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MINIMALNE PLOSKVE

MIRAN ČERN:

Math. Subj. Class. (1991) 49005, 53A10

Le]

Članek predstavi tehniko, kako dokazati obstoj ploskve, ki ima pri danem robu
najmanjšo površino.

MINIMAL SURFACES

A tehnigue for proving the existance of a surface with the prescribed boundary and

minimal area is presented.

1. Uvod

Pričujoči članek je naravno nadaljevanje članka FPlateaujev problem, ki

je v Obzorniku za matematiko in fiziko izšel v letu 1997 |2]. V članku je

bil predstavljen tako imenovani Plateaujev problem za enostavno sklenjeno

krivuljo y v R?. Spomnimo se, da je problem spraševal po površinsko
najmanjšem disku v IR? (disk < slika gladke preslikave iz enotskega kroga

D C ]R? v IR"), katerega rob je dana krivulja y. Plateaujev problem je torej
vnaprej predpisal topologijo iskane ploskve z danim robom in najmanjšo

površino. Vendar, kot je bilo že omenjeno v |2|, rešitev Plateaujevega

problema, četudi vedno obstaja, ne da nujno tudi ploskve z najmanjšo

površino, napeto na dano krivuljo. Nekaj takih primerov si lahko ogledamo

v [2]. Problem, ki ga bomo obravnavali v tem članku, pa je naslednji:

Naj bo y unija končno mnogo enostavno sklenjenih krivulj v R?. Med

vsemi ploskvami % C IR?, ki imajo y za svoj rob 8%, bi radi poiskali tisto

ploskev Xo, ki ima najmanjšo površino.

Kot vidimo, si tokrat nikakor nočemo vezati rok z vnaprej predpisano

topologijo iskane minimalne ploskve. 'To pa tudi pomeni, da za splošne eno-

stavno sklenjene krivulje (ali končne unije le-teh) potrebujemo popolnoma

drugačen pristop k problemu, kot je bil nakazan v [2].

2. Rektitikabilne ploskve

Prvi, naivni pristop k problemu bi bil naslednji: Naj bo 8, družina

vseh ploskev v IR? z robom y. Z m označimo infimum površin vseh ploskev
IZ $,:

m — inf Površina(>)
NES,

in izberimo tako zaporedje (%;)/£;, € 4,, da velja

lim Površina(%;) < m.
j—co

Ker vemo, da zaporedja ,, rada" konvergirajo ali pa,,imajo" vsaj kakšno kon-

vergentno podzaporedje, lahko upamo, da tudi zaporedje (oziroma kakšno
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podzaporedje) ploskev (:;)5?; ,,konvergira" k neki ploskvi %o z robom

OX%o — y. Tedaj naj bi seveda bila žo € S, ploskev z najmanjšo površino m.

Da je beseda , konvergira" upravičeno v narekovajih, nam pokaže na-

slednji zgled možnega zaporedja ploskev (2:;)92; z robom v enotski krožnici

y C IR?, za katero vemo, da je ploskev z najmanjšo površino, ki jo y nape-

nja, kar ravninski disk D C IR?. Zaporedje ploskev (X;) 1 tvorimo tako,

da pri vsakem členu zaporedja površino nekoliko zmanjšamo, da še vedno

velja

lim Površina(X;) < 7,
j—oo

vendar tudi dodamo tanke, a dolge , dlake", katerih skupna površina postaja

manjša in manjša. Primer ,limitne ploskve" takega zaporedja si lahko

ogledate na sliki 1.

Analitično je seveda problem v

tem, da je na množici z majhno

mero lahko funkcija precej divja,

vendar je vrednost integrala (v

našem primeru integrala za površi-

no) take funkcije še vedno majhna.

Če torej hočemo naš naivni pri-
stop k problemu iskanja ploskve z

danim robom in najmanjšo površino

uporabiti, moramo razširiti pojem

ploskve, ki ne bo zajemal le glad-

kih ploskev, ampak tudi vse možne

, limite" takih zaporedij.

Preslikava f : 0 C IR? — IR? je Lipschitzova, če obstaja taka konstanta

C, da velja

NE(u) — Fiv)Il s C lju - vi

za vse pare u, v iz (). Očitno je vsaka gladka preslikava lokalno Lipschitzova,

vendar obstajajo tudi Lipschitzove preslikave, ki niso odvedljive.

