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Math. Subj. Class. (1991) 49Q05, 53A10

Clanek predstavi tehniko, kako dokazati obstoj ploskve, ki ima pri danem robu
najmanjSo povrsino.

A tehnique for proving the existance of a surface with the prescribed boundary and
minimal area 1s presented.

Pricujoci ¢lanek je naravno nadaljevanje clanka Plateaujev problem, ki
; Obzorniku za matematiko in fiziko izSel v letu 1997 [2|. V clanku je
bil predstavljen tako imenovani I Eafc@auje‘v problem za enostavno sklenjeno
krivuljo v v IR°. Spomnimo se, da je pmbiem Sprasevai po povrsinsko

imanjsem disku v IR? (1sk = Shka cladke mshkave 1z enotskega kroga
R*), katerega rob je dana krivulja ,7& Plateaujev problem je tore]
vnapre] predpisal topologijo iskane ploskve z danim robom in najmanjso
povrsino. Vendar, kot je bilo Ze omenjeno v 2], resitev iateaujevega
ﬁmbkma cetudi V@dﬂ@ obstaja, ne da nujno fmdi pbskve 7 1Najmanjso
j}ovmmo napeto na dano krivuljo. Nekaj takih primerov si lahko ogledamo
v |2]. Problem, ki ga bomo obravnavali v tem clanku, pa je naslednji:

Naj bo v unija konéno mnogo enostavno sklenjenih krivulj v IR®. Med
mi ploskvami ¥ C IR?, ki imajo v za svoj rob 8%, bi radi poiskali tisto
ploskev 2.5, ki ima najmanjso povrsino.

idimo, s1 tokrat nikakor nocemo vezati rok z vnapre] predpisano
topologijo iskane minimalne ploskve. To pa tudi pomeni, da za splosne eno-
stavno sklenjene krivulje (ali kon¢ne unije le-teh) potrebujemo popolnoma
Cen pri je bil nakazan v |2].

druzina

Prvi, naivni pristop k problemu bi bil naslednji: Naj bo &,

/i m oznacimo infimum povrsin vseh

vseh ploskev v R® z robom

m = inf Povrsina()
Nes,

in izberimo tako zaporedje (¥;)52;

C S, da velja

lim Povrsina(%,) = m.
j——?*m

[Ker vemo, da zaporedja ,rada” konvergirajo ali pa ,,imajo” vsaj kaksno kon-
vergentno podzaporedje, lahko upamo, da tudi zaporedje (oziroma kaksno
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podzaporedje) ploskev (3;)52; , konvergira” k neki ploskvi Xy z robom
0% = ~. Tedaj naj bi seveda bila > € &, ploskev z najmanjso povrsino m.
Da je beseda ,konvergira” upraviceno v narekovajih, nam pokaze na-

slednji zgled moznega zaporedja ploskev (Ej);?';l 7z robom v enotski kroznici

v C R?, za katero vemo, da je ploskev z najmanjSo povrsino, ki jo v nape-
nja, kar ravninski disk D C IR?. Zaporedje ploskev (237)521 tvorimo tako,
da pri vsakem clenu zaporedja povrsino nekoliko zmanjsamo, da Se vedno
velja

lim Povrsina(¥;) =7,

j—ro0
vendar tudi dodamo tanke, a dolge |, dlake”, katerih skupna povrsina postaja
manjSa in manjSa. Primer ,limitne ploskve” takega zaporedja si lahko

ogledate na sliki 1.

Analiticno je seveda problem v
tem, da je na mnozici z majhno
mero lahko funkcija precej divja,
vendar je vrednost integrala (v
nasem primeru integrala za povrsi-
no) take funkcije Se vedno majhna.

Ce torej hotemo nas naivni pri-
stop k problemu iskanja ploskve z
danim robom in najmanjso povrsino
uporabiti, moramo razsiriti pojem
ploskve, ki ne bo zajemal le glad-
kih ploskev, ampak tudi vse mozne
,limite” takih zaporedij. Slika 1. Dlakavi disk [9].

Preslikava f : Q@ C R? — R? je Lipschitzova, ¢e obstaja taka konstanta

C', da velja
[f(w) = f)l| < Cllu—

za vse pare u, v 1z {). Ocitno je vsaka gladka preslikava lokalno Lipschitzova,
vendar obstajajo tudi Lipschitzove preslikave, ki niso odvedljive.

Zigled. Preslikava

f(zy) = (=, \/::c2 + y*)

je Lipschitzova na R? (C = +/2). Njena zaloga vrednosti je stoZec v

zgornjem polprostoru z vrhom v tocki 0.

Znano dejstvo je (Rademacherjev izrek [3]), da je vsaka Lipschitzova
preslikava skoraj povsod glede na Lebesgueovo mero v IR? odvedljiva.
Mnozica tock v R?, v katerih Lipschitzova preslikava f nima odvoda, ima

torej Lebesgueovo mero enako 0. Potemtakem lahko govorimo o povrsini
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zaloge vrednosti Lipschitzove preslikave, ki je podana prek povrsinskega in-
tegrala [7]

JI1Fel? £y = (fo - £,)? da dy

P(f) =

prav tako kot v odvedljivem primeru. Za ploskve, tako imenovane rekt:-
fikabilne (dopustne) ploskve, razglasimo sedaj vse Stevne unije slik Lip-
schi‘tzowh pmshkav 17 pod nozic & € R? v R’ katerih skupna povrsina

povrsine: povrsina omare, avtomobila, kolesa,
Eﬁvasﬁ tudi

Rektifikabilne ploskve in a,j@ zaradi zgm&me opombe o od ve d
skoraj povsod tangento ravnino in normalo. To so torej ploskve, ki 1maj0
,nekaj” vogalov, robov in drugih negladkih m@ ., vendar so Skm“aj povsod
gladke. Zaradi obstoja normale pa Eahko tudi govorimo o orientaciji take
ploskve. Prostor dopustnih ploskev v IR® smo sedaj zelo razsirili, tako

da lahko upamo, da bo ,limita” zaporea, (ektz_ﬁkabﬂm 1) ploskev zopet
(rektifikabilna) ploskev.

Ce hocemo govoriti o limiti zaporedja
rektifikabilnih ploskev vpeljati topologijo. Metrika, ki je na kompaktnih
podmnozicah v IR? ali R? najbolj znana, tj. Hausdorffova metrika, v ta na-
men ni dobra. Spomnimo se [8], da Hausdorffova metrika med kompak-
tnima mnozicama A in B

ploskev, moramo v prostor vseh

B

max{sup d(a
A

meri, koliko sta ti dve mmnozici v smislu evklidske metrike oddaljeni druga
od druge tJ mnoZzici A 1 in B sta s1 v Hausdorfiovi metriki blizu, ce so vse
tocke mnozice A blizu B in ce so vse tocke mnozice B blizu A.

Mnozici na levi sliki sta si v Hausdorffovi metriki bliZje kot mnozici na desni

sliki.
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Zgled. Naj bo € > 0 majhno pozitivno Stevilo. Naj bo mnozica A

R° in B stevna unija sfer (S])jz1 z radiji 75 = 4/ (torej

enotska sfera v

rektifikabilna ploskev), katerih sredis¢a so gosto razporejena po A. Tedaj]

je Hausdorffova razdalja teh dveh mnozic 4 /5, medtem ko se njuni povrsini

41 1n 4me zelo razlikujeta.

Vidimo, da v prostoru rektifikabilnih ploskev za nas namen potrebujemo
drugacno razdaljo, in sicer tako, ki bo odrazala tudi povrsinske lastnosti
ploskev. Za rektifikabilno ploskev % definiramo Whitneyjevo normo (flat
norm) |4,5]

|2|| = inf{Povrsina(T") 4+ Prostornina(R);
T (ploskev), R (telo), daje 2UT =0R}.

Ideja definicije je naslednja. Dve ploskvi S in S’ sta si v Whitneyjevi
normi (metriki) blizu, ¢e je norma njune ,razlike” majhna, tj., Ce jima
je treba dodati povrsinsko majhno ploskev T', da skupaj omejujejo telo R
(OR=SUS" UT ) z majhno prostornino.

S X

Slika 3. Ploskvama S in S’ je treba dodati ploskev T', da skupaj omejujejo telo R.

Opomba. Zgornja definicija je nekoliko poenostavljena, saj je treba
upostevati se orientacijo in veckratnost ploskev. Vse to se da regularno
narediti v jeziku rektifikabilnih tokov, kjer ploskve gledamo kot funkcionale
na prostoru diferencialnih form oziroma vektorskih polj [5]. Funkcional F¥;,
ki ga na prostoru vektorskih polj porodi dana orientabilna ploskev >, je
namrec podan kot ploskovni integral vektorskega polja QQ po 2. Na ta nacin
lahko v prostor ploskev vpeljemo tudi sestevanje, odstevanje in mnozenje s
skalarji. Rob OF funcionala F' nad prostorom vektorskih polj pa definiramo
preko Stokesovega izreka:

)) := F(rot Q).

Izkaze se, da za tako definirano topologijo na prostoru rektifikabilnih
ploskev velja Flemingov izrek o kompaktnosti [4,5]:

OF
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Za vsak ¢ > 0 wn vsako kroglo B

s £ e
4 A %
Ea by Ee @

plogefv 2

A

kompakina.

Torej lahko 1z Vgak@ga zaporedja rektifikabilnih ploskev z istim robom,
katerih povrsine se zmanjsujejo (tako kot v naSem naivnem pristopu) izbe-
remo konvergentno podzaporedje (v smislu Whitneyjeve norme) in dobimo
ploskev z danim robom, ki absolutno minimizira povrsino. Velja celo nasle-
dnji izrek (ki ne Veﬁja za resitve Plateaujevega problema, kot se lahko vidi
17 zgﬁ.edmf v [2]1), 14,5]:

mg (6 2), Hardt, Simon {? ' Ploskev, ki
piogk@amz; napetimi na gladko enostavno sklenjeno krivuljo v, minam

povrsino, je gladka vlozena (brez samopresecisc!) ploskev z robom .

med vsemi
12170

Torej ne glede na to, da smo bili pri definiciji dopustnih ploskev prece;
popustljivi, je koncni rezultat, tj. minimizirajoca ploskev, v primeru ene
enostavno sklenjene krivulje v C IR? vendarle gladka vloZena ploskev v R

ki 1ma rob v ~.

