujemo relacija linearne

urejenosti, kadar je

antisimetrična: iz z <X yin y< a sledi z < y,

tranzituvna: iz xa < yin y < z sledi x < z,

strogo sovisna: za vsak par z,y € A velja x < yali y < .

Kadar je na A dana relacija linearne urejenosti <, imenujemo A (skupaj

z <) linearno urejena množica. Relacija linearne urejenosti na A je zaradi

stroge sovisnosti refleksivna (z < x za vsak x € A), zato je poseben primer

relacije delne urejenosti.

Naravno urejena realna os je zelo uporaben model linearno urejene

množice. Vrsto pojmov in oznak, ki jih uporabljamo v tem primeru, zlahka

presadimo v poljubno linearno urejeno množico A. Tako npr. za z,y € A

odnos x < y lahko zapišemo v obliki y > z, z < y pomeni, da je z < y

in hkrati z £ y, y > a pa isto kot x < y. Tudi relacija > linearno ureja

množico A. Imenujemo jo nasprotna ali dualna urejenost. V množici A velja

t.i. zakon trihotomije: Za poljubna elementa x,y € A velja natanko ena od

možnosti £ < y, y < z in x — y. Kadar je £ < y, imenujemo množici

(z,y) <|z€ A: e<z<yj, |z1,y| <4z€ A: a <z<y]

odprti oziroma zaprti interval s krajiščema z in y. Interval |z,y| vsebuje

vsaj dva elementa, z in y, interval (z,y) pa je lahko prazen. To se zgodi

Članek je razširjena verzija predavanja, ki ga je imel avtor 2. februarja 2000 na
Fakulteti za matematiko in fiziko v okviru strokovnega izpopolnjevanja učiteljev

matematike.
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npr. v standardno urejeni množici naravnih števil, kadar sta z in y zaporedni

naravni števili. Če je x < y in (z,y) < 0, pravimo, da je y neposredni

naslednik elementa z in da je x neposredna predhodnik elementa y. Podobno

iz številskih primerov prenesemo pojme prvi ali najmanjši element, zadnji

ali največji element, spodnja in zgornja meja, infimum in supremum.

Neprazna podmnožica B linearno urejene množice A na naraven način

podeduje urejenost iz A. Podedovano linearno urejenost imenujemo ?ndu-

cirana urejenost. 'Ta se lahko močno razlikuje od urejenosti v A. 'Tudi

lastnosti, ki jih ima B kot podmnožica v A, se ne podedujejo vedno na samo

množico B v inducirani urejenosti. 'Tako je npr. odprti interval realne osi

omejen v ]R, v inducirani urejenosti pa ni omejen. Linearno urejena množica

je namreč navzdol (oziroma navzgor) omejena natanko takrat, kadar ima

prvi (oziroma zadnji) element.

Naj bosta A in A' linearno urejeni množici. Preslikava J : A — A' je

naraščajoča oziroma strogo naraščajoča, kadar za vsak a,b € A velja

ca< b —> fla) < f(b) oziroma a<b —> fla) < f(b).

Ker je relacija linearne urejenosti strogo sovisna, je strogo naraščajoča pre-

slikava injektivna. Preslikava f : A — A' je urejenostni izomorfizem ali

izomorfizem, kadar je naraščajoča, bijektivna in je tudi njena inverzna pre-

slikava f-! naraščajoča. Brž se lahko prepričamo, da je izomorfizem strogo

naraščajoča preslikava in da je vsaka strogo naraščajoča surjekcija izomor-

fizem. Kadar med linearno urejenima množicama A in A' obstaja izomor-

fizem, pravimo, da sta množici A in A' tzomorfni in to zaznamujemo z

A z A'. Strogo naraščajoča preslikava določa izomorfizem med njeno do-

meno in zalogo, opreraljeno z inducirano urejenostjo kodomene, zato tako

preslikavo imenujemo urejenostna vložitev ali vložitev. Izomorfizem ohra-

nja urejenostne lastnosti: interval preslika na interval iste vrste, omejeno

množico na omejeno, supremum podmnožice (kadar obstaja) v supremum

slike te množice, podobno preslika infimum, itd. Zato med sabo izomorfne

množice pogosto kar identificiramo. Natančneje, družino linearno urejenih

množic lahko razdelimo na ekvivalenčne razrede, v katerih so med sabo

izomorfne množice. Ekvivalenčni razred pravzaprav določa tip urejenosti.

Oglejmo si nekaj preprostih primerov. |

Končna linearno urejena množica z močjo n € MN je očitno izomorfna

standardno urejeni množici naravnih števil (1,2,...,n]h. Torej sta končni

linearno urejeni množici izomorfni natanko takrat, kadar sta ekvipolentni.

V splošnem sta izomorfni linearno urejeni množici ekvipolentni, ekvipolentni

pa nista nujno izomorfni. Običajno urejena množica JN npr. ni izomorfna

dualno urejeni množici JN". Prva ima namreč najmanjši element, druga pa

ne. V nadaljevanju bomo brez besed privzeli, da so množice N, Z, O] in

IR opremljene s standardno urejenostjo. Brez težav lahko ugotovimo, da so

paroma neizomorine. Realna os je izomorfna vsakemu svojemu odprtemu

intervalu in poltraku. Podobno velja za podmnožico racionalnih števil.

Konstrukcijo ustreznih izomorfizmov prepuščamo bralcu.
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Oglejmo si zdaj dve operaciji, ki omogočata konstrukcijo številnih za-

nimivih primerov linearno urejenih množic, urejenostno seštevanje in leksi-

kografsko množenje.

Naj bosta A in 5 dani linearno urejeni množici. Urejenostna vsota

A 9 B je disjunktna unija množic A in 5, urejena tako, da je vsak element

iz A manjši od vsakega elementa iz B in da na A in na B inducira originalno

urejenost. Neposredno iz definicije sledi, da je vsota A $ B linearno urejena.

Leksikografski produkt Ao B je kartezični produkt A x B, opremljen z

leksikografsko urejenostjo: (a;,5;) < (as, ba) natanko takrat, kadar je bodisi

aj < as bodisi a; < as in hkrati b; < ba. Očitno je tudi produkt Ao B

linearno urejen.

Obe operaciji sta neobčutljivi za izomorfizem:

(Av AinBsB) — ABBSA8BGB, AoBuRAoB',

zato ju moremo smiselno prenesti na ekvivalenčne razrede. Dokaz prepu-

stimo bralcu, ki se lahko brez težav prepriča tudi o tem, da sta operaciji

seštevanja in množenja ekvivalenčnih razredov asociativni,

(ABB)BClRAB(BBC), (AKoB)oCl xs MAo(BoC),

in da velja distributivnostni zakon

(ABB)o Cl 8(AoC)B(BoC).

Komutativni nista ne seštevanje ne množenje. Za dokaz vzemimo vsoto

IT VESN in produkt No 41,2). Brž lahko vidimo, da sta oba izomorfna N,

vsota N 641) in produkt 411,23 oN pa ne, torej

AHUSeNZNE4GI, (l,2joNŽNoOJ1,2j.

Poleg tega velja še zveza 11,2]o N z NGNN, ki jo zlahka posplošimo na

11,2,...,njoA NR A0...0A (n sumandov).

Teh nekaj osnovnih pojmov iz splošne teorije urejenosti bo dovolj za

nadaljevanje, v katerem se bomo podrobneje ukvarjali z linearno urejenimi

množicami, ki jih je mogoče vložiti v realno os.

2. Stevne linearno urejene množice

Najprej poiščimo karakteristične lastnosti najpreprostejše ,,neskončne"

linearne urejenosti, to je naravne urejenosti množice IN. Ze prvi pogled

razkrije dve pomembni urejenostni lastnosti IN: obstaja prvi element in vsak

element ima neposrednega naslednika. Je števna množica, ki ima ti dve

lastnosti, izomorfna N? Ne, tudi vsota NGN je števna in ima obe lastnosti,

vendar ni izomorfna IN. Res, element 1 iz druge kopije N v vsoti N S N
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nima neposrednega predhodnika in ni prvi element, kar pa se v IN ne more

zgoditi. Bo dovolj, če dodamo zahtevo, da ima vsak element, razen prvega,

poleg neposrednega naslednika tudi neposrednega predhodnika? (Odgovor

je ne, vsota N $ Z ima namreč vse zahtevane lastnosti, pa ni izomorfna

N. V N $ Z je v vsakem intervalu, ki ima levo krajišče v N, desno pa v

ZZ, neskončno elementov, v MN pa je v vsakem intervalu končno elementov.

Prišli smo do lastnosti, ki je značilna za N.

Izrek 1. /anearno urejena množica je izomorfna IN natanko takrat,

kadar ima prvi element, nima zadnjega elementa, v vsakem njenem intervalu

pa je končno elementov.

Dokaz. Ker ima MN očitno vse zahtevane lastnosti, dokažimo le drugo

smer ekvivalence. Predpostavimo, da je A linearno urejena množica, ki

ustreza pogojem v izreku. Označimo z a, prvi element A. Ker A nima

zadnjega elementa, v A obstaja element a > aj. Interval (a;,a] ni prazen

in po predpostavki vsebuje končno elementov. Njegov najmanjši element a,

je seveda neposredni naslednik elementa aj. Če nadaljujemo v istem slogu,

postopoma pridelamo neskončno naraščajoče zaporedje s členi a,, tako da

je za vsak indeks n člen a,,,, neposredni naslednik elementa a,,. Zato noben

drug element iz A ni manjši od kakega člena zaporedja (a,),cN. Denimo,

da za z € A velja z > a, za vsak n e N. Potem bi vsak interval (a,,, £)

vseboval vse člene a;, k > n, kar pa zaradi predpostavke ni mogoče. 'Torej

je A—fa,: ne Nj, preslikava n > a, pa je iskani izomorfizem. m

Značilne lastnosti linearno urejene množice ZZ lahko opišemo podobno.