Zgled. Preslikava

fla,y) < (e,y, va? 4-9?)

je Lipschitzova na R? (C < v2). Njena zaloga vrednosti je stožec v
zgornjem polprostoru z vrhom v točki 0.

Znano dejstvo je (Rademacherjev izrek |3|), da je vsaka Lipschitzova

preslikava skoraj povsod glede na Lebesgueovo mero v MR? odvedljiva.

Množica točk v IR?, v katerih Lipschitzova preslikava f nima odvoda, ima

torej Lebesgueovo mero enako 0. Potemtakem lahko govorimo o površini
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zaloge vrednosti Lipschitzove preslikave, ki je podana prek površinskega in-

tegrala [7]

Pyp) — [| VEG- Fr drdy< || VVeP IP — (fe 5)? de dy

prav tako kot v odvedljivem primeru. Za ploskve, tako imenovane rekt:-

fikabilne (dopustne) ploskve, razglasimo sedaj vse števne unije slik Lip-

schitzovih preslikav iz podmnožic M2 C MR? v IR?, katerih skupna površina
je končna. Na ta način smo za ploskve razglasili vse našim očem vidne

površine: površina omare, avtomobila, kolesa, .

Rektifikabilne ploskve imajo zaradi zgornje opombe o odvedljivosti tudi

skoraj povsod tangento ravnino in normalo. 'To so torej ploskve, ki imajo

,nekaj" vogalov, robov in drugih negladkih točk, vendar so skoraj povsod

gladke. Zaradi obstoja normale pa lahko tudi govorimo o orientaciji take

ploskve. Prostor dopustnih ploskev v IR? smo sedaj zelo razširili, tako

da lahko upamo, da bo , limita" zaporedja (rektifikabilnih) ploskev zopet

(rektifikabilna) ploskev.

Če hočemo govoriti o limiti zaporedja ploskev, moramo v prostor vseh
rektifikabilnih ploskev vpeljati topologijo. Metrika, ki je na kompaktnih

podmnožicah v R? ali IR? najbolj znana, tj. Hausdorffova metrika, v ta na-

men ni dobra. Spomnimo se |8|, da Hausdorffova metrika med kompak-

tnima množicama A in B

dy(A, B) :< maxfsup d(a, B),sup d(b, A)i
A B

meri, koliko sta ti dve množici v smislu evklidske metrike oddaljeni druga

od druge, tj. množici A in B sta si v Hausdorfiovi metriki blizu, če so vse

točke množice A blizu B in če so vse točke množice B blizu A.

Slika 2. Množici na levi sliki sta si v Hausdorflovi metriki bližje kot množici na desni

sliki.
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Zgled. Naj bo z > 0 majhno pozitivno število. Naj bo množica A
OOenotska sfera v IR? in B števna unija sfer (S; a z radiji r; < 4/3; (torej

rektifikabilna ploskev), katerih središča so gosto razporejena po A. Tedaj

E2, medtem ko se njuni površinije Hausdorftova razdalja teh dveh množic

dr in dre zelo razlikujeta.

Vidimo, da v prostoru rektifikabilnih ploskev za naš namen potrebujemo

drugačno razdaljo, in sicer tako, ki bo odražala tudi površinske lastnosti

ploskev. Za rektifikabilno ploskev 2; definiramo Whstneyjevo normo (flat

norm) |4,5]

(|| — inf4 Površina(T') -- Prostornina(R);

T (ploskev), R (telo), da je SUT <— OR].

Ideja definicije je naslednja. Dve ploskvi S in S" sta si v Whitneyjevi

normi (metriki) blizu, če je norma njune ,,razlike" majhna, tj., če jima

je treba dodati površinsko majhno ploskev 7', da skupaj omejujejo telo R

(OR —< SUS' UT) z majhno prostornino.

Slika 3. Ploskvama S in S' je treba dodati ploskev 7', da skupaj omejujejo telo R.

Opomba. Zgornja definicija je nekoliko poenostavljena, saj je treba

upoštevati še orientacijo in večkratnost ploskev. Vse to se da regularno

narediti v jeziku rektifikabilnih tokov, kjer ploskve gledamo kot funkcionale

na prostoru diferencialnih form oziroma vektorskih polj [5]. Funkcional Fy,

ki ga na prostoru vektorskih polj porodi dana orientabilna ploskev %, je

namreč podan kot ploskovni integral vektorskega polja G po %. Na ta način

lahko v prostor ploskev vpeljemo tudi seštevanje, odštevanje in množenje s

skalarji. Rob OF funcionala nad prostorom vektorskih polj pa definiramo

preko Stokesovega izreka:

AFCO) —< F(rotO).