J

Opomba. Ce ta rezultat prin ema no z dlakavim diskom iz slike 1,
si mpyawwn@ lahko postavimo Vngame Kaj se je zgodilo z ,dlakami”?
Lahko bi rekli, da smo , dlake” kratko in malo postrigh oziroma da jih sploh
nocemo videti. Njithova povrsina je namrec 0 in za%c@mj ne prinasajo nicesar
k Skupm povrsini ploskve. Izjavo zgmsmega izreka je torej treba razumeti
mislu ekvivalenénih razredov ploskev, kjer so ploskve z nicelno povrsino

zanemarljive.

imiziranja prostornine lahko o- obravnavamo tudi
v vi§jih dimenzijah (ter tudi kodimenzijah). Denim R* bi za dano
d‘mdimemzmnaino pi@gkev E‘ mm‘ah pmskam 3- dimenzzl@nam@ h}perpiﬁsk@v v/
pmd@ do m%dnﬂ zZanin iV@ga p@gava Izkaze se namre¢, da so
hiperploskve, ki1 za dani rob n gmmimmjo VlS}@dl @nzmmamo prostornino,
th IR™ za n < 7 vedno gladke. Z 3 pa 11
hiperploskve sigularnosti dimenzije n — 8.
Skusali bomo nakazati, zakaj pri dovoly velikih
minimizirajocih hiperploskvah nastanejo singularnosti.
natancnejSe informacije pa dobimo v [4] in [5].

Prvi znami primer singularnosti pri minimizirajocih hip
stop1 pri stozcu 1', napetem na produktu dveh 3-ster v R

={( Az, \y) &
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maso. Poleg tega je tocka 0 € T', ki je vrh tega stozca, singularna tocka za

. Da pa bi vsaj intuitivno razumeli, zakaj nastanejo singularnosti, si

LR .

oglejmo naslednje niZjedimenzionalne stozce in valje:

Naj bo najprej I'g = S x SY C R? (8% = {1,-1} C R). Tedaj je po

dolzini minimalna _hiperploskev” v IR* napeta na I'g kar , valj”.

-1,1 1,1 -1,1 1,1

Slika 4. Valj in stoZec na produktu O-sfer.

ataata
ettty - h
OGS B

Slika 5. Katenoida

Sedaj naj bo I'1 = S%(0;2) x SY C R’ (5%(0;2) je kroznica v R?

] L

srediScem v tocki 0 in radijem 2). Povrsinsko minimalna ploskev, napeta
na I'y, je katenoida, ki smo jo srecali ze |2].

Ceprav so veriznice, ki povezujejo oba kroga, daljse kot ravne crte, je

LN

obseg katenoide manjsi kot pri valju. Tako katenoida predstavlja nekaksno
ravnotezje med dvema skrajnostma: valjem in stozcem. V visjih dimenzijah

e v

postane ta pojav Se bolj izrazit in v R® se zgodi, da postane hiperploskev,

ki pri danem robu S° x S° minimizira prostornino, kar stozec T', napet na
S3 x S3. Le-ta seveda ima singularnost v svojem vrhu, tocki 0.

Obzornik mat. fiz. 45 (1998



meto da

pod mere, k1 povezuje mate-
matike s edmmj an ahze geometrije in parcialnih diferencialnih enacbh. Med
stevilnimi Eezuham v z&dnﬁ | tridesetih letih ne moremo mimo domneve 0
pozitivni masi 1z splosne teorije relativnosti, ki sta jo k@ﬂ@@ o
in v zacetku osemdesetih let dokazala R. Sch S.-T. Yau (S.-T. Yau je
leta 1982 za svoje ragiskovalno delo dobil Fieldsovo m@daho)
Kljub splosnosti, s katero smo se s pon oqe rektifikabilnih ploskev lotili
problema iskanja minimalnih ploskev z danim robom, in nekaterim nadvse
spodbudnim rezultatom, pa ima ta pristop se vedno nekaj pomanjkljivosti,
ki so bile v nasi razlagi skrite.
Vse nase ploskve pa morajo biti orientirane. Tako, recimo, na ta
nacin sploh ne moremo , pridelati” Mobiusovega traku. Prav tako dolocenih
dij v (npr. v = vsi robovi tetraedra) ne moremo skladno orientirati.
Tako se lahko vendarle zgodi, da se deli ploskve, ki jo ustvari milnica na
takem Ggmdju stikajo vzddz singularne kmvuh@ tj., minimalna pioskev
ni gladka. Tudi za vse te probleme so matematiki ze razvili teorye, ki jih
ucinkovito reSujejo, ampak to je ze druga zgodba.
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BORIS LAVRIC

Math. Subj. Class. (1991) 40A05, 06F20

Izrek o monotoni konvergenci realnih zaporedij razsirimo na konc¢no razsezne delno
urejene vektorske prostore. DokaZemo, da sta v konéno razseznem arhimedskem deino
urejenem vektorskem prostoru V za nenegativna realna Stevila agq,...,ap ekvivalentni
naslednji izjavi:

(1) Vsako omejeno zaporedje (zn),..q prostora V, ki ustreza pogojem

je konvergentno;
(ii) Velja Zi;l a; = 1, poleg tega pa so naravna stevila 3 < p, ki ustrezajo pogoju
a; > 0, tuja.

GENERALIZATIONS

THEOREM

The theorem of the monotone convergence is extended on finite dimensional partially
ordered vector spaces. It is proved that in every finite dimensional archimedean partially
ordered vector space V for nonnegative real numbers o, ..., ap the following conditions
are equivalent:

LGENCE

(1) Every bounded sequence (zr),.- 1 in V satisfying

Tn-+tp >3 XgLn+p—7g; n — 17 2: IR

7=1

1s convergent;
(ii) ?:1 a; = 1, and the natural numbers 7 < p satisfying a; > 0 are relatively prime.

1. Konvergenca realnih zaporedij

Osnovni 1zrek o monotoni konvergenci pravi, da vsako omejeno mono-
tono realno zaporedje konvergira. Ta preprost, a 1zredno uporaben rezultat
lahko posplosimo na razne nacine. V tem prispevku si bomo ogledali nekaj
takih posplositev. Najprej bomo ostali pri realnih zaporedjih, monotonost
pa bomo nadomestili s SirSim pogojem — z rekurzivno neenakostjo za clene
zaporedja. Poiskali bomo potreben in zadosten pogoj za konvergenco vsa-
kega omejenega zaporedja, ki ustreza tej rekurzivni neenakosti.

Izrek 1. Naj bo p dano naravno stevilo in ay, ..., a, nenegativna realna
stevila. Potem sta ekvivalentni naslednji 1zjava:

(1) Vsako omejeno realno zaporedje (x,)S° 1, ki ustreza pogoju
p

Trtp > Z QT p—i, 7=12 ..., (1)
7=1

7e konvergentno;
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]

(ii) Velja >>%_, a; = 1 wn naravna stevila j < p, ki ustrezajo pogoju a; > 0,
| so tuja.

7a dokaz izreka 1 bomo potrebovali dva pomozna rezultata.

ma 2. Naj bodo a1, ..., ap realna stevila, za katera velja aj # 1.

Potem obstaja nekonstanino realno periodicno zaporedje (x,)>2 1, ki 1zpol-

njuje pogoj (1).

Dokaz. Naj bo najprej] p > 1. Cejea = ... = ap = 0, lema ocitno
velja, zato predpostavimo, da je

oy = 1I£ja§p|aj{ > 0.

Postavimo

g, cepln
sicer

. -1 + ¢, ce p|n
oziroma I, = , .
—1, sicer

torej prvo zaporedje ustreza pogoju (1), e pa je o > 1, za ¢lene drugega
zaporedja velja

Totp — )

torej tudi drugo zaporedje izpolnjuje pogoj (1). Dokaz za p > 1 je sklenjen,
pri p = 1 pa se lahko sklicemo na primer p = 2, kjer vzamemo ay = 0. =

Lema 3. Najy bodo j1,...,71 tuja naravna stevila. Potem za vsako
naravno Stevilo n > 1 obstaja tak M € IN, da mnozica

vsebuje n zaporednih naravnih stevil.
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Dokaz. Ker so stevila 71, ..., 7; tuja, obstajajo taka cela stevila kq, ... k,
da je zl;__l ki 7, = 1 [1, izrek 8|. Postavimo

9=

k = max|k;|, M =2kin.
1<i<l |

Za vsako nenegativno celo stevilo r < m naj bo m;(r) = rk; + nk. Potem
velja

m;(r) > 0 1in

=1

Dokaz izreka 1. (i) == (ii). Iz (i) z uporabo leme 2 dobimo > >%_, a; =
= 1. Zaznamujmo z d najvecji skupni delitelj stevil iz mnozice

J=4{5€{l,...,p}:a; >0}

Ce je d > 1, zaporedje s ¢leni

w__{l, ced|n
Ty =

0, sicer

ne konvergira in je omejeno. Dokazimo, da ustreza pogoju (1). Kadar d deli
n +p, je Tnyp = 1, od koder s pomocjo enakosti ?xl a; = 1 brz sledi (1).
Kadar d ne deli n +p, je xpyp, = 0. Za vsak 5 € J velja d | 7, zato d ne deli
n-+p+7inje zpipr; = 0. Ker poleg tega za vsak j € {1,...,p} \ J velja

a; = 0, je tudi v tem primeru izpolnjen pogoj (1). Torej iz (i) sledi d = 1.

(11) = (1). Ker je za p = 1 ta implikacija izrek o monotoni konvergenci,
predpostavimo, da je p > 1 in da velja (ii). Naj bo (z,)>°,; omejeno
zaporedje, ki ustreza pogoju (1). Potem obstajata najmanjSe in najvecje

stekalisce zaporedja (2,)5° ¢, = liminf z, In y = limsup z,,, tore;
r = sup inf xz;, y = 1mf supz;.
nclN J=n nelN j>n

Seveda je © < y, dokazati pa moramo, da velja x = y. Predpostavimo, da
je x < y in brez Skode za sploSnost dokaza privzemimo, da je x = 0 (sicer
nadomestimo z,, z £, — ).
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Vzemimo poljuben € > 0 in pois¢imo dovolj velik m € IN, da je

v = 1nf z; +ecy > 0.
1>m

Ker je y = limsup z,, in u > 0, obstaja tak n > m, da velja x4, +u > y 1n

tedaj tudi

. :mlﬂ{$n p-f—'u,*“ya’u} > 0.
11 racunu

7, uporabo neenakosti v — ey = mf;>,, x; < 0 od
dobimo
Tptp > U+ (1 —€)y (2)

in zaradi © > v se
z; > v—ey zavsak 1 >m. (3)

Ker velja (i1), mnozico J sestavljajo tuja stevila. Zaznamujmo jih z
Ji,---, 71 In zabelezimo

a =min{a; :j€ J} > 0.

Za vsako nenegativno celo stevilo £ zapisim

in dokazimo, da za vsak r € M velja

Briptr 2 U+ (a —€)y. (4)
Uporabimo matematiéno indukcijo. Ker je My = {0}, neenakost (4) za
k = 0 sledi i1z (2). Predpostavimo, da (4) velja za kak nenegativen k, in
vzemimo poljuben s € My ;. Potem obstaja tak r € Mg, dag=s—r € J.