Tudi v tem primeru za karakterizacijo ne zadostuje, da je množica števna

in da ima vsak njen element neposrednega predhodnika in neposrednega

naslednika (vsota Z $ Z ni izomorfna Z), pač pa velja naslednji rezultat.

Izrek 2. [4nearno urejena množica je izomorfna ZZ natanko takrat,

kadar nima nati prvega nati zadnjega elementa, vsak njen interval pa vsebuje

končno elementov.

Dokaz. Mlemente linearno urejene množice, ki ustreza pogojem izreka,

lahko uredimo podobno kot v dokazu izreka 1, pri tem pa jih indeksiramo s

celoštevilskimi indeksi. m

Katere linearno urejene množice je mogoče vložiti v Z? Zadošča najti

bistvene urejenostne lastnosti podmnožic množice ZZ v inducirani urejenosti.

V ZZ seveda najdemo vse končne množice, kratek premislek pa pove, da je

neskončna podmnožica v ZZ izomorfna eni od množic Z, N in N". Vsote

Z € Z torej ne moremo vložiti v ZZ. Lahko pa jo vložimo v (. Ena od

mnogih podmnožic v O, izomorfnih Z 9 Z, je množica 4(£2" : m € Zl.

V O lahko na soroden način vložimo vse (med sabo paroma neizomorfne)

vsote Z $... Z. Družina vseh števnih linearno urejenih množic je še

mnogo obsežnejša, zato je zanimivo, da velja naslednji rezultat.

12 Obzornik mat. fiz. 47 (2000) 1



Izrek 3. Vsako števno lunearno urejeno množico lahko vložimo v O.

Dokaz. Za končne množice izrek očitno velja, zato predpostavimo, da

je A neskončna števna linearno urejena množica in aj,49,... njeni paroma

različni elementi. Iskano vložitev f : A — 0) bomo konstruirali z mate-

matično indukcijo.

Najprej postavimo f(a,) < ri, kjer je rj; katerokoli racionalno število.

Nato predpostavimo, da je funkcija f že definirana na A,, <— daji,...,an),

npr. f(a;) <r; € 0,1 < k < n, in daje na tem območju strogo naraščajoča.

Z indukcijskim korakom bomo predpis za f razširili na A,,,1, tako da

bo tudi razširitev strogo naraščajoča. Predpisati je treba le še vrednost

f(anyi). To storimo takole:

Ce je anji < MIN]<k<n dk, izberemo poljubno racionalno število

"nji < Minj<k<n Tk Mm postavimo Jf(a,4,1) < rngi. Podobno storimo, ka-

dar je anj, > MaXj<k<n Tk. 9icer pa poiščemo taka elementa a;,a; € A,,

da je a; < a,ji < a; in na intervalu (a;,a;) C A ni elementov iz A,,, ter

predpišemo f(a,,4,) < rna, kjer je ray, katerokoli racionalno število na in-

tervalu (r;,r;). 'Tu upoštevamo, da je po indukcijski predpostavki f strogo

naraščajoča na A, in zato r; < r;. Dobljena razširitev je očitno strogo

naraščajoča na A,,,, indukcijski korak pa s tem zaključen.

Neposredno iz konstrukcije funkcije f : A — 0 sledi, da je strogo

naraščajoča in tedaj vložitev. m

Za opis nadaljnjih rezultatov bomo potrebovali nekaj novih definicij.

Naj bo A linearno urejena množica, 5 in C pa njeni podmnožici. Potem

je B urejenostno gosta ali gosta v C, kadar za vsak par z,y € ČC, z < y,

obstaja tak z e B, da je x < z < y. Kadar je B urejenostno gosta v CA B,

pravimo, da je B šibko urejenostno gosta ali šibko gosta v C.

Vsaka linearno urejena množica je šibko gosta v sebi, ni pa nujno gosta

v sebi. Tako npr. množici N in Z nista gosti v sebi, množici 0) in ]R pa sta.

Bralca vabimo, da se prepriča o naslednji preprosti zvezi med gostostjo in

šibko gostostjo; utemeljena je tudi v dokazu trditve 8.

Naj ima linearno urejena v sebi gosta množica A vsaj dva elementa in

naj bo B njena neprazna podmnožica. Potem ima A neskončno elementov,

B pa je gosta v A natanko takrat, kadar je šibko gosta v A.

Na vrsti je urejenostna karakterizacija racionalne osi ().

Izrek 4. tevna linearno urejena množica brez prvega in zadnjega
elementa je gosta v sebi: natanko takrat, kadar je 1zomorfna ().

Dokaz. Množica (0 očitno ustreza pogojem izreka, zato zadošča do-

kazati, da sta poljubni števni linearno urejeni v sebi gosti množici brez

prvega in zadnjega elementa izomorfni. Naj bosta A <— daj,as,...) in

B — |b,,ba,...$ takšni množici. Privzeti smemo, da a; Y a; in b; b; za

% — j. Izomorfizem f : A — B bomo konstruirali z matematično indukcijo.
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Najprej postavimo f(a,) < b; in za vsak n e N zapišimo

An <dap: 1<k<nj)j, B,<4bp: 1<k<n).

Nato predpostavimo, da je f že definirana in strogo naraščajoča na kaki

podmnožici Aj, C A, ki vsebuje A,,, in da slika f(A,) vsebuje B,,.

Indukcijski korak, s katerim bomo ustrezno razširili predpis za f, je

načeloma sestavljen iz dveh delov. V prvem delu razširimo predpis za f na

Aj, (Jani) in ga izvedemo le v primeru, da a,yi € A,,. Tedaj postavimo

Hana) < by, pri čemer b; € B izberemo tako, da je f strogo naraščajoča

na A, l]4a,4i); izbor je mogoč, ker je B gosta v sebi. Drugi del koraka

opravimo le v primeru, da b,,, £ f(A;,, lUfanji]). Tedaj poiščemo a; € A,

tako da s predpisom f(a;) < b,,,; ne porušimo strogega naraščanja f;

ustrezen a; obstaja, ker je A gosta v sebi. Na ta način predpis za f razširimo

na A,,, — A, (Ma;, Andih 2 AnJa, tako da f ostane strogo naraščajoča in

slika f(A,,;) vsebuje B,41.

Z indukcijo zgrajena funkcija f : A — B je očitno strogo naraščajoča

in surjektivna, torej izomorfizem med A in B.g

V sebi gosta množica, ki ima vsaj dva elementa, ni končna. Če ji
odvzamemo prvi in zadnji element (kadar sploh ima katerega), nam ostane

v sebi gosta množica, ki nima ne prvega ne zadnjega elementa. Od tod z

uporabo izreka 4 zlahka najdemo (do izomorfizma natančno) vse števne v

sebi goste linearno urejene množice.

Posledica 5. Stevna linearno urejena v sebi gosta množica z vsaj
dvema elementoma je izomorfna eni od množic 0), 117090, 09 11),

111900941.

Množica ( je izomorfna vsakemu svojemu odprtemu intervalu (4, y),

x < vy, podobno pa drži tudi za druge množice iz posledice 5. Zlahka

se namreč prepričamo, da velja il 00 < [4,y), 0 8 11) s (z,y]| in

11 900941; s |z,y], kjer je z < y in so intervali mišljeni v 0.

Z uporabo izreka 4 lahko ugotovimo tip urejenosti marsikatere linearno

urejene množice. Tako npr. vidimo, da so množice 89... 0 (končno

sumandov), (o...o 6) (končno faktorjev) in Z o 0 izomorfne O, množica

Oo Z pa ne.

3. Vložitve v realno os in njena karakterizacija

Realna os je izomorfna vsakemu svojemu nepraznemu odprtemu inter-

valu in vsakemu odprtemu poltraku. Od tod brž sledi, da je za vsak n ec N

vsota RY$...$ R (n - 1 sumandov) izomorfna množici RY 4r1;,...,z,)

na realni osi, kjer so r,,...,x, poljubna različna realna števila. Končne

vsote RE...YAIR se torej da vložiti v IR. Tudi , neskončno" vsoto Z o R —

<...ORGERO... lahko vložimo v JR, izomorfna je namreč množici RA Z.

Kako pa je z vložitvijo produkta JR o IR v realno os?
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Denimo, da je f : Ro BR — MR vložitev. Za vsak x c MR zapišimo

(2,0) < zo in f(£,1) < z;. Ker je (4,0) < (z, 1) in f strogo narašča, velja

xg < di, torej na odprtem intervalu s krajiščema o in 4, lahko izberemo

oa no število r,. Ce je z < y, z,y € RR, potem v Ro velja (4,1) <

< (y,0), zaradi strogega naraščanja f pa je tedaj x, < yo- Od tod sledi

rx < Ty, torej smo našli injektivno preslikavo z '— rr, iz R v 0. Injekcija

iz IR v O pa ne obstaja, saj IR po moči presega (. Zašli smo v protislovje,

torej množice JR. o IR ni mogoče vložiti v IR.

Po izreku 3 vsako linearno urejeno množico, ki je ekvipolentna (, lahko

vložimo v 0, primer produkta IR o R pa pove, da analogija za MR ne velja.

Katere linearno urejene množice pa se vendarle da vložiti v BR!

izrek 6. /anearno urejeno množico je mogoče vložiti v IR. natanko

takrat, kadar vsebuje števno šibko gosto podmnožico.

Dokaz. Naj bo najprej A linearno urejena množica, ki jo lahko vložimo

v IR. Brez škode za dokaz smemo predpostaviti, da je A kar vsebovana v R.

Zaznamujmo z B; množico vseh točk iz A, ki imajo v A bodisi neposrednega

predhodnika bodisi neposrednega naslednika. Ni se težko prepričati, da je

množica B, števna. Naj bo B — JI], : n € Nj družina vseh odprtih

Za vsak n € IN izberimo b, € A()4, in postavimo B, < 4b, : n € N).
Dokažimo, da je števna množica B <— B;,|) B, šibko gosta v A.