7, uporabo neenakosti (1), (3) in (4) dobin
p

Pnipbs 2 D O @nipag >
j=1

zaqwn—f—p-kr + (1 T %M@ o Sy) >

>0+ (gof — )y > v+ (oFT —e)y

1n 1ndukciyski korak je koncan.
Po leml 3 obstajata taki naravni stevih M in N, da mnozica M =

vsebu;e stevila vV, N +1,...,N + p. Torej 1z (4) Siel da za

Vsak j 6 10,1,...,p} obstaja tako nenegafcwno celo stevilo k; < M da, .

Tntp+N+4j = U+ W i —e)y.

Vzemimo £ = o™ in upostevajmo, da je o < 1, pa dobimo

TptptN+j =2V za 3 =0,1,...,p.

Od tod s pomocjo neenakosti (1) in z matematicno indukcijo brez tezav ugo-
tovimo, da za vsak 1 > n+p+ N Veha x; > v. Torej je SUpnGN mnf;>, z; > v,

kar pa nasprotuje privzetku sup,pninf;>n z; =2 = 0.
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2. prostorih

Zaporedja v delno urejenih

Najprej razsirimo 1zrek 1 na zaporedja simetricnih matrik. V vektorski
prostor S(r) vseh realnih simetricnih matrik reda r uvedimo relacijo < s

predpisom
A< B <= B — A je pozitivno semidefinitna.
Dobro je znano, da v prostoru S(r) velja izrek o monotoni konvergenci, velja

pa tudi naslednja posplositev.

Izrek 4. Za nenegativna realna stevila oi,...,a, sta ekvivalentni
nasledny 1zjave:
(1) Vsako omejeno zaporedje realnih simetricnih matrik (A, )22 ., ki ustreza
pogojem

j=1,2,..., (5)

7e konvergentno,
(11) z?:l a; = 1, poleg tega pa so naravna Stevila j < p, ki ustrezajo pogoju
a; > 0, tuja.

Dokaz. Dovolj je videti, da sta pogoja (1) v izrekih 1 in 4 ekvivalentna.
Predpostavimo, da velja (1) 1z izreka 1, in vzemimo omejeno zaporedje

simetri¢nih matrik (A4,)S° ; reda r, ki ustrezajo pogoju (5). Pri vsakem
v € R" je zaporedje s ¢leni z,, = v ' A, v omejeno in ustreza pogoju (1), zato
konvergira. Ce je tedaj

_ ()7 : _ ,
Ap =la;;’|;j=1 In v=oe; +ej,

kjer sta e; in e; standardna bazna vektorja, zaporedje s cleni

Ty = ’UTAn’U — ag?) - ZagL) - ag-?)
konvergira. Ce vzamemo najprej ¢ = j in nato 7 # j, od tod brz sledi, da

17 /n=1>

konvergirajo tudi zaporedja (a 1,7 =1,...,r, 1n da velja

lim Ap = |aj]; ;=1 € S(7),

Tn— 00

R . . 7L
kjer je a;; = limy 00 a?(;j ).

Naj zdaj velja (1) iz i1zreka 4. Vzemimo omejeno realno zaporedje

(n)92 ¢, ki izpolnjuje (1). Potem je zaporedje simetricnih matrik A, =
= x,I (I je enotska matrika reda r) omejeno in ustreza pogoju (5), zato

konvergira. Seveda potem konvergira tudi zaporedje (z,)5° ;. =
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Prostor S(r), opremljen z relacijo <, je delno urejen vektorski prostor
(glej npr. [2]). Se da izrek 1 smiselno razsiriti na splosne delno urejene vek-
torske prostore? S presaditvijo pogoja (1) ni tezav, pojma omejenost in
konvergenca zaporedja pa sta v takem prostoru lahko opredeljena na zelo
razlicne nacine. Ce se omejimo na konéno razseZen prostor in ga identifici-
ramo z IR®, lahko oba omenjena pojma opredelimo na standarden nacin -
. po komponentah”. V tem primeru je zaporedje omejeno (oz. konvergen-
tno) natanko takrat, kadar je omejeno (0z. konvergentno) v katerikoli normi
prostora. Ali morda izrek 1 (z ustrezno formulacijo tocke (1)) ali vsaj izrek
o monotoni konvergenci velja v vsakem koncno razseznem delno urejenem
vektorskem prostoru?

R* &k > 1, urejen z obiajno leksikografsko urejenostjo, je
rostor, zaporedje

Prostor
linearno urejen vektorski j

pa Je omejeno in narascajoce, vendar ne konvergira.

Odgovor na postavljeno vprasanje je torej negativen, ponuja pa se nov
problem. Za katere urejenosti v koncno razseznem vektorskem prostoru
velja 1zrek o monotoni konvergenci? Pri reSevanju tega problema s1 bomo
pomagali z naslednjim pojmom.

nozica delno urejenega prostora IR

njena dualnae mnozica. Brez tezav se lahko prepricamo, da je dualna mnozica
vedno zaprta za mnoZenje z nenegativnimi skalarji in za sestevanje ter tudi
topolosko zaprta. V nadaljevanju bomo potrebovali rezultat o drugem dualu
pozitivnega stozca koncno razseznega delno urejenega vektorskega prostora.

Naj bo M neprazna podn

*:{mek:xTyZOzavsakyE

Lema 5
drugt dual. Paigm je

. Najg bo P pozﬁwen stozec delno urejenega vekﬁomkegaz prostora

P njegovo zaprtie in i = (4

Dokaz. Mnozica P* j@ Zapma in o¢itno vsebuje P zato velja P C P*¥

/ia dokaz nasprotne inkluzije vzemimo poljuben z € R \ P Za,ra di zapr tosm
obstaja v njej vektor v, najblizji vektorju . T

m{Hm — ZH . 2

11 skalarji, zato za vsak

mnozenje z nenegativnin

alen r > 0 Veha
| — ]| < [l —rf|.

15 (1998) 5 ' ‘ 141

Obzornik mat. fiz.



Ce postavimo r = 1+ s in kvadriramo neenakost, po krajsem racunu dobimo

s[(s+2)v'v—2v"2] >0 zavsak s € [-1,1].

Od tod brez tezav dobimo enakost v'v = v'z. Vzemimo zdaj poljuben

2 € P. Potem za vsak € > 0 velja v + €z € P, in zato
lz—(v+ez)] 2 |lz -l

Od tod podobno kot prej dobimo (v —z) 'z > 0, torej je v —x € P*. Zaradi
v'v=uv'z velja

z (v—z)=—|v—z|? <0,
tor ej Xz QI P m

Preden formuliramo 1zrek o monotoni konvergenci, ponovimo naslednjo
definicijo. Delno urejen vektorski prostor V je arhimedsk:, kadar velja sklep

(z,y eV, me<yVmeZ) = x=0.

V clanku [2] smo to lastnost oznacili z Ay, v izreku 15 iz [2] pa dokazali, da

je koncno razsezen prostor V' arhimedski natanko takrat, kadar za zaprtje P
njegovega pozitivnega stozca velja PN(—P) = {0}. Prostor R” s standardno
,pokomponentno” urejenostjo je arhimedski, z leksikografsko urejenostjo pa
ne. Ni se tezko prepric¢ati, da je tudi prostor S(r) z urejenostjo z zacetka
razdelka arhimedski.

Izrek 6. Vsako omejeno narascajoce zaporedje koncno razseznega delno
urejeneqga vektorskega prostora konvergira teday wn le tedaj, kadar je ta
prostor arhimedskz.

Dokaz. Denimo, da prostor IR* ni arhimedski. Potem obstajata tak
nenicelni z € R” in tak y € R*, da za vsako celo §tevilo m velja ma < y.
Oglejmo s1 zaporedje

1

Tl

r, = (1 y+ (—=1)"z, n=12,...

Ker za vsak n € IN velja

1
n(n+ 1)

y —2(=1)"n(n+1)z] > 0,

Lnt+1 — Ln —

zaporedje narasSca, ocitno pa je omejeno in ne konvergira.

Predpostavimo zdaj, da je prostor R¥ arhimedski, in s P zaznamujmo
njegov pozitivni stozec. Po kratkem racunu vidimo, da za pravokotni
komplement dualne mnozice P* velja enakost

(P*)_L — P** N (_____P**) |

142 Obzornik mat. fiz. 45 (1998) 5



Ker po lemi 4 velja P™ =
PN (—P) = {0}, velja '

da je P* ogrodje prostora R

Naj bo (x,)5° ; omejeno narascajoce zaporedje v

je zaporedje realnih
Ker to velja za vsak y € P*

tudi zaporedje (x,)o2 ;.

je p@ﬁ@g tega v arhimedskem prostoru
0}. Zato je (P*)*t+ = R*, od koder sledi,

P i

==

R* in y € P*.
Stevil y' x,, naragéajofe in omejeno, torej k
in ker poleg tega P* generira IR”, konvergira

Na podoben nacin, kot smo dokazali 1zrek 6, lahko razsirimo tudi izrek 1
na vsak konéno razsezen arhimedski delno urejen vektorsk: prostor. Se vec,
naslednji rezultat zajema tudi primer, v katerem koeficienti iz rekurzivnega
pogoja (1) niso nujno nenegativni.

Izrek 7.
ktorski P R
vektorsker prostor. IFotem sta za oy, ...,Q, € Ib

Naj bo V' netrivialen koncéno razsezZen arhimedsk: delno ureyen
ekvivalentnr naslednji 1zyave:

(1) Vsako omejeno zaporedje (x,)°° ; v prostoru V', ki izpolnjuje pogoge

> QTagp—j, =12, (6)

konvergira,
(ii) Polinom P(t) = t¥ — oytP™! — ... — a, 1ma niclo 1 in nobene druge

Aompieksne nicle z absolutno vrednostjo 1. |
Cejea; >0 zaj=1,...,p, potem (i) lahko nadomestimo s pogojem

(111) p a5 = 1, poleg tega pa so naravna stevila 37 < p, pri katerih je
QL > U, twya.

Dokaz 1zreka 7 je pmeq doig in prezahteven za bzormk Bralec ga
Eahko najde v ¢lanku [3], mi pa se pomudimo le Se pri pogoju (ii) iz izreka.
V primeru p = 2 je ta pogoj ekvivalenten konjunkciji zahtev oy +a9 =1
in oy # 0, v primeru p = 3 pa ga lahko nadomestimo z naslednjim pogojem:

a1 +as+az3 =1 in ag #1 1n (&3#1 ali lafl—-ii22>,

Dokaza obeh ekvivalenc prepuscamo bralcu.

[1] J. Grasselli, Diofantske enacbe, DMFA Slovenije, Ljubljana 1984.