Vzemimo elementa z, y € AMB, x < y. Ker ne pripadata B;, obstaja tak

z € A, da je z < z < y. Zato interval (4,y) realne osi vsebuje podinterval

1; € B; na katerem leži z. Tedaj by, € B5 C B in a < b, < vy. B je torej res

šibko gosta v A.

Dokažimo še nasprotno smer ekvivalence v izreku. Predpostavimo, da je

zdaj A linearno urejena množica, ki vsebuje števno šibko gosto podmnožico

Bog. Privzeti smemo, da A ni končna. Tudi v tem delu dokaza naj bo B;

množica vseh točk iz A, ki imajo neposrednega predhodnika ali neposre-

dnega naslednika. Dokažimo, da je množica B; števna.

Predpostavimo, da množica 3; ni prazna, vzemimo poljuben z € A, ki

ima v A neposrednega naslednika, in le-tega zaznamujmo z 4'. Potem vsaj

eden od elementov z in £' pripada Bo; v nasprotnem primeru bi namreč

zaradi šibke gostosti Bo v A interval (x,4') vseboval element iz Bo C A.

Ker je poleg tega množica B; unija dvotočkastih množic 4, 4'! in ker vsak

z € B, pripada največ dvema takima množicama, je množica B; res števna.

Množica B < BglJ B; je tedaj števna in šibko gosta v A. Po izreku 3

jo lahko vložimo v (, ker pa je množica (0 izomorfna svojemu podintervalu

(0,1), obstaja vložitev fo : B — R z zalogo fo(B) € (0,1). Razširimo fo

do funkcije f : A — MR. V ta namen vzemimo poljuben z € AA B. Če je

z prvi element v A, postavimo f(z) < 0, če pa je z zadnji element v A, naj

bo f(z) < 1. Kadar z ni niti prvi niti zadnji element, zaradi šibke gostosti
B v A množici

L, <daE BB: a<z), D,<igEB: a>z)
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nista prazni. Očitno je vsak element iz L, manjši od vsakega elementa iz

D,, zato podobno velja tudi za množici fo(L;) in fo(D;). Od tod sledi, da

v IR obstajata števili

[, — sup jo(L;) in d, — inf fo(D,)

in da velja [, < d,. Postavimo f(z) < š(l, 4 d,) in dokažimo, da je tako
definirana funkcija f strogo naraščajoča.

Naj bo z,y € A, x < y. Če z in y pripadata B, velja f(r) — fo(x) <
< foly) < fly). Denimo, da z € B in y ce AN B. Potem y € B;, zato

obstaja tak z € A, da je x < z < y. Če z d B, zaradi šibke gostosti B v
A lahko najdemo u € B, ki ustreza pogoju z < u < y. Potemtakem vedno

obstaja tak element w € B, da je z < w < y. Od tod sledi

J(x) — fo(z) < folw) < inf fo(L,) — l, < z(l, -b dy) — (v),

torej f(4) < f(y). Na podoben način tudi v primerihz e AN B, y€ Bin

x,y € AN B ugotovimo, da je f(x) < f(y). m

Med najpomembnejše urejenostne lastnosti realne osi prav gotovo sodi

Dedekindova polnost. Ponovimo splošnejšo definicijo tega pojma.

Linearno urejena množica A je Dedekendovo polna, kadar ima vsaka

njena neprazna navzgor omejena podmnožica supremum v A in vsaka njena

neprazna navzdol omejena podmnožica infimum v A.

Poleg realne osi obstaja še vrsta neizomorfnih Dedekindovo polnih

množic, ki jih lahko vložimo v IR. Bralec se lahko za vajo prepriča, da je

npr. vsaka zaprta podmnožica realne osi v inducirani urejenosti Dedekin-

dovo polna. Med njimi z naslednjim rezultatom lahko prepoznamo množico

celih števil. |

Izrek 7. finearno urejena množica A je 1zomorfna Z natanko takrat,

kadar je Dedekindovo polna in ima vsak njen element neposrednega predho-

dnika in neposrednega naslednika.

Dokaz je podoben dokazu izreka 11 in ga prepuščamo bralcu.

Katera preprosta urejenostna lastnost loči IR od drugih Dedekindovo

polnih množic, ki jih je mogoče vložiti v IR! Realna os je urejenostno gosta

v sebi in prav ta dodatni pogoj že skoraj karakterizira IR. Pogoja, da se

da linearno urejena množica vložiti v JR in da je hkrati v sebi gosta, lahko

združimo v enega. Velja namreč naslednja ekvivalenca.

Trditev 8. Za linearno urejeno množico A sta ekvivalentni naslednji

izjavi:

(a) A je gosta v sebi in jo je mogoče vložiti v IR.

(b) A vsebuje števno gosto podmnožico.
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Dokaz. (a) —> (b). Naj A izpolnjuje pogoj (a). Potem po izreku 6

vsebuje števno šibko gosto podmnožico 5. Dokažimo, da je tedaj B gosta v

A. Vzemimo poljubna z,y € A, x < y. Ker je A v sebi gosta, obstajata taka

elementa u, v € A, da velja z < u < v < y. Če niti u niti v ne pripadata B,

zaradi šibke gostosti B v A, med u in v leži vsaj en z € B. Torej v vsakem

primeru obstaja element iz B, ki leži na intervalu (z, y).

(b) —> (a). Naj bo zdaj B C A števna in gosta v A. Potem je A očitno

gosta v sebi, po izreku 6 pa jo je mogoče vložiti v IR. m

Na vrsti so značilne urejenostne lastnosti realne osi.

Izrek 9. /4nearno urejena množica je izomorfna IR natanko takrat,

kadar je Dedekindovo polna, vsebuje števno gosto podmnožico in nima niti

prvega niti zadnjega elementa.

Dokaz. Realna os očitno izpolnjuje pogoje izreka, zato dokažimo

le nasprotno smer ekvivalence. Naj bo A Dedekindovo polna linearno

urejena množica brez prvega in zadnjega elementa, B pa njena števna gosta

podmnožica. Ker je B v sebi gosta in nima niti prvega niti zadnjega

elementa, je po izreku 4 izomorfna 0. Naj bo fo : 8 — MR vložitev, ki

preslika 5 na (0. Podobno kot v dokazu izreka 6 lahko tudi tu razširimo

Jo do strogo naraščajoče preslikave f : A —> IR. Prepričajmo se, da je f

surjekcija, in dokaz bo sklenjen.

Vzemimo poljuben r € RYO in si oglejmo množici

B, <ix€ B: fo(e)<rj, Bas<igeB: fo(x) >r].

Očitno za vsak z; € B; in vsak z, € B, velja z, < 43. Ker je A Dedekindovo

polna, obstajata z; < sup 5, in za <— inf 53. Ce upoštevamo še, da sta

fo(B,) in fo(Ba) odseka v (0 in da je B gosta v A, brž ugotovimo, da je

z, — za ln f(z,) < f(x) —r.a

Naslednjo posledico izreka 9 lahko dokažemo podobno kot posledico 5.

Posledica 10. //4nearno urejena Dedekindovo polna množica, ki ima

vsaj dva elementa tn vsebuje števno gosto podmnožico, je 1zomorfna eni od

množic R, 11-9R, RGJU, (1 BRE).

Tako kot v števnem primeru, tudi tu za vsak z,y € IR, z < v, velja

R <5 (z4,y), 11P9Rsx/z,y, ROSI 8 (z,y, IRBROS41) s [z, y].

Realna os ima še eno pomembno urejenostno lastnost, homogena je.

Ohlapno rečeno to pomeni, da je urejenostno enaka v vseh točkah, natančno

pa ta pojem definiramo takole:

Linearno urejena množica A je homogena, kadar za vsak par z,y € A

obstaja tak avtomorfizem f : A — A, da velja f(r) <— y. Z drugo besedo,

grupa avtomorfizmov Aut( A) mora biti tranzitivna.
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Poleg realne osi sta homogeni npr. tudi množici Z in 0. Prvi dve sta

celo Dedekindovo polni. Je med podmnožicami IR še katera homogena in

hkrati Dedekindovo polna? Ker sta prvi in zadnji element linearno urejene

množice (če obstajata) negibni točki vsakega avtomorfizma te množice,

homogena množica z vsaj dvema elementoma nima niti prvega niti zadnjega

elementa. Če je tedaj homogena Dedekindovo polna podmnožica realne osi
gosta v sebi, je po trditvi 8 in izreku 9 izomorfna IR. Kaj pa če ni gosta v

sebi?

Izrek 11. Homogena Dedekindovo polna linearno urejena množica, ks

ima vsaj dva elementa in ni gosta v sebi, je 1zomorfna Z.

Dokaz. Predpostavimo, da množica A ustreza pogojem izreka. Ker

ima A vsaj dva elementa in ni gosta v sebi, obstaja element 19 € A, ki

ima neposrednega naslednika z;. Ker je A homogena, lahko izberemo tak

avtomorfizem f ec Aut( A), da je f(zg) < z,. Postavimo

Tm < J (go), me Z in B<irn,: m€ Z;.

Brez težav se lahko prepričamo, da je potem za vsak m € Z element 1,41

neposredni naslednik elementa z,, in da je množica B izomorfna Z. Dokaz

bo torej sklenjen, ko bomo ugotovili, da je A <— B.

Ker noben element iz A B ne more biti na nobenem intervalu množice

B, je v primeru AX B > ( množica B navzgor ali navzdol omejena v A.

Denimo, da je navzgor omejena. Ker je A Dedekindovo polna, obstaja z —

— sup B € A. Izberimo tak avtomorfizem g € Aut( A), da velja g(z,) < z.

Potem je y <— g(go) neposredni predhodnik elementa z. Od tod sledi, da je

y zgornja meja množice B, kar pa zaradi y < z < sup 5 ni mogoče. Torej B

ne more biti navzgor omejena. Podobno vidimo, da B ni navzdol omejena,

torej res velja A — B. m

Iz izreka 11 in razmisleka pred njim z upoštevanjem trditve 8 dobimo

naslednji rezultat.

Posledica 12. Dedekindovo polna homogena linearno urejena množica,

ke uma vsaj dva elementa in vsebuje števno šibko gosto podmnožico, je izo-

morfna bodisi IR. bodisi Z.

Opomba. Večina navedenih izrekov je vzeta iz enciklopedične monogra-

fije klasične teorije mrež |1,, vendar pa se dokazi teh rezultatov v pričujočem

prispevku bistveno razlikujejo od tistih iz knjige. Še več, dokaz vsebine tu-
kajšnjega izreka 6 je v knjigi precej pomanjkljiv in razen osnovne ideje ne-

korekten. Vsebina izreka 9 iz tega članka je v [1] omenjena kot posledica

izreka o homogenih linearno urejenih množicah (v našem članku je to po-

sledica 12). Dokaz iz [1 je nekoliko topološko obarvan in v primeru v sebi

goste množice (ki naj bi bila izomorfna z R) popolnoma odpove.
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Sklenimo prispevek z informacijo o slovitem poskusu urejenostne karak-

terizacije realne osi. Ker vsak neprazen odprti interval realne osi vsebuje

racionalno število, je vsaka družina paroma disjunktnih odprtih intervalov v

IR števna. Leta 1920 je ruski matematik Suslin objavil naslednjo domnevo:

Suslinova hipoteza. Dedekindovo polna v sebi gosta linearno urejena

množica brez prvega in zadnjega elementa, v kateri je največ števno paroma

disjunktnih odprtih intervalov, je 1zomorfna R.

Matematikom dolgo ni uspelo niti potrditi niti ovreči te hipoteze. Konec

šestdesetih let pa so ugotovili, da velja zanjo nekaj takšnega kot za bolj

znano hipotezo kontinuuma. 'Tudi Suslinove hipoteze namreč pri pogoju,

da je Zermelo-Fraenklov sistem aksiomov teorije množic neprotisloven, ni

mogoče ne potrditi ne ovreči. Natančneje, če predpostavimo neprotislovnost

Zermelo-Fraenklovega aksiomatskega sistema, ga obogatimo z aksiomom

izbire in temu dodamo še SŠuslinovo hipotezo ali njeno negacijo, dobimo

konsistentna sistema aksiomov. Dokaze neodvisnosti Suslinove hipoteze

lahko bralec najde v knjigi |2].
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VESTI

Matematični plakat

Evropsko matematično društvo je za Svetovno leto matematike orga-

niziralo tekmovanje v izdelavi matematičnih plakatov. Rezultate si lahko

ogledate na: http://www.mat.dtu.dk/ems-gallery/index.html.

DMFA organizira podobno tekmovanje v Sloveniji. Plakati naj bi pri-

bližali matematiko širši javnosti. Vabimo vas, da sodelujete. Posterji naj

bodo, če je mogoče, izdelani v elektronski obliki. Lahko pa so tudi narisani

na papir velikosti A3 ali A4. Tekst plakata mora biti dobro čitljiv.

Elektronsko oblikovane izdelke pripnite elektronski pošti in jo pošljite

do 15. oktobra 2000 na naslov: Matija.Lokar0fmf.uni-lj.si. Klasično

oblikovane plakate pošljite do gornjega datuma na naslov:

DMFA, Jadranska 19, 1000 Ljubljana s pripisom: Matematični

plakat.

Plakate bo ocenila strokovna žirija. Rezultate bomo objavili na jesen-

skem občnem zboru, najboljše nagradili in jih tudi poskusili objaviti. Av-

torji obdržijo vse pravice; dovolijo le, da DMFA njihove izdelke objavi na

svoji spletni strani in razstavi na občnem zboru.

Peter Legiša
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PREMO CENTRALNO GIBANJE J. VEGE

JANEZ STRNAD

— PACS 01.65.4-g, 45.40Gj

Pred dvesto leti je slovenski matematik in fizik Jurij Vega izdal knjižico, v kateri

je dokaj izčrpno obdelal premo centralno gibanje. Ceprav zdaj študenti fizike rešujejo

podobne naloge že v prvem in v drugem letniku, utegne Vegovo priljudno pisanje biti

poučno in zanimivo tudi za sodobnega bralca. Leta 2002 bo poteklo dvesto let od Vegove

smrti.

J. VEGA'S LINEAR CENTRAL MOTION

Two hundred years ago the Slovenian mathematician and physicist Jurij (George)

Vega published a booklet in which he considered linear central motion at some length.

Although now related problems are solved by physics freshmen and sophomores Vega's

affable writing may be instructive and interesting also for a contemporary reader. 2002

two hundred years will pass from Vega's death.

Leta 1800 je Jurij Vega, , vitez vojnega reda Marije Terezije, major

cesarsko-kraljevega zbora topničarjev, dopisni član angleške kraljeve akade-

mije in akademije znanosti v Gottingenu, član akademije uporabnih znano-

sti volilnega kneza v Mainzu in fizikalno-matematične družbe v Erfurtu", na

Dunaju objavil knjižico z naslovom Poskus razkritja uganke znanega nauka

o splošni gravitaciji |1]. Knjižico je ,,v najgloblji vdanosti" posvetil ,, Njegovi

kraljevi visokosti Albrechtu, vojvodu Saškemu". Vsebina utegne zanimati

tudi današnje matematike in fizike.

V zapisu je Vega obravnaval premo centralno gibanje. Zamislimo si zelo

majhno telo — recimo mu izstrelek — z majhno maso m v izhodišču na osi z.

Drugo zelo majhno telo — centralno telo — z veliko maso M naj miruje na

osi x pri koordinati a (sl. 1). Izstrelek se v začetnem trenutku t < 0 začne

gibati po osi z proti centralnemu telesu, ker deluje to nanj z gravitacijo. Za-

nima nas, kako se s časom spreminjata hitrost v(%) — da/dt — z izstrelka in

njegova koordinata 4(t). Izhajamo iz Newtonovega gravitacijskega zakona,

po katerem deluje centralno telo na izstrelek s privlačno silo, ki je soraz-

merna z maso izstrelka in z maso centralnega telesa in obratno sorazmerna

s kvadratom razdalje izstrelka od centralnega telesa: F < Gm M/(a — 4)".

Pri tem je G gravitacijska konstanta, ki jo je prvi izmeril Henry Cavendish

šele leta 1798 in je Vega v svojih razmišljanjih ni uporabljal.

Z drugim Newtonovim zakonom F < ma dobimo za pospešek izstrelka

dž < gb?/(a — 1)", če vpeljemo gravitacijski pospešek izstrelka g < GM/b? v

razdalji b od centralnega telesa. Enačbo pomnožimo z 4 in integriramo od

t—0 do tč:
. 2

id" — Ie a.
a a—4Z

Z ustrezno integracijsko konstanto smo upoštevali, da je začetna hitrost iz-

strelka enaka nič. Enačba naravnost sledi iz izreka o kinetični in potencialni
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energiji, po katerem je vsota kinetične energije izstrelka in skupne gravi-

tacijske potencialne energije izstrelka in centralnega telesa konstantna. Na

izstrelek in centralno telo namreč ne deluje kako tretje telo. Izreka v Vego-

vem času v taki obliki še niso uporabljali, zato je Vega izhajal iz drugega

Newtonovega zakona, ki je izreku po vsebini enakovreden. Hitrost izstrelka

dobimo tako, da zapisano enačbo korenimo

ogb2A MW? 1/2

»-a- (3 ( ni ) (1)
a a — Z

Vse korake smo naredili v Vegovem duhu, le da smo vpeljali gravitacijski

pospešek g, medtem ko je on vpeljal pot v prvi sekundi pri enakomerno

pospešenem gibanju in jo zaznamoval z istim znakom. Zato je v Vegovi

enačbi (1) koeficient pred g enak 4, ne 2.

Z integriranjem dobimo čas gibanja

aš 1/2 x/a (1 — £) de

K (zar; [ elja —
- (zz) (DP (Enes (2). 0

Vega je integral dobro poznal, ker ga je kot zgled obdelal v svojih preda-

vanjih iz matematike. 'Tudi ta enačba se ujema z Vegovo enačbo, le da je

arcsin(x/a)W/? nadomestil z žarccos(1 — 22/a).

Gibanje je obravnaval idealizirano, kot je bilo v navadi — in je v navadi

še danes. Zaradi zelo velikega razmerja m/.M je smel vzeti, da centralno telo

miruje in se izstrelek neovirano giblje po osi x mimo njega, ne da bi prišlo

do trka. Z enačbo (1) je ugotovil, da hitrost izstrelka ob centralnem telesu

pri z <— a preseže vsako mejo in da za x < 0 in za x > a hitrost postane

,, nemogoča ali imaginarna". Iz enačbe (2) pa je izračunal, da porabi izstrelek

za gibanje do centralnega telesa čas to — Z (a?/2b?g)W? in da postane za
x < 0 in za x > a tudi čas imaginaren. Izid je spravil Vego v zagato.