2] B. Lavri¢, Koncéno razsezni arhimedsk: delno urejeni vektorski prostori, Obzornik mat.

fiz. 42 (1995), 97-106.

3] B. Lavri¢, Convergence of certain bounded sequences, Linear Aigebra, Appl. 278 (1998),
1-10.
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VLADO MALACIC

PACS 47.15Hg, 92.40Fb

Gostotni (gravitacijski) tok je v naravi pogost pojav. Na malo vecjem prostorskem
merilu je gostota tekocine zelo verjetno horizontalno nehomogena, kar povzroci gradientno
silo tlaka, ki poganja relativno gibanje med gostejsimi in redkejsimi deli tekocine. V
prispevku je obravnavan dvodimenzionalni ter osnosimetricni gostotni tok tekocine na
vodoravni podlagi.

GRAVITY CURRENT

Gravity current is a common phenomenon in nature. On a large scale the density
of a fluid is very often horizontaly inhomogeneous. This causes pressure gradients that
drive flows. The article deals with twodimensional and axially symmetric gravity current
on a horizontal substrate.

1 P VO

Z gostotnim tokom (,, density current”, ali ,gravity current”) se razlivajo
reke v morje, Sir1 lava po ognjeniku, z njim se opisujejo razlivanje medu
po kruhu, sneZzni plazovi, plazovi grusca, sSirjenje oljnega madeza po vodni
gladini in deroce gibanje pridnenih vodnih mas po oceanskih kanjonih.
Slednji se imenujejo tudi turbidni tokovi, ki pa gostotno razliko ohranjajo
ali celo povetujejo tudi na racun spodnasanja materiala z morskega dna,
prek katerega drvijo. Tudi v pridneni mejni atmosferski plasti je gostotni
tok pogost pojav: hladen zrak tece navzdol po pobocju ali po dolini, megla
drsi kot gostotni tok v obalnem podrocju. Gostotni tok lahko dokaj zaplete
atmosfersko strukturo. Tako je v [1] opisan prodor hladnega zraka pod
dvoslojno atmosfero, ki povzroci nestabilnost ali hidravliéni vdor na meji
med pre] mirujocima slojema atmosfere in se kaze kot valovanje mejne
povrsine. Tudi Sirjenje hladnega, nevidnega in morda celo strupenega
plina opisemo z gostotnim tokom. Kljub tako siroki uporabnosti v izjemno
razlicnem prostorskem in casovnem merilu pa gostotni tok obicajno ni
opisan v ucbenikih za dinamiko tekoc¢in, niti npr. v sodobnejsih ucbenikih,
kot sta [2| in predvsem [3|. V literaturi, ki sodi v fizikalno oceanografijo
obalnih voda, gostotni tok sicer Ze nastopa [4|. Vendar pa gre pri dinamiki
obalnih voda za specificne primere gostotnega toka, kot je npr. razlivanje
sladke kopenske vode v obalnem morskem pasu, pa najsi gre za razlivanje
v kontinentalni Self (globine nekaj 100 m), ki je sklopljen z oceanom, ali
pa za razlivanje v bolj ali manj zaprte zalive, kot sta npr. Jadransko morje
ali Trzask: zaliv. Pri tem gre za zapleteno ravnovesje sil, ki se z razvojem
dimenzije problema stalno spreminja.

Izsla je celo knjiga, ki sicer na bolj opisni nacin obravnava gostotne
tokove |[5|. Gostotni tok lahko na preprost nacin ustvarimo in opazujemo
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1ajhni posodi, v kateri tekoc¢ino obarvamo z barvilom

tudi v laboratoriju v n
za barvanje zivil.

Kot vidimo, se gostotni tok lahko pojavi v merilu od 107° m do 10* ali
celo 10° m. V ravnovesju sil, do katerega pride pri stacionarnem gibanju,
lahko nastopajo razlicne sile, vendar pa se v njem vedno pojavlja tudi gra-
dientna sila tlaka, ki je posledica (horizontalno) nehoogene gostote. V j
spevku bomo obravnavali le kvalitativno ravnovesje n ed vztrajnostno silo
in silo tlaka. Pri tem bomo obravnavali dva modela. Pri prvem bo pmﬂam
dovala Ohraﬂimv volumna tekocCine ali stalen pretok Vdu
drugem pa bo na 1zjemno preprost nacin obravnavano zajetje n@fmrbukntn@
tekocine s strani turbulentne tekocine, pri cemer bo opazovana turbulentna
tekocina ohranila vertikalno homogenost gostote. Rezultat bo kvalitativna
ocena gibanja opazovane tekocCine, predvsem

ocena hitrosti gostotnega toka.

Poglejmo,
7z gostotama p 1 p — A
v vmesni, 1zredno tanki p
da sta lokalni in advektivni pospesek
trenje.

a] se vsaka od phsm giblje pocasi, tako
obeh plasti zanemarljiva, p ko

Slika 1. Skica dvoslojne tekocine za izracun hidrostati¢nega tlaka na nivoju z.

Tako je tlak prakticno enak hidrostaticnemu tlaku, kar je pogost pri-
blizek v geofiziki tekocin. Gladina H in viSina meje med plastema h sta
funkciji vzdoline koordinate . Predpostavimo se, da je mesanje tekocin na
njuni meji zanemarljivo, tlak nad zgornjo tekocino (npr. atmosferski tlak)
pa naj je enakomerno porazdeljen in ga zato postavimo na ni¢c. Na nivoju

z v spodnji plasti je tlak

p=g(p—Ap)(H —h)+gplh—2), (1)

zato je horizontalni gradient tlaka

(2)
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Pri hidrostaticni aproksimaciji, ko n1 pospeska spodnje plasti in je gibanje
relativno pocasno, je tudi trenje zanemarljivo. Tedaj seveda velja, da je

g;g- = 0. Obicajno je gostotna razlika med tekoc¢inama mnogo manjsa od

gostote, %9 < 1 in tedaj iz (2) sledi

oh = p OH

Ox Ap Oz’ (3)

kar pa je 1zredno pomemben rezultat: naklon vmesne gladine je mnogo
veCji od naklona zgornje (,, prave”) gladine in nasprotno usmerjen. Za morje

lahko mirno recemo, da je —A;)E < 0,02, kar pomeni za dva reda velikosti vecji

naklon vmesne gladine (,, piknokline” v morju) od prave gladine. To seveda
pomeni, da bo za gibanja z dovolj nizko frekvenco (npr. poldnevna perioda
plimovanja) tudi amplituda nihanja (valovanja) vmesne plasti mnogo veéja
od amplitude valovanja gladine, kjer je to seveda sploh mogoce. Dvoslojni
sistem 1ma dvoje lastnih valovanj: eno, pri katerem se vrh vmesne plasti
nahaja pod dolom gladine (pravimo mu tudi , baroklino” gibanje), in drugo,
pr1 katerem se vrh vala na vmesni plasti pokriva z vrhom vala na gladini
(, barotropno” gibanje)! [3], vendar se na tem mestu tega problema ne bomo
dotaknili. Povejmo Se, da je v dvoslojnem sistemu gradient tlaka v spodnjem
sloju sestavljen iz dveh delov. Prvi ¢len na desni strani (2) je ti. barotropni
gradient tlaka, ki nastopa tudi v zgornji plasti (ko je z > h) in zagotavlja
prakticno enak pospesek vzdolz z-osi v obeh plasteh (razlika v pospeskih
zaradi gostotnih razlik med plastema je zanemarljiva). Drugi ¢len na desni
strani (2) pa je baroklina komponenta gradienta tlaka, ki je znacilna le za
spodnjo plast in zagotavlja relativni pospesek in s tem relativno gibanje
spodnje plasti proti zgornji. Ko pozabimo na barotropno komponento
gradienta tlaka, pravimo, da imamo opraviti s ti. , rigid-lid” aproksimacijo
ali priblizkom toge gladine (enakovredno predpostavki %g— = 0). Naj zato
v gibalni enacbi nastopa le gradientna sila tlaka, ki zagotavlja pospesek
tekocini. To je Eulerjeva enacba. Po casu povpreceno Eulerjevo enacbo za

spodnjo plast zapisemo kot

Du 1 Op oOH Ap Oh
— —qg(l — A
g( p/p) ox g p Ox ’ (4)

Dt p Oz

kjer je —%—% = %‘t” } “8‘9; totalen odvod po casu povprecene hitrosti u. Oznake

1V resnici se pojma baroklino in barotropno gibanje nanasata na sovpadanje ploskev
(izolinij) tlaka in gostote: kadar ploskve ene koli¢ine sledijo ploskvam druge kolicine,
imamo opraviti z barotropnim gibanjem, ko pa ne sledijo, pa z baroklinim gibanjem.
To velja pri zvezno stratificiranih tekocinah, kjer je mozen celoten spekter lastnih ba-
roklinih gibanj. V dvoslojnem primeru pa je terminologija pa¢ drugace uveljavljena.
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(5)

Od tu dalje pa se bomo ukvaqah le z relativnim gibanjem spodnje plasti
clede na zgornjo, gradientna sila tlaka na enoto volumna v tem pri
7Znasa

Pri analizi gibanja gostejse plasti tekocine se bomo 1zognili poti, k
predvideva znanje osnov iz dinamike tekoé¢in, in raje ubrali tisto pot, ki
jo je nakazal Huppert [6], kjer analiza temelji na oceni velikostnih redov
posameznih sil in njithovem ravnovesju. Obravnavali bomo nestisljivo in
turbulentno tekocino.

enzija, vzdolz katere se sprem:

—, tedaj ocenim

u za nestisljivo tekocino pa z V%.

Naj bo [ znacilna din

ocenimo z U, advekcijski pospesek , viskozno tren j e

Kinematicna wskﬁznogt v vode pri

eynddsovo stevilo

_efaf&um 11ma vrednost 0,01 cm

(7)

. Skica dvodimengzgionalnega (2D) problema z gostotnim tokom.

2 Cas povprecevanja je dovolj velik, da nagle fluktuacije hitrosti v turbulentnem
toku izpovprecimo, hkrati pa dovol] majhen, da lahko opazujemo casovni razvoj
povprecnih koli¢in. V oceanografiji je cas povprecevanja obicajno velikostnega reda
minute ali ure. V casovno povpreceni BEulerjevi enacbi smo zanemarili tiste dele
advekcijskega ¢lena, ki vsebujejo gradiente produktov fluktuacij hitrosti, npr. (u'w).

Obzornik mat. fiz.

45 (1998) 5 147



et T

Oy S “
pate =ty

O

et

Slika 3. Skica osnosimetri¢nega (OS) problema z gostotnim tokom v radialni smeri.

Gradientno silo tlaka (6) na enoto volumna opazovane tekocine ocenimo
za. dvodimenzionalni (2D) primer (sl. 2) z pg'h/l, za osnosimetricni (OS)
problem (sl. 3) pa z pg'h/r. Volumen opazovane tekoCine V ocenimo v
prvem primeru s hAbl, v drugem pa kar s hr?. Ocenjeno gradientno silo tlaka
na enoto volumna mnozimo z volumnom in dobimo oceno za silo tlaka ali
vzgonsko silo®, -

[ ,0h 'h?%b 2D prime
3 on 0g za, p r
] 7 Bz v~ {pg’hzr za OS primer’ (8)

ki poganja opazovano tekocino in ji zagotavlja advektivni ali vztrajnostni
u Ou

(inercialni) pospesek p“7* na enoto volumna. Ker je [ (2D) ali » (OS)
znacilna dimenzija, vzdolz katere se u spremeni za U v E’:asu T, ocenimo

vztrajnostni pospesek kot pUz P35 L za 2D pnmer in kot p—-——-— = p= za OS
primer. Hitrost U je pm tem ocenjena kot Z . =. Ustrezna vztrajnostna
sila
u ou 2hbr—2 ’
4V~ {pl 3hb7;2 za 2D primer (9)
o pr°ht—* za OS primer

bo v nasem primeru enaka sili tlaka (8).

mer z danim volumnom ali izvorom tekocine

Predpostavili bomo ohranitev volumna tekocine ali pa ohranitev pretoka
volumna tekocine. Slednje velja v primeru stalnega 1zvora tekocine z gostoto,
ki je drugacna od gostote okolne tekocine. Ohranitev volumna tekocine V

kot tudi pretoka volumna ¢ = C}i‘{ = V lahko zapiSemo na naslednji nacin:
hl = gqt¢ 2D primer (10)
= Q7 OS primer’

kjer je @ = 0 za ohranitev volumna in o = 1 za ohranitev pretoka. V sle-
dnjem primeru bi g pomenil 1zdatnost 1zvora volumna tekocCine na enoto

3 Vzgonska sila je sicer pojem, ki se obicajno uporablja za gradientno silo tlaka vzdolZ
vertikalne osi, oz. vzdolz smeri sile teze.
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() pa 1zdatnost izvora, ki ; je postavljen v iz-
eru o = 0 pa g in () pomenita ustre-
konstanti. Tako zapisemo

precne dolzine (z enoto m?/s), ¢
hodisée sistema (z enoto m”/s). V prin
zna volumna. Predpostavljamo, da sta ¢ in @)

silo tlaka (8) kot

(11)

za 2D primer
@ . 12
za, OS primer (12)

ISImo oceno za casovnl razvo] znacilne

[ /g qriot?)/3

(at2)/4

(14)

/g T za OS primer

Sedaj Se predpostavimo, da se tekocina pri svojem prodiranju ne mesa. z
okolno tekoc¢ino (npr. lava ali med se ne mesata z zrakom). Ko je volumen
tekocine stalen (« 0), raste [ v 2D hitreje (oc 72/ 3) kot v OS
primeru (o< 71/ 2). Tedaj v 2D primeru znalilna visina h upada s éasom
tako, kot raste dolzina (o 72/ °). 'V OS primeru visina h pada linearno
s ¢asom, kot z njim raste r%. Za tekoéino s stalnim izvorom (o = 1) [ s
casom linearno raste v 2D primeru, medtem ko se i s ¢asom ne spreminja.
Podobno velja tudi za OS primer: [ raste kot 73/%, visina h pa se s ¢asom
ne spremmja,

Se eno ugotovitev dobimo, ¢e upos‘tevamo (10) malo drugace in se v

(13) znebimo kar produkta ¢7% oz. Q7% z neopredeljenim eksponentom
Tako dobimo

|

primeru

Pri1 tej obliki pa je potrebna previdnost, saj je h funkcija casa. Na tem m

stu koncamo analizo ravnovesja med vztrajnostno silo in silo tlaka, ko velja
(10). Slednji pogoj pomeni dvoje: ali je pomemben volumen tekocine, ki
je Zze v samem zacetku dovolj velik, in opazujemo spremembe pod vplivom
omenjenega ravnovesja sil, dokler druge sile ne pridejo do izraza (npr. visko-
zna sila — majhen Re), ali pa je izvor tekocine tako izdaten, da je pomemben
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tudi pri vecjih oddaljenostih od izvora. Ne smemo pa pozabiti, da obravna-
vani model tudi ne sme biti prevelik: ¢e npr. opazujemo razvoj tekocine na
razdalji ve¢ km in so hitrosti dovolj velike (npr. nekaj m/s), potem je Corio-
lisova sila lahko primerljiva s silama, ki nastopata v obravnavanem modelu.
Zato sedaj koncajmo primer, ko je veljala pomembnost zacetnega volumna
ali izvora tekocine po (10), in se lotimo malo druga¢nega problema.

b) Ohranitev mase dvoslojnega sistema tekocin

Sedaj opustimo zahtevo, da se med gibanjem ohranja gostotna razlika
Ap, In si oglejmo primer, ko imamo dve homogeni tekocini drugo vrh
druge (sl. 4). Recimo, da je teko¢ina v spodnji plasti turbulentna in da
(med gibanjem) zajame nekaj tekocine 1z gornje plasti, ki jo izredno hitro
porazdeli po svoji visini hy z vrtinci, ki so tudi velikostnega reda h;. Na tak
nacin tekocina ohranja vertikalno homogenost. Opis zajemanja (vnasanja)
neturbulentne tekocine s strani turbulentne tekocine (,entrainment”) je
pregledno obravnavan v [7|, bezno pa opisan v [8].

Pri vnosu zgornje (neturbulentne) plasti tekoCine v spodnjo (turbulen-
tno) plast tekocine* se masa sistema teko¢in do visine H ohrani: kar je bilo
zgora] odvzeto, je bilo spodaj dodano. Pri tem se torej poveca debelina
spodnje plasti tekoCine od hy na hy (sl. 4). Pred zajetjem zgornje plasti
tekoéine v spodnjo smo imeli maso sistema (na enoto horizontalne ploskve)
enako po(H — hy) + Apihy = poH + Apihy, po njem pa maso pgH + Apshs.
Iz ohranitve skupne mase sledi, da se pri mesanju ohranja produkt

Aph = konst. (16)
N 2
o T
<
. R S
po p

Slika 4. Skica spremembe gostote spodnje plasti tekocine z zajetjem zgornje plasti. Pri
tem procesu ostaja gostota zgornje plasti tekoCine pg nespremenjena. Spodnja plast pa
je pred vnosom zgornje plasti imela gostoto pg + Ap; in debelino h; (értkano), po vnosu
zgornje plasti pa gostoto pg + Aps in debelino hs.

* Teorija vnosa neturbulentne tekoéine v turbulentno je sicer nedokonéana. Videti
je, da vrtinci turbulentne tekocine sezejo tudi prek meje med plastema tekocin in
neturbulentno tekocino blizu meje objamejo ter jo tudi pogoltnejo (,, engulfment”).
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Veckrat pa zvezi (16) pravijo tudi ohranitev vzgona, ki je lahko tudi v

obliki

g'h = konst. , L7)

kjer smo v izrazu za reduciran gravitacijski pospesek nadon @Sﬁh g@gtom
Spﬁdﬂj@ plasti kar s konstantno gostoto zgornje plasti g’ = g ~o» pri cemer
smo naredili zanemarljivo napako. Pri vnosu zgornje plasti tekocine v spo-
dnjo plast smo povecali potencialno energijo sistema na racun turbulentne
kineticne energije.

Sedaj pa s1 predstavljajmo, da se spodnja turbulentna plast tekocine
med vnasanjem zgornje plasti po (17) tudi horizontalno giblje. Gostota spo-
dnje plasti, kot tudi njena debelina, sta torej funkciji vzdolzne koordinate.
Med gibanjem posameznega stolpca tekoéine v spodnji plasti pa se njegova
debelina krepi, gostota se manjsa in bliza gostoti zgornje plasti, ohrani pa
se produkt (17), ki ni funkcija vzdolzne koordinate. V oceni za silo tlaka
(8) je tokrat produkt ¢'h konstanta. Silo tlaka enacimo z vztrajnostno silo

(9) in dobim

J [~ Vg hT zZa 2 D prin (18)

7 ~ /g BT za OS primer

Zaradi (17) pa tokrat (v nasprotju s (15)) dobimo znani rezultat za hitrost

gostotnega toka
C — g@v gih | (19}

kjer je k konstanta (blizu ena), ki se obi¢ajno opredeli s poskusom.

Vredno je Se omeniti, da je hitrost ¢ po (19) zelo blizu hitrosti ¢ =
= +/g’'h sirjenja internih valov, ki se v primeru dvoslojne tekocine gibljejo
po tanki vmesni plasti in tudi odnasajo energijo proc¢ od frontnega obmocja.
Ta pomembni rezultat nima zveze z ohranitvijo volumna ali 1zvora tekocine.
Spodnja plast tekocine mora biti dovolj turbulentna, da hitro porazdeli
vneseno tekocino in s tem ohranja vertikalno homogenost.

Na poletn1 soli leta 1992 smo opravili laboratorijski poskus gibanja
sladke vode preko slane vode. Obe tekocini Skupaj sta zavzeh vdumen
kvadra dolZzine 170 cm, Sirine 21 cm ter visine H
je bila posoda napdm@na s sladko vodo, smo na polovici doizme bosode
namestili pregrado in v eno polovico COd&jah sol ter tako zagomwh Stiri
Vrednosﬁg reduciranega pospeska ¢’ = 1, 2, 5 in 10 cm/s?. Pregrado smo
dvignili po nekaj minutah, ko se je sol dodobra raztopila in je gibanje v
obeh polovicah posode zamrlo. Gostejsa slana voda se je klinasto gibala
pod sladko vodo, ta pa se je zgoraj gibala v n&spmtm smeri. Merili smo cas
prehoda fronte zgornje in spodnje tekoCine mimo ekvidistantnih oznak na
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posodi. Za gibanje sladke vode smo dobili, da je £ = 0,58, za gibanje slane

=
— |
e
uw
N

m_

O
S
V”u.u
= 0

@
.amv
G B
=y
S TRY.
L
— B
g
o S
.Y
S
D W
2
T 3
S O
= o
aulia¥
@
.JH

1S1N0

9

, PT1 cemer pa

lotno v
ta hitrosti upadat

vode pa k= 0,5
zamenjana s ce

v 3 8

~ 9

-]

eje, Clim vec]l Je

tem kasn

o

Ija, 111 SiCer

tre

1

d

1 Zara

s N

pa pricne

8§82 8§
2 83
Spm v
O >
v |
S .8 5
»¢) nvﬂwk
2 3 RN
4 Q2 =
N s
,rugdw
S o @ O
n = W
£E8¢
Q=
.w.uh A
S .S 3
T N
O_...mwme
Q,
n = m
c © oz
o == o pd
nb_...m.mu
L
.Urhn
.ivge
20 )) ;)
crd o~ 3
n o 2.9
o .
- SRS
oy Zda
L0 0O o
- >
SRS -
o &)
L O g s
3 . a
imoe
— 2
ol -E-
e
T 83 ¢
plr
N R 4
0.9 ¢ &
S 20 N
STOR
> @ 2
e N
N o =
= -
o R
SR
O v P
S 3 D
T3 R
ro,m

Ina debelina zgornje plasti [9].