Najprej se mu je zazdelo, da izstrelek sploh ne more na drugo stran

centralnega telesa. 'Toda , v matematiki se ne smemo zadovoljiti zgolj z

videzom, ampak mora biti povsod vse jasno". Najprej se je ozrl na mnenje

drugih. , Največji vseh analitikov" Leonard Euler je predlagal, da naj si

zamislimo izstrelek kot planet, ki se okoli Sonca giblje po zelo sploščeni

elipsi. Skrajni točki elipse sta zelo blizu začetne lege planeta in zelo blizu

Sonca, torej približno v medsebojni razdalji a. Planet za en obhod po elipsi

porabi čas 2to in se gibanje venomer ponavlja. Vendar je Vega ugotovil, da

te zamisli pri premem gibanju ni mogoče uporabiti, ker bi hitrost planeta ob

3oncu in v začetnem trenutku sploh ne imela komponente v smeri zveznice

s Soncem. Enakega mnenja je bil tudi Pierre-Simon de Laplace v /Vebesni

mehanaka.
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Slika 1. Vegova prvotna izbira koordina- —0 s začetna lega H

tne osi z in izhodišča v začetni legi izstrelka z — izstrelka, (<7—li
(levo) in simetrična izbira z izhodiščem v |
centralni točki (desno).

az — centralno telo Č —0

Vega je najprej pomislil, da izstre-

lek ostane popolnoma brez gibanja, ko

doseže centralno točko". V obupu je bil y —2a , Wuga skrajna — .. 1

pripravljen sprejeti celo sklep, da je v lega izstrelka

tem izjemnem primeru limita izraza, v

katerem gre imenovalec proti nič, enaka nič, , čeprav je sicer 1/0 v vseh ana-

litičnih raziskovanjih neskončno veliko število". Neomejeno hitrost, ki jo

doseže izstrelek ob centralnemu telesu, naj bi namreč nenadoma izravnala

neomejena sila v nasprotni smeri, brž ko bi se izstrelek malo premaknil na

drugo stran centralnega telesa. Spomladi 1788 je Vega v tretjem delu ma-

tematičnih predavanj še vedno zastopal to stališče. Zaradi priprav na vojni

pohod proti Turkom tedaj ni imel časa, da bi o njem temeljito razmislil.

Na pohodu samem pa je imel dovolj časa, kakor je poročal, da je

razmišljal. Predstavljajmo si viteza Vego, kako v šotoru razmišlja o gra-

vitaciji, ko se drugi v taboru ukvarjajo z vsakdanjimi vojaškimi opravili!

Kot topničarja ga je morda zadeva še posebej zanimala. Vsekakor je na

pohodu prišel do drugačnega sklepa, ki ga je navedel v dodatku k mate-

matičnim predavanjem leta 1790. K temu ga je, kot kaže, spodbudilo tudi

skrajno stališče , geometra Y'Huiliera".! L'Huilier si je v spisu, ki ga je celo

nagradila pruska akademija znanosti, prizadeval iz matematike pregnati ne-

skončno majhno in neskončno veliko. Vztrajal je pri trditvi, da je , izraz

x <a 1/0, ki ga najdemo pri analitičnem raziskovanju, prav tako znak ne-

mogočega odgovora kot x — av/—1". Mislil je, da enačba (1) ne priča samo

o tem, da ,telo ne more čez center, ampak tudi o tem, da ne more priti

niti do centralne točke". Hitrost je za ,,£ > a in za x < a nemogoča". Ob

tem pa je brez pomisleka navedel čas to, ki ga izstrelek porabi za gibanje do

centralnega telesa!

L'Huilierov premislek je šel Vegi predaleč. Izpodbiti ga je poskusil z

računi, v katerih je za centralno silo vzel, da je obratno sorazmerna s tretjo

ali četrto potenco razdalje. Postavimo F — mgb?/(a — 1)", pa dobimo po

0 Simon Antoine Jean L'Huilier (Lhuilier) (1750 do 1840) je predaval matematiko na

univerzah v Nemčiji in Švici. Prej je zmagal na natečaju za učbenik matematike na

poljskih šolah. Bil je tudi vzgojitelj članov poljske kraljeve družine.
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enaki poti kot prej za kvadrat hitrosti

Daz — x?
v? — b?g

ala — r)?

Za x — a je sicer hitrost neomejena, a za a < z < Ža je končna, prav tako kot

za 0 < z < a, in je pri z — Ža enaka 0, prav tako kot pri z <— 0. Pri z > 2a

pa je hitrost zopet imaginarna. Po Vegovem mnenju bi moral Y'Huilier v

tem primeru trditi, da bi izstrelek dospel na drugo stran centralnega telesa,

čeprav tega telesa sploh ne bi dosegel.

Za centralno silo, ki je obratno sorazmerna s četrto potenco razdalje, je

kvadrat hitrosti v? — 30'g(3a?2 — 3a4? 4 4?)/a?(a — z)". V tem primeru
je tako kot pri enačbi (1) hitrost pri x <— a neomejena in pri £ > a

imaginarna. Z Vego nadaljujmo razmišljanje v nakazani smeri, pa pridemo

do sklepa, da pri centralni sili, obratno sorazmerni s sodo potenco razdalje,

izstrelek ne dospe na drugo stran centralnega telesa, pri centralni sili,

obratno sorazmerni z liho potenco razdalje, pa dospe. Tega sklepa ni mogel

sprejeti. Vsi zapisi, ki jih je Vega pregledal, so videli v tem nekaj nera-

zumljivega ali celo skrivnostnega. Nekateri pisci so se ,,obrnili v metafiziko"

in zahtevali, da ne smemo privzeti poljubne odvisnosti centralne sile brez

dodatnih omejitev. S tem pa ,, vozla niso razvozlali, ampak presekali". Za

znanost, ki je tako popolna kot matematika, je kaj takega poniževalno.

, Zastor, ki je doslej skrival to uganko, se odpre, brž ko temeljito

raziščemo", kako je s funkcijo pri integraciji. Pri tem je treba vsak pri-

mer obravnavati posebej; enačba dy — x"da ima, na primer, splošno rešitev

y < a"l/(n 4 1); toda rešitev za n — —l ne velja in je ta primer treba

reševati posebej. Pri integraciji moramo po Vegovem mnenju zasledovati,

kaj se dogaja korak za korakom in včasih spremeniti funkcijo, ki jo integri-

ramo, in včasih integracijske meje. Za primer x > a je treba gravitacijski

zakon napisati na novo: F < —gb?/(x — a)". Iz drugega Newtonovega za-

kona dobimo kvadrat hitrosti

2 2b'g 2a — z
v .

a z—a

Pri tem smo z ustrezno integracijsko konstanto poskrbeli, da je hitrost pri

x — Ža enaka 0, kot je bila pri x <— 0. Z integriranjem dobimo

t — (a? /2b?g)1/? El —- (Z— 1) 1? (2 — zji/? -t I arc cos (3 — 22): (3)
a

Vegi se je zapisala enačba brez člena iv. spretno pa jeS J p 21, SP paj

— arc tan[($ — m)(2— 7) V'(g— 1)-1/?]

predelal v arccos(8 — 24) — 27. Ugotovil je: ,,Iz teh dveh enačb [(2) in

(3)| je mogoče končno popolnoma jasno videti, da se telo pri dani lastnosti

Obzornik mat. fiz. 47 (2000) 1 23



centralne sile, če ga pri A prostega prepustimo njenemu delovanju, giblje

čez centralno telo C v podaljšani smeri CE do razdalje x <— 2a, ki se ujema

z začetno razdaljo CA, kjer postane njegova hitrost enaka 0; potem se

zaradi neprekinjenega delovanja vrne zopet do A in ponavlja to gibanje brez

prestanka." |

Šele na tem mestu je Vega prešel na simetrični koordinatni sistem in
izhodišče prestavil iz začetne lege izstrelka v centralno točko. Ob tem je

kot novo spremenljivko uvedel z < 4 — a in s tem dosegel, da je enačba

(3) postala podobna enačbi (2). Precej dela bi si prihranil, če bi to storil

že prej. Morda pa je v knjižici namenoma čakal s tem korakom, da je

, uganko" zapletel in s poudarkom pokazal, kako ga je naloga sama prisilila

k temu koraku. Nazadnje je še obdelal gibanje pod vplivom centralne sile,

ki narašča z naraščajočo razdaljo: F' < m(g/b")4". S tem je najbrž želel

podpreti ugotovitev, da centralna točka ni izjemna in izstrelek brez težav

prehaja z ene strani centralnega telesa na drugo.

Spis je končal takole: ,Ne more ostati neomenjeno, da je treba s

posebnimi enačbami, ki sledijo iz splošnih enačb, dobljenih z integralskim

računom, vselej ravnati zelo previdno, da ne zapademo v zmote. S tem smo

tudi razkrili pravi namen te kratke razprave."

V delu Vega ni pokazal samo svoje spretnosti v matematiki, ampak

tudi v fiziki. Spisu se sicer pozna, da je minilo od izida že dobrih dvesto

let. Za današnje pojme se zdijo Vegovi računi precej dolgovezni in spremno

besedilo razvlečeno. Današnji računi te vrste so precej krajši, in to velja

tudi za besedilo. Vseeno pa je Vega spletel poučno in zelo zanimivo zgodbo

o ,,uganki", ki jo je počasi prignal do viška in nato hitreje končal. Njegov

sklep je imel tedaj določeno težo in rezultati so bili trdni. Pot do njih pa je

mogoče danes precej skrajšati. Današnji fizik bi od vsega začetka postavil

centralno telo v izhodišče in bi enačbe spravil v brezdimenzijsko obliko.

Nato bi izkoristil simetrijo, ki je postala v fiziki zadnje čase priljubljeno in

učinkovito orodje [2].

Najprej je sila, s katero krogelno simetrično centralno telo deluje na

izstrelek, odvisna samo od razdalje od središča telesa. V resnici se na

krogelno simetrijo sploh ni treba sklicevati, zadostuje spoznanje o zrcalni

simetriji na osi z. Po tej poti bi predelano enačbo (2) z € <— z/a za

-1<6<0:

r — (2gb? [a]? — (1 OM(-0)VA 4 aresin(L 4 0)? (2)

brez pomišljanja dopolnil s predelano enačbo (3) za 0 < č < l:

rzimn—-(W?(a — 6)W? g $ arecos(1 — 26). (3a)

Nato bi poklical na pomoč še drugo simetrijo. Enačbe klasične mehanike so

invariantne proti časovnemu obratu t — —t. Po tej poti bi v enačbah (2a)

in (3a) t nadomestil z — ali 7 z —r in prišel do periodičnega gibanja (sl. 2).
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Slika 2. Premo centralno gibanje izstrelka okoli centralnega telesa v izhodišču osi (.