Cl

1Zbrana zna

je

debelino h pa

by

o
v’

i

et

n
ray

Tatih!

AN

£

asitati

B

;

K

0

x
A
W

W
A

b

P R PTEL

10

-
o

totnim tokom dne 22. decembra 1989 ob 16

iranskega rta Sv. Madonna.

1 ]J& Z gOoS

Posnetek megle, ki

a 5
la

@ pf

O
Q
€y
oF

S1

skega zaliva mimo p

17z 1r7a

17

1ra.

L]

ne 22. decembra 1989 je klinasto oblikovana fronta meglene zracne

N ®

egla je bila
ustvarjena s kondenzacijo nad gladino izhlapele vodne pare v obmocju hla-

LN -4

dnega zraka. Iz slike ocenimo visino meglene zracne mase na h = 100 m.

¢ 8

lezla iz Trzaskega zaliva z gostotnim tokom (sl. 5).

1 pri

-]

plast

¥

Nekdanja meteoroloska postaja Hidrometeoroloskega zavoda na Belem Krizu

ila v megli in zato tezko ocenimo gostoto me-

icer ni

L]

v obdobju posnetka s

Ina

drobnih vodnih kapljic. Casovno zaporedje vrednosti temperature in rela-

~

°

je se po

@

glene plasti, ki je seveda nasicena z vodno paro, poleg tega pa

Yot

&

Ob 15. un je

L
L

o

. ure pa je zgovorno

e @

tivne vlaznosti na tej postaji od 15. do 17

Obzornik mat. fiz. 45 (1998) 5

152



bila temperatura zraka 13,4°(
in 85 % vlaznost, ob 17. uri pa 11,8°C in 84 % vlaZnost.
meglena zracna masa za najmanj 1,5°C ]

>, relativna vlaznost 77 %, ob

hladnejsa od okolne zraine
med vztraj @Sﬁm Sﬁ@ in silo ﬂaka ravio-
vesje, hitrost gibanja taksne mase ocenim ”
Velikostni red hitrosti gibanja meglene zracne n
m /s ob pred] Qgﬁavki da je zracni tlak tik 3 -

megleni plasti, k &
ciji pa tudi VOdBO paro.

1ase je tako ocer jen na nekaj
@gknﬁ Eagmg

Ee dnja aproksim
imacij, napak in pomanjkljivih pod
hitrosti ggbama meglenega Hma zaes’ma
bilo potrebno 1m | Zaj] {avmnskﬁ
emahm ocemh pravo smer gﬁama vzdolz n j@ @gkn% pla-
merjali z oceno (19), za katero pa bi im @h vse potrebne podat]
V taksnih primerih je enostavnejsa 1zvedba posnetkov v goratem
s poboc¢ja nad kotlino. Tedaj] ]

prispevku smo obravnavali dva primera gas*mfmega toka, v obeh
eli opraviti zgolj z ravnovesjem med silo tlaka in szcrajnastno 810
0 seveda reposmwh
10 S€ mogmh s pred] os?tavko o visokem R
). Vendar 1z om @m enega ravnovesja, Sﬂ k@
da b1 moralo obstajati se brezdimenzijsko stevilo, ki |
med vztrajnostno silo (~ U?/1) in silo tlaka (~ gi
ti. interno Froudeovo stevilo |10

pri cemer sn
ESkOZHE Sﬂl ST

ki je koren omenjenega kvocienta sil in 1
tekocin, Se posebej v hidravli¢nih (nelinearnih mih. Njemu je 0
Rich a,rsonovo stevilo Ea,s’m tekoCine R1 ki je bolj v rabi v geofiziki
tekocin®. V 1 m Stevilu nastopa reducirani gravitacijski

ot

William Froude (1810-1879) je kot eden prvih z laboratorijskimi poskusi prouceval
upor toka na ladijske modele. Ugotovil je, da se lahko laboratorijski rezultati
prenesejo na plovila, ¢e v obeh primerih nastopa enako F'r stevilo.

Lewis Fry Richardson (1881-1953) je eden od tvorcev dinamicne meteorologije
(resitve diferencialnih enach za gibanje atmosfere v obliki kon¢nih diferenc) ter eden
od prvih, ki so poskusali numeriéno napovedovati vreme se pred dobo racunalnikov.
Ri stevilo, definirano v besedilu, ne gre zamenjevati z gradientnim Ri Stevilom, ki
je v rabi pri problemih s stratificirano tekocino, kjer se gostota zvezno spreminja po
vertikali p = p(z).
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pospesek ¢', studentom hidrodinamike pa je bolj znano navadno ali eksterno
Froudeovo stevilo, kjer nastopa navadni tezni pospesek. Navadno Froudeovo
Stevilo namrec nastopa v dinamiki homogene tekocine in zato tudi v teoriji
valov na njeni gladini. Za prej opisane primere torej velja, da se F'r ohranja

Fr~1. (21)

Bralec ima morda pomisleke, da je vse v prispevku . le priblizno” in
morda pogresa eksaktno analiticno resitev. Seveda v nekaterih primerih ob-
stojijo tudi te. Vendar pa je opisani nacin dokaj v navadi pri obravnavi tur-
bulentnih problemov. Pokaze se, da je celo nujen, saj z njum ocenimo ,,tezo”
posameznih vplivov in velikokrat celo vidimo resSitev, Se preden zacnemo
problem resevati analiticno ali numericno. Podobna analiza gostotnega toka
za majhna Reynoldsova stevila (vztrajnostna sila ni ve¢ pomembna, pac
pa nastopi viskozna sila) vodi do kvalitativno enakih resitev kot zahtevno
resevanje sistema diferencialnih enacb. Ta problem pa presega obmocje pri-
spevka. Povejmo le, da tudi ta resitev odpove, ko je ukrivljenost povrsine
gibajoce se tekocine zadostna in nastopi sila povrsinske napetosti (do nje
pride, ker v | viskozni resitvi” plasti z veCjo debelino potujejo hitreje in se
na Celu fronte kopicijo). Zato se npr. pri sirjenju medu po kruhu na ¢celu
(fronti) pojavijo , prstki” nestabilnosti, ko je plast medu dovolj razvlecena.

Kako pa naj b1 bilo s sirjenjem velikega oljnega madeza na vodni gladini?
Recimo, da zanemarimo vplive, kot so tvorba finih oljnih kapljic, tok vodne
mase 1pd. Sprva bi se madez razlezel zaradi ravnovesja vztrajnostne sile in
sile tlaka, kot smo opisali v prispevku (primer a), po dovolj dolgem casu pa
pride do ravnovesja med viskozno silo 1n silo tlaka.

Pri obravnavi oblike konice fronte opazovane tekocine (npr. konica
mejne povrsine sladke vode, ki drsi prek morske vode) pa se ne da izo-
gniti stratifikaciji opazovane tekocine (zvezna odvisnost gostote od verti-
kalne koordinate), ki privede tudi do vertikalne porazdelitve sile trenja med
sosednjimi tankimi plastmi, nanizanimi druga vrh druge (|4]| ter [10]). Te-
daj opazujemo obliko fronte v koordinatnem sistemu, ki se s fronto giblje.
Vztrajnostna sila (sorazmerna advekcijskemu pospesku) pa se v nekaterih
primerih lahko celo zanemari proti gradientni sili tlaka in sili trenja. Tedaj
je zvezno porazdeljena gostota funkcija tako vzdolZzne kot vertikalne koor-
dinate p = p(x, z), vendar se dinamika poenostavi z zahtevo, da je —gg Zg0l]
funkcija vzdolzne koordinate x. Sila trenja med plastmi pa ni sila mole-
kularnega znacaja (viskozna sila), gre za silo, ki je mnogo vecja od visko-
zne sile in je posledica turbulentnega prenosa horizontalne komponente gi-
balne kolicine vzdolz vertikalne osi. Ta sila je sorazmerna z 8%,;”,), kjer
sta v’ in w’' fluktuaciji komponent hitrosti, oklepaj ( ) pa pomeni ustre-

zno casovno povprecje. Obicajno namesto turbulentnih pretokov gibalne
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koli¢ine (npr. (u'w')) vpeljemo turbulentne napetosti (npr. —p(u'w’)), ki
menijo silo na ploskovno enoto. Izvirni greh tega trenja pa velikokrat spre-
gledamo: le-ta je posledica povprecevanja nelinearnega advekcijskega clena
v Navier-Stokesovi enacbi, ki jo povprecujemo hkrati s kontinuitetno enacbo
18]. Tako smo zopet pri vztrajnostnem clenu — le da upostevamo njegovo
Jturbulentno komponento” namesto ,, povprecne komponente”’. Slednja je
bila, uporabljena v prispevku — ima enako obliko kot izvorni advekcijski clen,

hitrosti v njej nastopajo po Casu povprecene hitro-

le da namesto trenutnih
st1.
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matematiéne unije (II

Porocilo o za

Po stirih letih smo imeli spet generalno skupscino IMU. Skupscina je
bila uvod v Mednarodni matematicni kongres v Berlinu. Priblizno sto
trideset delegatov in kakih deset opazovalcev je zasedalo v Dresdenu 15. in
16. avgusta.

Matematicna drustva posameznih drzav imajo — glede na svojo mate-
maticno ,tezo” — pravico poslati od enega do pet delegatov. Zanimivo je,
da je Ze med skupsc¢inami veliko prosenj za uvrstitev v visjo kategorijo in
da jim je navadno ugodeno, saj to pomeni tudi vecji prispevek v blagajno

IMU.
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Izvrsni odbor IMU je tradicionalno sestavljen 1z slavnih matematikov.
Predsednik David Mumford s harvardske univerze je podal porocilo, v
katerem je omenil nekaj problemov, ki pravzaprav niso novosti. Narascajoca
specializacija ovira sporazumevanje med podrocji. IMU 1ma malo denarja,
vodijo jo ljudje, ki se ne potegujejo za tovrstne polozaje.

Med najbolj obcutljive naloge Izvrsnega odbora sodi organizacija Med-
narodnega matematicnega kongresa in izbira tajnega odbora za podelitev
Fieldsovih medalj, ki so nekaksne Nobelove nagrade na podrocju matema-
tike. Tokrat je bil prvi¢c ze pred kongresom znan predsednik programskega
odbora kongresa. Velika cast je imeti uvodno besedo v sekciji kongresa. Da
bi se 1zognili morebitnim pritiskom, so bila imena c¢lanov programskega od-
bora tudi tokrat tajna.

Paul Griffiths je kot predsednik programskega odbora kongresa ocenil,
da se je sprememba v glavnem obnesla, saj je tako dobil ve¢ spodbud in bodo
uvodnicarji tudi nekateri manj znani matematiki. Negativna stran novosti
je bila, da je dozivel dve organizirani kampanji, ki pa sta bili neuspesni.

Eno so pripravili prijatelji nekega matematika, drugo pa kar kandidat za
uvodnicarja sam. Ta je zaradi zavrnitve zagrozil celo s tozbo.

Na skupscini smo zvedeli, da je bil predsednik odbora za podelitev
Fieldsove medalje Juri Manin. Letos je nastal poseben problem, saj je
Andrew Wiles pred kratkim dokazal stoletja stari veliki Fermatov izrek. Ker
pa je Wiles star vec¢ kot stirideset let, ni priSel v postev za Fieldsovo medaljo
in je dobil le posebno srebrno plaketo IMU.

IMU namerava 1zdati knjigo Matematika jutri. Avtorje so poiskali med
dobitniki Fieldsove medalje in drugimi slavnimi matematiki. Vecina od
kakih trideset naprosenih je bila voljna sodelovati. Zanimivo je, da je prislo
do tekmovanja med zalozniki za izdajo te knjige. Pravkar pa je izsla knjiga
finskega matematika Lehta z naslovom: Zgodovina IMU (Olli Lehto: History
of IMU; Mathematics without borders, Springer-Verlag 1998).

Leto 2000 bo po sklepu IMU mednarodno leto matematike. Sponzor bo
UNESCO. Posebno zagnano se na to pripravljajo v Franciji, kjer obstaja
poseben odbor za to priloznost.

Nemcija in deloma Evropska skupnost sta se izkazali zelo radodarni
in sta subvencionirali udelezbo na Mednarodnem kongresu za sto mladih
raziskovalcev in stirideset starejsih znanstvenikov i1z dezel v razvoju. To
je stalo 400000 DEM, se nekaj vecjo vsoto pa so dali v enak namen za
matematike 1z vzhodne Evrope. Sredstva za IMU so radodarnoc prispevali
Se Clani Ameriskega matematicnega drustva (AMS), Brazilija (!), od koder
je dosedanji tajnik IMU Jacob Palis, Velika Britanija, Royal Society itd.

Komisija za razvoj in izmenjavo pomaga zelo nadarjenim posameznikom
1z dezel v razvoju. Pri tem skrbi, da je rezija kar se da majhna.

IMU je pravkar i1zdal World Directory of Mathematicians. Kriteriji za
uvrstitev so nekoliko bolj ohlapni kot prej. Tehnicno delo je opravila AMS.
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Izvolili smo tudi iniciativni odbor za elektronsko 1zmenjavo informacij
in elektronsko zaloznistvo. Na tem podrocju je mnogo problemov. Nel
velika drustva, kot npr. AMS, so obenem tudi zalozbe. Sé¢itijo svoja delovna
mesta in tako pogosto niso pripravljena na spremembe standardov ipd. Zato
so francoski delegati predlagali, da predstavnike zalozb izkljucijo 1z odbora.
Prevladalo je Mumfordovo mnenje, da je bolje zagotoviti sodelovanje AMS
v odboru. Kot smo zvedeli pozneje, pa je ze na prvi seji odbora prislo do
zapletov zaradi zelo odlocnih stalisc AMS.

Ceprav smo matematiki prepri¢ani o izredni uspeSnosti jezika TR
sredstva za matematicni zapis, brskalniki na svetovnem spletu tega izuma ne
podpirajo. Med dobrimi novicami smo slisali — in to z ruske strani — pol Vai@
za ameriski arhiv povzetkov znanstvenih clankov http:
fizikalno orientiran).

je sicer bolj
[zraelski delegati so opozorili na nerazumno povecevanje cen revij
kljub napredku tehnike. Narocnina za neko revijo enakega obsega kot Israel
Journal of Mathematics je deset- do enajstkrat toliksna kot za njihovo.
Elektronska izdaja Mathematical Reviews stane trikrat toliko kot papirna.

Burna razprava se je razvila ob odlocanju o kraju naslednjega med-
narodnega kongresa. 10 je priporocil Kitajsko — pod p@g@g@ da bodo
lahko prisli vsi povabljeni matematiki, kandid wa&a pa je se Norveska. Za-
radi obcutljivosti izbire je bilo glasovanje tajno. R ghmv za Ki-
”m,jgk@ 23 za Norvesko, 6 vzdrzanih. N agiednﬁ kongres bo torej v Pekingu.
pa bo leta 2002 v vsakem primeru slavila dvestoto obletnico roj-
stva N wis a Henrika Abela (1802-1829).
kongresa smo se v glavnem ukvarjali s sestavo novega
misij. Na koncu je skoraj v celoti obveljal
predlog starega 1O. V novem IO je tako dve tretjini daﬂmr prejsnjega, na-
mesto prej predlaganega nemskega predstavnika pa je v IO Martin Groet-
schel, ki je zbudil simpatije zaradi uéinkovitosti pri organizaciji mednaro-
dnega kongresa. Prece] casa smo razpravljali o vecjem sodelovanju Zensk in
matematikov z manj znanih podrocij ter manjsih drzav v IMU in konéno
sprejeli ustrezno resolucyjo.

Drugi dan
1izvrsnega odbora in drugih

Novi predsednik IMU j;
rabno matematiko) v Ri
son in Shigefumi M
tute for Adva nced S
5. Enquist, M. R
D). Mumford.
univerze Colum
Rolando R eb oﬂedo 17
Hogendijk 1n

b Palis z IMPA (Institut za mgm n up@—»
iru. Po dpredsedmk& sta Simon Donald
dwekmf Zhanega [nsti-

matem aﬁ& ike (ICM D vodi
' ESE}O 73 mm@j in izn @mavo (C B)

Parsahll.

Karen |

Peter Legisa
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Peto mednarodno tekmovanje studentov matematike

Peto mednarodno tekmovanje studentov matematike je potekalo od

29. julyjja do 3. avgusta 1998 v Blagoevgradu v Bolgariji. V slovenski ekipi
so bili Jernej Barbi¢, Bojan Gornik in Dejan Veluscek iz tretjega in Iztok
Kavkler 1z cetrtega letnika.

Studentje so dva dni, vsak dan po pet ur, resevali naloge. Pravilna

reitev je prinesla 20 tock. Stevilke v oglatih oklepajih povejo, koliko je bil
vreden posamezen reSeni del. Naloge pa so bile naslednje:

1.

158

Naj bo V' 10-razsezen realni vektorski prostor, U; in U pa taka pod-
prostora, da velja U; C Uy, dimU; = 3 in dimUs = 6. Z &£ oznacimo
mnozico vseh linearnih preshikav V. — V', ki imajo U; in Uy za invari-
antna podprostora. Izrac¢unaj razseznost prostora £ kot realnega vek-
torskega prostora.

. Pokazi, da naslednja trditev velja za n = 3 |5 tock| in n = 5 [7 tock],

ne velja pa za n = 4 |8 tock]:
Za poljubno permutacijo 7 stevil 1,2,...,n razlicno od identitete, ob-

staja taka permutacija p, da se da poljubno permutacijostevil 1,2,... n
dobit1 samo s sestavljanjem permutaciy 7 in p.

. Funkcija f : R — R je podana s predpisom f(xz) = 22(1 — z). Naj bo

(a) [10] Poisci limy, oo fy fn(z) da.
(b) [10] Izracunaj integrale fo fn(z) de.

. Za dvakrat odvedljivo funkcijo f : R — R velja f(0) = 2, f/(0) = -2

in f(1) = 1. Pokazi, da obstaja realno stevilo £ € (0, 1), za katero velja

F(&) - f'(€)+ (€)= 0.

. Naj bo P realni polinom stopnje natanko n, ki ima same realne nicle.

(a) [15] Pokazi, da za vsako realno Stevilo = velja neenakost

(n —1)(P'(z))* = nP(x)P"(z).

(b) [5] Kdaj v zgornji neenakosti velja enacaj?

. Naj bo f : [0,1] — IR zvezna funkcija, za katero velja: za poljubni

Stevili z,y € |0, 1] je
zf(y) +yf(z) <1

(a) [15] Pokazi, da je fol flz)dz < 7.

(b) [5] Poisci funkcijo f, za katero v zgornji neenakosti velja enacaj.

. Naj bo V realni vektorski prostor (lahko neskonc¢no razsezen), f, f1, fo,

., fx pa linearni funkcionali V' — R. Naj bo f(z) = 0, ce je le
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fi(z) = folz) = ... fr(x) = 0. Pokazi, da je funkcional f linearna
kombinacija funkcionalov fi, fa,... f&.
8. Naj bo

P o= {f: fla)=

Izracunaj

/7
sup e |7(2)

in poisci vse polinome, za katere je supremum d
9. NajboO<ec<1lin

in je n najmanjse stevilo s to lastnostjo. Pokazi, da je za vsako naravno
stevilo n mnozica n-periodicnih tock neprazna in koncna.
Naj bon > 3 in A, := {1,2,...,n}. Mnozico F sestavljajo funkcije

f. A, — A,, za katere hkrati velja

(a) f(k) < f(k+1)zak=1,2,...,n—11n

(b) f(k)=f(f(k+1)zak=1,2,...,n—1.

Poisci émvﬂo elementov mnozice F.

Naj bo & druZina takih sfer v prostoru R™, n 2, da v preseku
poijubmh dveh lezi najve¢ ena tocka. Naj bo M mnozica tock, ki
pripadajo vsaj] dvema razlicnima sferama 1z druzine &. Pokazi, da je
mnozica J\V naj'me stevna.

Naj bo f (0,1) — [0,00) funkdjm ki je ni¢ povsod, razen v tockah
ai,as, ..., Ki so paroma razliéne. Naj bo e b, = f(a,) zan=1,2,...

(a) Ce je S292.. b, < oo, pokaZi, da je funkcija f odvedljiva vsaj v eni
od tock 1z mterva}a (0 1).
(b) -

10.

11.

12.

Pokazi, da za vgako zaporedje nenegativnih realnih stevil {5 )20 4,
za katero velja > 0o

> 2 4 by, = 00, obgmja, Zapoed}e (an)o2 4, za katero
zgora] definirana funkcija f n1 nikjer odvedljiva.