Gibanje je simetrično glede na izhodišče in periodično. Hitrost je ob centralnem telesu

neomejena in tangenta na os ( pravokotna. Na vodoravno os je nanesena spremenljivka

Tr — la?/ agb?)i/ 2, na navpično os pa relativna oddaljenost od centralnega telesa Č —
— z/a < (x—a)/a. Narisane so inverzne funkcije funkcij, ki izhajajo iz enačb (2a) in (3a).

Preostali del krivulje dobimo z zrcaljenjem na osi (. — Enačbama (2a) in (3a) ustrezata

pozitivni hitrosti, prvi za —1 < ( < 0 brezdimenzijska hitrost dC/dr < (-61/2/1 4 (0)1/2

in drugi za 0 < ( < 1 hitrost d(/dr — c/2j(1 — OU2, Vega pa je preskočil k enačbama

za 0 < ( < 1, ki jima ustrezata negativna d(/dr < —-el/2/j(č — 1)1/2 in pozitivna hitrost

dč/dr < cl/2j — O, Pa še eni od njiju je treba dodati konstanto, preden lahko
sestavimo krivuljo. Vega še ni imel programa Mathematica!

-6[, ib, a. a. a. novo zožen

0.25 0.5 0.75 1 1.25 1.5 (Z

Slika 3. Premo centralno gibanje izstrelka skozi ozek jašek po premeru centralnega telesa

z radijem ačo. Na vodoravno os je nanesena spremenljivka 7 <— (a?/ ago?) 2 na navpično
os pa relativna oddaljenost od središča centralnega telesa ( — z/a — (z — a)/a. Hitrost

določata enačbi dd/dr < —(1— c1/2je1/2 čo < G < TI (a) in dd/dr < —(3/26o —1—

— 2 J268)1/2, 0 < č < čo (a, levo) ter čas enačbi 7 — cv/2G — C)i/2 -- arc cos (1/2

čo < G < 1 (b) in r m cd — Če)?/2 -- arc cos cl)? - (268)1/2 arc sin (3 — 206)—1/2 —

- (2681/2 arc sin [C/Čo (3 — 2čo)'/?], 0 < č < čo (b', desno). Na risbi je Čo < 0,4. Krivulja
(a) in krivulja (b) sta podaljšani na območje 0 < Č < čo, da lahko primerjamo gibanje

v modelu točkastega telesa (črtkano) z gibanjem v modelu razsežnega centralnega telesa

(sklenjeno). — Ta račun ne sodi k Vegi, zato smo ga omenili samo pod risbo.
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Singularnosti se pogosto pojavijo kot slabost modela. Singularnost

hitrosti v v centralni točki, ki je Vegi povzročila težave, je povezana s

privzetkom, da centralno telo nima razsežnosti. Ni je težko odpraviti,

če nalogo ponovimo s homogenim centralnim telesom v obliki krogle s

premerom 2zo <— 2ačeo (sl. 3), v katero si mislimo na osi z po premeru izvrtan

ozek jašek. Priznati moramo, da bi bilo ta primer skoraj tako težko izvesti

kot prejšnjega.

Najbrž bi bilo mogoče Vegovemu računanju očitati, da ni v vseh delih

dosledno. Kako naj bi centralna sila, ki je obratno sorazmerna s tretjo

potenco ali sorazmerna s kako potenco razdalje, bila odločilna za gravitacijo,

ko pa je po njegovi lastni izjavi treba obravnavati vsak primer posebej. Toda

pri podrobnejšem premisleku se zazdi, da je Vega zaslutil simetriji, ki smo

ju omenili. Ravnal je kot fizik im BE. P. Wigner bi njegov postopek najbrž

imel za , še en zgled, da je fizikov nagon močnejši od njegovega znanja". |2|
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VESTI

POROČILO O STROKOVNEM SREČANJU IN 51. OBČNEM
ZBORU DMFA SLOVENIJE

Strokovno srečanje. Namen strokovnih srečanj v okviru DMFA

Slovenije ni samo izmenjava izkušenj in strokovno izpopolnjevanje, ampak

tudi druženje in spoznavanje različnih koncev Šlovenije, ki jih sicer večina

članov redko obišče. Zato smo se odločili, da bo 531. občni zbor v Moravskih

Toplicah. Kraj je bil posrečeno izbran, saj smo imeli ves čas lepo vreme

in prijazne gostitelje. Kot je že v navadi, so nam domačini pri organizaciji

srečanja veliko pomagali, zato naj se že kar na začetku zahvalim prav vsem,

še zlasti pa Nadji Ivanc Miloševič, ki se je zelo potrudila in poskrbela za tri

prijetno in koristno izrabljene dneve.

strokovno srečanje je potekalo v treh oziroma dveh sekcijah v hotelu

Ajda. V četrtek popoldne so si zgodnji udeleženci lahko ogledali posterje

uporabnih fizikov, katerih srečanje se je začelo že dopoldne. Po otvoritvi

strokovnega srečanja smo se razdelili v dve skupini.

Matematikom je Andreja Smid predstavila z besedo, sliko in modeli

načine sestavljanja enakostraničnih trikotnikov. Nada Razpet je pokazala

primer, kako od standardnih nalog računanja prostornin in izdelovanja mrež
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pridemo z rezanjem in dodajanjem do zanimivih teles. Amalija Žakelj. je
predstavila matematične aktivnosti, ki so novost v učnem načrtu matema-

tike. Po odmoru je naš častni in vedno živahni član Dušan Modic predsta-

vil Karla Kunca, pisca učbenikov za aritmetiko in algebro ter fiziko med

obema vojnama. Kunca je predstavil tudi na lepo izdelanem posterju. Ma-

tjaž Željko, ki že nekaj let sodeluje pri pripravi srednješolcev na olimpiado

in jih nanje skupaj z Darjom Feldo tudi vodi, je govoril o štirih desetletjih

matematičnih olimpiad.

Fizikom je Dušan Babič predstavil eksperimente z levitacijsko pastjo

in izkušnje, ki jih imajo na AGO Golovec. Tine Golež je z računalniškim

vmesnikom in programom za ultrazvočni slednik, ki ga je razvil Slavko Ko-

cijančič, pokazal uporabo teh programov pri različnih poskusih iz kinema-

tike in nihanja. Marijan Prosen je popoldanska predavanja sklenil s pona-

zoritvami in gibanjem (nekateri so rekli s telovadbo), saj nam je predsta-

vil uporabo stožca in kocke pri opazovanju sence za učence druge triade in

metodično obravnavo nekaj tipičnih računskih in eksperimentalnih vaj pri

pouku fizike v 8. razredu, ki sodijo v vsebinski sklop Zemlja in vesolje.

Čas do večerje je bil namenjen razgovoru članov društva s člani sekcij,
komisij in podružnic DMFA. Predstavniki niso imeli veliko dela, saj so le

redki člani izrabili to priložnost za izmenjavo mnenj in izkušenj. Zvečer simmo

se odpravili na pokušnjo vin v Ivanovce. O tem, da je bilo to prijetno in pod

vodstvom enologa Ernesta Novaka tudi poučno, ni treba posebej govoriti.

V petek dopoldne smo se razdelili v tri skupine. Matematikom, ki jih

je zanimalo delo v osnovni šoli, je Mara Cotič predstavila reševanje mate-

matičnih problemov na začetku šolanja na razredni stopnji s poudarkom na

prvi fazi reševanja, to je na razumevanju besedila. Silva Kmetič je njeno

izvajanje navezala na reševanje problemov na predmetni stopnji in osve-

tlila predvsem pomen učiteljevega vodenja pri izdelavi ključa matematične

zgradbe.

Matematikom, ki jih zanima srednja šola, je Peter Petek s sliko in go-

vorom predstavil fraktale v naravi in nakazal njihovo uporabo pri reševanju

nekaterih praktičnih problemov. Aleksandar Jurišič je predstavil Mercede-

sov problem in povezavo teorije vozlov z reševanjem nekaterih problemov v

fiziki in naravoslovju.

Fizikom je Janez Ferbar govoril o tokovih pri pouku naravoslovja in

izvajanja popestril z eksperimenti. Peter Križan je podal pregled trenutnega

stanja v eksperimentalni fiziki osnovnih delcev.

Sledili sta dve plenarni predavanji. 'Tomaž Pisanski je govoril o simetriji

konfiguracij in nas spomnil na povezavo med geometrijo in kombinatoriko,

na teorijo grup in avtomorfizme. Da o vodi ne vemo nikoli dovolj, nas je

poučil Janez Strnad in nas prestavil v svet atomov in molekul, valovnih

funkcij in dipolnih momentov, na koncu pa opozoril, da zgradbe kapljevinske

vode še ne poznamo dovolj, kar pa članov društva pri plavanju v termalni

vodi ni motilo.
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Po kosilu so se skupine nekoliko preuredile. Delati je pričela sekcija za

uporabno matematiko. Mihael Perman je govoril o Vegovih učbenikih ma-

tematike in nas s tem spomnil, da je leto 2000 mednarodno leto matema-

tike. Gregor Šega je prikazal problem pronicanja v teoriji verjetnosti, ome-
nil zanimive povezave reševanja tega problema s širjenjem bolezni, gozdnimi

požari in gibanjem molekul. Petra Grošelj nas je seznanila z zgodovinskim

razvojem teorije iger in nekaterimi primeri, s katerimi se ukvarja ta toerija.