Nasi studenje so dosegli zelo dobre rezultate. Bojan Gornik je dobil
prvo nagrado (v skupni razvrstitvi je dosegel odlicno sedmo mesto), Iztok
Kavkler, Dejan Veluscek in Jernej Barbi¢ pa so dobili drugo nagrado.
Iztok Kavkler je dobil tudi posebno nagrado za fair-play. Po objavi
neuradnih rezultatov se je pritozil, ker je zaradi tipkarske pomote dobil 20
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tock pri nalogi, ki je sploh ni reseval. Tako mu je za sedem tock usla prva
nagrada.

Letos je bilo tekmovanje v primerjavi s prejsnjimi leti veliko bolje
organizirano, saj je potekalo v prostorih in campusu Ameriske univerze v
Blagoevgradu. Zaradi finanéne podpore programa Tempus za Bolgarijo je
bilo tekmovanje doslej vsako leto v Bolgamﬁ Naslednje leto bo ob Blatnem
jezeru na Madzarskem. Organizatorji in vodje ekip smo izrazili Zzeljo, da bi

L&

bilo tekmovanje odslej vsako leto v drugi drzavi.

Marjan Jerman

MS)

Porocilo o skupscéini Evropskega matematicnega drustva (EN

Po koncanem Mednarodnem matematicnem kongresu je zadnje dni
avgusta 1998 na Humboldtovi univerzi v Berlinu zasedala skupscina EMS.

Evropsko matematicno drustvo obstaja sele osem let. Pred sStirimi
leti sem se udelezil skupséine, na kateri je predsedstvo prevzel Jean-Pierre

Bourguignon (trenutno tudi direktor znane raziskovalne ustanove I.H
Takrat je drustvo lahko le malo pokazalo, bilo pa je mnogo nacrtov.

Kot se je zdaj pokazalo, je bilo nekatere namere (denimo povezavo re-
ferativne revije Zentralblatt s sorodnimi revijami in preoblikovanje v osre-
dnjo evropsko matematicno bazo podatkov) mogoce le delno uresniciti. Si-
cer pa se je J. P. Bourguignon izkazal kot sposoben organizator. V svojem
uvodnem govoru v Berlinu je nanizal nekatere dosezke, pa tudi probleme.

Podoba matematike v javnosti je problem. Pojavljajo se napadi nanjo
in sovrazno obarvani ¢lanki, celo v obdobju mednarodnega matematicnega
kongresa. Presenetila nas je 1zjava, da ima francoski minister za Solstvo
zelo negativen odnos do matematike in da je to ze kar tradicionalno. Pri
tem pa je matematik ocitno povsod po svetu iskan poklic: nezaposlenih
matematikov tako rekoc¢ ni.

Zalozba Springer bo 1. 1999 v sodelovanju z EMS zacela 1zdajati Journal
of the European Mathematical Society (JEMS).

Ustanovljen je bil Diderotov matematicni forum, v okviru katerega so
bila srecanja: Matematika in denarnistvo, Matematika in okolje, Prispevek
matematike h kulturi. Vsako srecanje traja dva dni in poteka v treh evrop-
skih mestih hkrati. Za forum o okolju je dal denar ustrezni evropski sekre-
tariat, ki se ni mogel nacuditi, da matematiki zahtevajo tako malo. Pred-
videna so Se: Matematika in glasba, Matematika in telekomunikacije. Po-
skusili so tud: s telekonferencami, vendar so tezave s tehnologijo, izmenjavo
mnenj pa je treba tudi zelo dobro pripraviti.

Revija Newsletter je dobila novo, privlacnejso podobo, ki so jo v glav-
nem ustvarili kar matematiki sami. Dodani so intervjuji z znanimi mate-
matiki, predvidene pa so predstavitve matematic¢nih instituciy in intervjuji
z ljudmi 1z industrije. Uvedena bodo pisma bralcev.

Organiziranih je bilo vec poletnih Sol. Predsednik je posebno pohvalil
tisto v Cluju, kjer so romunski organizatorji izredno dobro poskrbeli za
udelezence, stroski pa so znasali le petino tistih na Zahodu.
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Pri tovrstnih srecanjih so tezave s financiranjem in s selekcijo studentov,
saj je zanimanje zelo veliko. Za forum o telekomunikacijah je recenzent pre-
dlagal, naj stroske krijejo udelezena podjetja — ki pa ne bodo financirala
studentov. (Mimogrede, se hujSe posledice je imelo mnenje recenzenta, ki
je za znana instituta v Oberwolfachu in Luminyju predlagal stalno financi-

ranje. Zato so kot prvi ukrep prekinili dosedanje neredne prihodke!)

VIS predavanja bo imel profesor Ljubic v treh mestih.

Potrebnih je bilo veliko obiskov v Bruslju. Po Bourguignonu sta glavni
slabosti Evropske skupnosti togost in neprilagodljivost. Matematiki b1 radi,
da bi bili novi Centri odlicnosti odprti tudi za postdoktorske kadre, ne le
za doktorande. Posrecilo se je doseci, da bo mreza manjsih visoko uspo-
sobljenih skupin obravnavana podobna kot velike raziskovalne kapacitete.
Financiranje raznih velikanskih stiriletnih projektov veckrat ni najbolje
premisljeno. Tako so se nekatera znanstvena omrezja kopala v denarju,
druga niso dobila nicesar. Kljub vsemu temu se je lobiranje v KS splacalo.
Stﬂd na vseh ra:vneh evropske bimkradje SO pomagaﬁ premagati odpor, su-

=

0+ 0 8

tiskovna agencija (EMPRESSA), ki naj bi zbirala zani-
mive poijudﬁe clanke 1n novice iz cele Evrope, se m zazivela,

Velike tezave so z dogovori glede elektronskega publiciranja, saj se
mnenja Ameriskega matematicnega drustva in EMS ocitno razlikujejo.

Na izobraZevalnem podrocju po besedah V. Villanija pripravljajo pre-
vode ucnih nacrtov in zbirajo druge poda‘tke o kurikulih. Prof. Saunders 1z
Londonskega matematicnega drustva je v zelo ¢rnih barvah opisal stanje v
angleskem i1zobrazevalnem sistemu, kjer med kurikulom in dejanskim zna-
njem zeva precejSen prepad. Kden od vzrokov za to je veliko pomanjkanje
ustreznih uciteljev.

*JVIOpSkE matematicni kongres bo leta 2000 v Barceloni. Hudo pole-
miko je izzval izbor plenarnih govornikov, saj so se mnoga podroéja ¢utila
zapostavljena, favorizirana pa naj bi bila teorija stevil. Izglasovali smo reso-
lucijo, po kateri naj bi razmislili o razsiritvi stevila plenarnih govornikov in
vec]i uravnotezenosti raznih matematicnih vej. Starostna meja za nagrade
mladim matematikom bo ostala pri 32 letih, ceprav se je precej delegatov,
zlasti pa Izraelci, zavzemala za povisanje.

Kstonci so pripravili vecjezicni matematicni slovar, ki naj b1 bil kmalu
na razpolago na strezniku www.EMIS.de. Potekajo tudi raziskave o zenskah v
matematiki, denimo o tem, ali se Zenske v matematiki uveljavijo sele pozno.

Prihodnje leto bo na Poljskem konferenca v cast Schauderju. V Rusiji se
pripravljajo na obletnice Kovalevske, Rohlina in Kolmogorova (2003). Leta
2000 bo v Granadi konferenca na temo: Islamska matematika, simetrija,

umetnost.

Novi predsednik EMS je Rolf Jeltsch z ETH v Zurichu. Ukvarja se
7z uporabno matematiko in mehaniko. Podpredsednik je Luc Lemaire iz
Bruslja, tajnik David B

Brannan z angleske Open University.
Peter Legisa
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Drustvo matematikov, fizikov in astronomov Slovenije v sodelovanju z Ministrstvom
RS za Solstvo in Sport vabi na seminar z naslovom

‘Seminar bo 5. in 6. februarja ter 24. aprila 1999 v Ljubljani, v predavalnicah Fakul-
tete za matematiko in fiziko, Jadranska 21 (2 skupini), ter 26. marca 1999 v pre-
davalnicah za matematiko in fiziko, Jadranska 21, in na astronomski opazovalnici
Golovec (4 skupine).

8.30-10.00 A. Cadez, T. Zwitter: Predstavitev uénega nacrta za astronomijo v OS
10.30-12.00 M

[. Galicic, R. Belina: Predstavitev izbranih tem
14.00-15.30 B. Dintinjana, A. Gomboc: Predstavitev izbranih tem
16.00-16.45 A. Irsi¢c: Predstavitev izbranih tem
17.00-17.45 B. Dintinjana: Uporaba astronomskega teleskopa

8.30—-10.00 B.
16.30-12.00 R.

Dintinjana, H. MikuZz: Astronomska merjenja |
Belina: Izkusnje z astronomskimi krozki v srednjih solah

14.00-15.30 A. Irsi¢c: Astronomija z racunalnikom na internetu
16.00-17.30 T. Zwitter: Hubblov vesoljski teleskop

Petek, 26. 3. 1999
14.00-15.30 A. Cadez: Nevidna astronomaija
16.00-17.30 A. Cadez: Kozmologija — mit in znanost

19.00-21.00 B. Dintinjana: Astronomska opazovanja na Golovcu
21.00-23.00 H. Mikuz: Astronomska opazovanja na Golovcu
23.00-01.00 B. Kambic: Astronomska opazovanja na Golovcu

01.00-03.00 T. Zwitter: Astronomska opazovanja na Goloveu

Sobota, 24. 4. 1999
8.30-10.00 Udelezenci seminarja in mentorji: Predstavitev in evalvacija seminar-

- skih nalog
10.30-13.30 Udelezenci seminarja in mentorji: Predstavitev in evalvacija seminar-

skih nalog

DMFEA vljudno vabi na seminar ucitelje fizike iz osnovnih in srednjih sol ter ucitelje,
Se posebej tiste, ki bodo ucili izbirni predmet astronomijo v osnovni soli. Kandidati
naj se prijavijo posamezno do 10. januarja 1999 s prijavnico za stalno strokovno
spopolnjevanje (DZS d.d. — obr. 1,201) in vplacajo kotizacijo 1.800 SIT na ziro
racun st. 50101-678-0708070 DMFA,| Ljubljana, Jadranska 19, z oznako |, Seminar
Astronomija”. Udelezenec si lahko pridobi 1,5 tocke, ¢e pripravi seminarsko nalogo
ali drug izdelek, ki je ocenjen pozitivno.

Koordinatorja seminarja | OUdgovorna oseba
Stane Kodba, Janez Krusic | Andrej Cadez

Obzornik mat. fiz. 45 (1998) 5