V sekciji za matematiko, ki je bila tokrat skupna za osnovnošolske in

srednješolske profesorje, nas je Vilko Domajnko seznanil s kalejdoskopom,

ki ga poznamo bolj kot otroško igračo. Zlatan Magajna je načel še vedno

aktualno temo o uporabi žepnih računalnikov v šoli in nanizal argumente

za in proti.

Fizikom so se predstavili Kvarkadabrovci ali društvo za tolmačenje

znanosti, kot se sami radi imenujejo, in nas seznanili s svojim delom in

domačo stranjo na internetu. Roman Drstvenšek nam je prikazal in razložil

delovanje hidravličnega ovna, ki ga uporabljajo kot vodno črpalko, ki črpa

vodo iz nižje v višjo lego, ne da bi mu dovajali delo. Ivo Verovnik pa

je računalnik z zvočno kartico in ustreznim programom uporabil za prikaz

analize različnih vrst zvoka.

Po odmoru se je matematična sekcija razdelila na dva dela. V prvi

skupini je Milena Strnad podala nekaj zanimivih opažanj o prenovah v

matematiki, v drugi pa je Matija Lokar govoril o vplivu tehnologije pri

pouku matematike.

Fiziki so si, kot se za pozno popoldne spodobi, pripravili idealni ma-

linovec stare mame v izvedbi Jožeta Pahorja in Dušana Ponikvarja in se

pogovorili, kako bi uvedli serijsko proizvodnjo z avtomatiko, obenem pa so

se pogovarjali o učenju elektronike in robotike v osnovni šoli. Mitja Rosina

nam je za konec pomagal še enkrat podoživeti popoln sončni mrk in nam

zastavil nekaj nalog.

Večerni del strokovnega srečanja je bil namenjen vedno aktualni temi,

maturi. Pri matematikih je razgovor vodil Peter Legiša, pri fizikih pa Miro

Trampuš. Navzoči so soglasno podprli strokovno avtonomijo RPK in njihovo

odločitev za odstop (glej Obzornik mat. fiz. 46 (1999), 127—IV).

Da se znajo člani in članice društva tudi zabavati, je pokazal večer, saj

je bila restavracija nabito polna.

Občni zbor. V soboto se je ob napovedani uri pričel 51. občni

zbor. Ker je bilo ob 9.00 navzočih manj kot polovica članov DMFA (79

udeležencev), je občni zbor pričel delo ob 9.30. Vmesni čas so udeleženci

porabili za intenzivne razgovore in videti je bilo, da jim je zamuda prišla kot

naročena. Udeležence občnega zbora so pozdravili: Milan Hladnik (v imenu

oddelka za matematiko in mehaniko na FMF v Ljubljani), Peter Petek (v

imenu Pedagoške fakultete v Ljubljani) in Janez Strnad (v imenu FMF). V

delovno predsedstvo so bili izvoljeni: predsednik Sandi Klavžar, člana Nadja
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Ivanc in Miro Trampuš ter zapisnikar Janez Krušič. Overovatelja zapisnika

pa sta bila Milan Hladnik in Janez Strnad.

DMFA Slovenije je dobil novo častno članico in častnega člana: Jožico

Dolenšek in Darka Jamnika. Priznanja za delo z mladimi pa so dobili:

Marija Kastelic, Andrej Kuzman in Jana Založnik. Posebno pohvalo, ki jo

DMFA Slovenije podeljuje šolam, je letos prejela Osnovna šola Vodmat iz

Ljubljane.

Utemeljitve, ki so nam jih poslali predlagatelji, sem za to objavo neko-

liko skrajšala in jih objavljamo posebej.

Poročila o delu društva smo izdali v biltenu, zato smo jih na občnem

zboru le dopolnili. Predsednik Tomaž Pisanski se je zahvalil Martini Koman

za dolgoletno sodelovanje v društvu in obžaloval, da mora zaradi drugih

obveznosti prenehati z aktivnim delom. Občnemu zboru pa je sporočil tudi

pozdrave častnega člana Ivana Kuščerja, ki zaradi bolezni ni mogel priti v

Moravske Toplice. Očitno smo poročila dobro pripravili, zato so bila sprejeta

brez razprave.

Občni zbor je sprejel nekatere sklepe, in sicer:

DMFA Slovenije podpira pobudo za poimenovanje nagrade Republike

Slovenije na področju šolstva po dr. Francu Močniku.

Občni zbor podpira predlog, ki je prišel s tehniških šol, da bi v nekaterih

oddelkih teh šol bilo več ur pouka matematike.

Maja Klavžar je prebrala poročilo nadzornega odbora in predlagala

razrešnico staremu upravnemu odboru. Sprejet je bil sklep, da so volitve

javne. Občni zbor je sprejel poročilo nadzornega odbora in razrešil dosedanji

upravni odbor. Skatli s predlogi za nove člane upravnega odbora in za

predloge in pripombe sta bili prazni, zato smo glasovali za listo, ki je bila

navedena v biltenu. Predlagani člani so bili soglasno sprejeti.

Predlogi sprememb pravil DMFA Slovenije, kot jih je predlagala komi-

sija v sestavi Darjo Felda, Janez Krušič in Matjaž Zeljko, so bili soglasno

sprejeti. Predlagatelj pa mora preveriti, ali zakon o društvih ne zahteva

stalne statutarne komisije. Če jo predvideva, občni zbor pooblašča upravni

odbor, da glede statutarne komisije smiselno dopolni Pravila DMFA Slove-

nije. Nekaj sprememb je bilo sprejetih tudi v zvezi s pravilniki o tekmo-

vanjih. Novi pravilniki so dostopni na domači strani DMFA Slovenije na

naslovu: www.dmfa.si.

Kot je večina članov že ugotovila, ima društvo nov znak in nov Žig.

Občni zbor se je končal že ob 11. uri, kar kaže, da je okolje dobro vplivalo

na delovno vnemo članov. | '

Po končanem občnem zboru smo se nekateri odpravili še na ogled

okolice. (gledali smo si Pokrajinski muzej v Murski Soboti. Po njem

nas je vodil Janez Balažic in v njegovem pripovedovanju in vodenju je bilo

čutiti vnemo, kakršno imajo tudi dobri učitelji in profesorji. Ogledali smo

si še Plečnikovo cerkev v Bogojini in rotundo v Selu. Razšli smo se dobro

razpoloženi in veseli, da smo videli tudi ta lepi konec Slovenije.
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Upravni odbor DMFA Slovenije pa vas že vabi, da se prijavite za

sodelovanje z lastnimi prispevki na naslednjem strokovnem srečanju in se

udeležite prihodnjega občnega zbora, ki bo v Termah Zreče.

Priznanja in pohvale DMFA učiteljem matematike in fizike v

letu 1999

Društvena priznanja v letu 1999 prejmejo:

Marija Kastelic, profesorica matematike in fizike, svetovalka, ki že 28

let poučuje na srednjih šolah v Celju. Od leta 1970 do 1987 je poučevala

matematiko in fiziko na Gimnaziji Celje, od tedaj dalje pa ista predmeta

na Srednji tehniški šoli Celje, sedaj Solskem centru Celje. Je vestna, priza-

devna in uspešna profesorica. Med dijaki velja za precej zahtevno in strogo,

tudi zaradi številnih zgledov in nalog na višji ravni, s katerimi obravnava

učivo, spodbuja samostojnost in ustvarjalnost. Ko je srednja šola že ne-

kaj let za njimi, se je boljši študentje spominjajo zlasti kot entuziastične

profesorice, ki je znala prav pomagati šibkejšim in zahtevati veliko znanja

od sposobnejših. Uspešnost njenega poučevanja se kaže v zadnjih letih, ko

njeni dijaki dosegajo pri maturi praviloma visoke ocene. Organizirala je in

sodelovala pri pripravi številnih tekmovanj iz matematike, fizike in logike.

Pogosto je pomagala tudi pri popravljanju nalog, saj je bila večkrat članica

ocenjevalnih komisij.

Pripravljala je dijake in dijakinje na tekmovanja in bila pri tem zelo

uspešna mentorica, saj so njeni dijaki več let zapored prejemali nagrade.

Sodelovala je pri preizkušanju novega programa pouka fizike. Je soavtorica

zbirke matematičnih nalog, namenjenih pripravam za maturo na višji ravni.

Vsa leta od ustanovitve celjske podružnice DMFA je članica odbora

podružnice.

Andrej Kuzman se je po končani gimnaziji odločil za učiteljski po-

klic. Po diplomi na Fakulteti za naravoslovje in tehnologijo se je kot mlad

profesor zaposlil na Rudarskem šolskem centru v Velenju, ki je bil takrat

v razvoju. Zaradi pomanjkanja učiteljev je moral prevzeti pouk matema-

tike in fizike pa tudi številne druge obveznosti. Kasneje je poučevanje fizike

opustil in se v celoti posvetil matematiki. Njegova strokovna razgledanost

in pretanjen občutek za težave srednješolcev sta mu pomagala, da je postal

priljubljen učitelj matematike. Več let je vodil aktiv matematikov in fizikov

na šoli, organiziral občni zbor DMFA v Velenju in Topolšici, zvezno tek-

movanje iz matematike, republiško tekmovanje iz fizike in matematike ter

številna strokovna srečanja. Sodeloval je s Pedagoškim inštitutom, je soav-

tor učbenika in zbirke nalog, mentor pri raziskovalnih nalogah iz matema-

tike in ima naziv svetnik. Vsa leta organizira matematične krožke in nje-

govi učenci dosegajo vidne uspehe. Ze pred leti je postal predstojnik stroj-

ne tehnične šole, sedaj je ravnatelj Gimnazije v Velenju. Še vedno pa išče
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nove poti v poučevanju matematike, pomaga mlajšim kolegom, predvsem

pa navdušuje kolege in dijake s svojim znanjem, optimizmom in človeško

toplino.

Jana Založnik, svetovalka, uči matematiko in fiziko že 30 let, od tega

na Osnovni šoli Vodmat 16 let. Da svoje delo opravlja zelo zavzeto in

uspešno, dokazujejo številna priznanja njenih učencev. Učenci so njeno delo

na šolskem parlamentu ocenili z najvišjo oceno, to pa pomeni, da se jim

zna približati in jim snov razložiti na primeren način. Bila je organizatorka

regijskega tekmovanja iz matematike. Vsako leto sodeluje pri pripravi

občinskih tekmovanj in je zelo aktivna tudi pri delu študijskih komisij.

Sodeluje tudi na matematičnem taboru v Zgornjih Gorjah. Večkrat je bila

vodja aktiva na šoli in pomagala z zgledom in nasveti drugim učiteljem na

šoli. Vsako leto sodeluje pri pripravi nalog za eksterno preverjanje znanja

iz matematike za osme razrede. V prostih urah pomaga tako boljšim kot

slabšim učencem. Zelo pomembno je tudi njeno mentorsko delo. Studentom

Pedagoške fakultete v Ljubljani skuša zbuditi veselje do dela, predvsem pa

pokazati, kako poučevati matematiko, da bi jo imeli učenci radi.

Pohvalo prejme Osnovna šola Vodmat, ki z DMFA Slovenije sodeluje
Že od leta 1963. Vsi učitelji matematike in fizike na tej šoliimajo ustrezno
izobrazbo in aktivno sodelujejo na strokovnih srečanjih, seminarjih in tabo-

rih. Njihovi učitelji so sodelovali na mednarodni konferenci o pouku fizike,

pri njih je nastala tudi zbirka nalog in kontrolnih nalog za 7. in 8. razrede.

Vsa leta delujeta na šoli matematični in fizikalni krožek. Zelo dobro je

obiskan tudi dodatni pouk matematike in fizike. Učenci se redno udeležujejo

področnih 1 in republiških tekmovanj, kjer dosegajo vidne uspehe. Na šoli or-

ganizirajo naravoslovne dneve, posebej priljubljene so aktivnosti, ki zaje-
majo astronomijo, s seminarskimi nalogami pa učenci sodelujejo na regij-
skem tekmovanju Zaupajmo v lastno ustvarjalnost. Redno se seznanjajo z

novostmi v strokovni literaturi ter posodabljajo pouk z uporabo novih teh-

nologij in sodelujejo pri številnih domačih in tujih projektih.

— Nada Razpet

FA SLOVENIJ
E |

NOVI ČASTNI ČLANI DM

Članom društva, ki so s svojimi prizadevanji in izkušnjami pripomogli
k učinkovitejšemu delovanju društva, s svo jim raziskovalnim in pedagoškim

delom pa prispevali k popularizaciji matematike, fizike in astronomije ter
boljšemu poučevanju teh predmetov na fakulteti ali na osnovnih in srednjih
šolah, DMFA Slovenije podeljuje naslov častnega člana oziroma članice

DMFA. |

Na občnem zboru v Moravskih Toplicah je bila za častno članico ime-

novana mag. Jožica Dolenšek, za častnega člana pa prof. dr. Darko

Jamnik.

Ob imenovanju obema čestitamo.

Obzornik mat. fiz. 47 (2000) 1 31



Utemeljitvi

Mag. Jožica Dolenšek je v poklicnem delu profesorice matematike in

fizike veliko pripomogla k dobremu pouku matematike in fizike v gimnaziji

in je bila med zelo aktivnimi in uspešnimi člani DMFA.

Od diplome leta 1960 do reorganizacije srednjih šol v Celju leta 1983 je

poučevala matematiko in fiziko na Gimnaziji Celje, od tedaj do upokojitve

leta 1996 na Srednji naravoslovni šoli Celje, sedanji Splošni in strokovni

gimnaziji Lava, Šolski center Celje. Leta 1976 je z magistrskim delom

Uporaba matrik v srednješolski fiziki dokončala podiplomski študij fizikalne

didaktike.

Vsa leta je svoj poklic opravljala v vseh pogledih popolno, z navdušenjem,

načrtno in sistematično, skrbno in prizadevno. Ni bilo težko opaziti vrlin

vzorne profesorice: neprestano prizadevanje za izboljšanje pouka in šolskega

dela, dosledno, skrbno in zelo marljivo delo pri pripravah in izpeljavi šolskih

ur, sprejemanje in spremljanje srednješolskega razvoja velikega števila zelo

različnih dijakov in dijakinj, razumevanje njihovih težav in problemov, ne-

vsiljivo spodbujanje k njihovi vsestranski pozitivni rasti, zlasti pa v znanju

in zanimanju za oba poučevana šolska predmeta. O njenem prizadevanju

za materialno izboljšanje pouka fizike je iz letnih poročil Gimnazije Celje

razvidno, da je bila od leta 1961 do leta 1981 varuhinja fizikalnega kabineta.

Zbirka učil za fiziko se je v tem času lepo širila in bogatila, k temu je ve-

liko pripomogla tudi prof. Jožica Dolenšek, ki je za šolsko leto 1962/63 že

poročala o vpeljavi eksperimentalnih vaj za dijake pri rednem pouku fizike.

Med leti 1976 in 1982 je vodila fizikalni krožek, tudi z merjenji in poskusi,

in sodelovala pri vpeljavi raziskovalnih nalog srednješolcev od leta 1978 na-

prej. Naloge so bile naravnane izrazito eksperimentalno. "Tudi iz drugih

strokovnih dejavnosti za izboljšanje pouka fizike je videti skrb za izboljšanje

šolske eksperimentalne opreme. O vsakdanjem šolskem delu iz letnih šolskih

poročil ni mogoče razbrati veliko, zanesti se je treba na mnenje dijakov in

staršev, kolegic in kolegov, ravnateljev. 'Tako so marljivost, skrbnost, priza-

devnost in natančnost Jožice Dolenšek pri pouku postale v dolgih letih že

skoraj pregovorne. Vsa leta je veljala za zahtevno profesorico, a ta ocena

ni bila nikoli spremljana s podtoni pritoževanja o kakršnikoli krivičnosti ali

pretiravanju. Anekdote o tem, da se ji je še leto pred upokojitvijo zdelo

povsem samoumevno za vsako šolsko uro posebej napisati pripravo, povedo,

kako je bila najprej zahtevna do svojega dela, šele potem do dijakov. Ne

glede na svojo zahtevnost za kvalitetno znanje je bil njen pristop do dijakov

vseskozi prijazen in prijateljsko naklonjen, enako tudi do kolegic in kole-

gov. Zunanje maturitetne ocene njenih dijakov so bile običajno zelo visoke.

Obsežno in mnogostransko je bilo njeno delo, s katerim se je izkazala kot zelo

prizadevna članica DMFA. Pri matematičnem in fizikalnem krožku je svoje

dijake uspešno pripravljala za tekmovanja v matematiki in fiziki, med leti
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fizike pri nas, ko smo si lahko doma privoščili prvovrstne raziskave. Vodil

je skupino raziskovalcev, ki so kot prvi izmerili fotoabsorpcijske preseke za

vrsto jeder. V ta namen je bil zgrajen poseben štirikanalni comptonski

spektrometer. 'Takrat prvič uporabljen princip ftokusiranja comptonskih

elektronov je v rabi še danes v modernih spektrometrih. Za svoje delo je

leta 1970 prejel Kidričevo nagrado.

Sedemdeseta leta so prinesla spremembe v načinu raziskovalnega dela na

področju eksperimentalne jedrske fizike pri nas in drugod po svetu. Večina

meritev je postala prezahtevna, da bi si jih lahko privoščili posamezni la-

boratoriji v lastni režiji. Začelo se je obdobje sodelovanja med znanstve-

nimi institucijami. Profesor Jamnik si je izbral delo pri razvoju mikrotrona

s supraprevodnim linearnim pospeševalnikom na Univerzi lllinois v ZDA.

Tu se je posvetil zlasti projektiranju magnetov pospeševalnika. S svojim

delom na tem področju si je pridobil svetovni ugled. Pozneje se je vključil

v meritve globokega sipanja mionov na atomskih jedrih v evropskem labo-

ratoriju CERN v Ženevi. Med pomembne dosežke teh raziskav sodi meri-
tev asimetrije sipanja mionov, ki je bila ena od osnovnih potrditev poeno-

tene elektrošibke teorije. Sposobnosti profesorja Jamnika so prišle zlasti do

izraza pri natančnem določanju magnetnega polja spektrometra. V drugi

polovici osemdesetih let se je vključil v kolaboracijo Crystal-Barrel pri po-

speševalniku LEAR v CERN v Ženevi, kjer je meril procese, ki nastanejo

pri anihilaciji protonov in antiprotonov.

Na Oddelku za fiziko Univerze v Ljubljani je vzgojil več generacij mladih

fizikov, saj je dolga leta predaval fiziko I in fiziko Il. Njegova predavanja so se

odlikovala po jasni predstavitvi fizikalnega ozadja problemov. Sodeloval je

tudi pri podiplomskem študiju jedra, kjer je bilo ves čas čutiti njegovo skrb

za primerno raven študija. Njegova predavanja iz eksperimentalne jedrske

fizike so bila vzor dobrih fizikalno poglobljenih predavanj. Bil je gostujoči

profesor na univerzah v Illlinoisu in Munchnu.

Razvoj jedrske fizike pri nas je neločljivo povezan z imenom profesorja

Darka Jamnika. S svojim delom, bogatim znanjem fizike, s svojo skromno-

stjo in zrelim pogledom na svet je bil in je še vedno vzor generacijam fizikov.

Nada Razpet

OBVESTILO

EMATIČNI KO

Hrvaško matematično društvo organizira drugi hrvaški matematični

kongres, ki bo v Zagrebu od 15. do 17. junija 2000. Kongres bo mednaroden

in odprt za vsa področja matematike. Dodatne informacije so na spletni

strani interneta

http://www.math.hr/" congress/

Boris Lavrič
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