Izkaže se, da za tako definirano topologijo na prostoru rektifikabilnih

ploskev velja Flemingov izrek o kompaktnosti [4,5]:
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Izrek. Za vsak c > 0 in vsako kroglo B v IR? je množica rektifikabilnih
ploskev >;

19 C B; Površina(%) < c, Dolžina(0M) < cj

kompaktna.

Torej lahko iz vsakega zaporedja rektifikabilnih ploskev z istim robom,

katerih površine se zmanjšujejo (tako kot v našem naivnem pristopu) izbe-

remo konvergentno podzaporedje (v smislu Whitneyjeve norme) in dobimo

ploskev z danim robom, ki absolutno minimizira površino. Velja celo nasle-

dnji izrek (ki ne velja za rešitve Plateaujevega problema, kot se lahko vidi

iz zgledov v |2)!), [4,5]:

Izrek (Fleming (62), Hardt, Simon (79)). Ploskev, ki med vsemi

ploskvami, napetimi na gladko enostavno sklenjeno krivuljo y, minimizira

površino, je gladka vložena (brez samopresečišč!) ploskev z robom -y.

Torej ne glede na to, da smo bili pri definiciji dopustnih ploskev precej

popustljivi, je končni rezultat, tj. minimizirajoča ploskev, v primeru ene

enostavno sklenjene krivulje y C IR? vendarle gladka vložena ploskev v R?,
ki ima rob v y.

Opomba. Če ta rezultat primerjamo z dlakavim diskom iz slike 1,

si upravičeno lahko postavimo vprašanje: Kaj se je zgodilo z , dlakami"?

Lahko bi rekli, da smo ,,dlake" kratko in malo postrigli oziroma da jih sploh

nočemo videti. Njihova površina je namreč 0 in zatorej ne prinašajo ničesar

k skupni površini ploskve. Izjavo zgornjega izreka je torej treba razumeti

v smislu ekvivalenčnih razredov ploskev, kjer so ploskve z ničelno površino

zanemarljive.

3. Singularnosti

Probleme minimiziranja prostornine lahko podobno obravnavamo tudi

v višjih dimenzijah (ter tudi kodimenzijah). Denimo v IR? bi za dano

dvodimenzionalno ploskev [' morali poiskati 3-dimenzionalno hiperploskev z

robom [, ki ima med vsemi takimi hiperploskvami minimalno prostornino.

Pri tem pride do izredno zanimivega pojava. Izkaže se namreč, da so

hiperploskve, ki za dani rob minimizirajo višjedimenzionalno prostornino,

v prostorih IR" za n < 7 vedno gladke. Za n > 8 pa imajo lahko take

hiperploskve sigularnosti dimenzije n — 8.

Skušali bomo nakazati, zakaj pri dovolj velikih dimenzijah lahko na

minimizirajočih hiperploskvah nastanejo singularnosti. Več poglobljene in

natančnejše informacije pa dobimo v |4| in [5].

Prvi znani primer singularnosti pri minimizirajočih hiperploskvah na-

stopi pri stožcu T', napetem na produktu dveh 3-sfer v IRŠ:

T —I(Xa,Ay) € RŠ;z,y ce SC R',Ac [0,1 c R?.

Dokazati se da, da je T 7-dimenzionalna hiperploskev v IR?, ki ima med
vsemi hiperploskvami, napetimi na S? x 5%, najmanjšo 7-dimenzionalno
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maso. Poleg tega je točka 0 € T', ki je vrh tega stožca, singularna točka za

T [5]. Da pa bi vsaj intuitivno razumeli, zakaj nastanejo singularnosti, si

oglejmo naslednje nižjedimenzionalne stožce in valje:

1) Naj bo najprej [o < 5% x S% c R? (5% < 41,—1; C R). Tedaj je po

dolžini minimalna , hiperploskev" v IR? napeta na To kar ,,valj".

(-1,1) (1,1) (-1,1) (1,1)

li V

(1,-1) (-1,-1) (1,-1)

Slika 4. Valj in stožec na produktu 0-sfer.

2) Sedaj naj bo I; <— S!(0;2) x S) c R? (5!(0;2) je krožnica v R? s

središčem v točki 0 in radijem 2). Površinsko minimalna ploskev, napeta

na [,, je katenoida, ki smo jo srečali že [2].

Čeprav so verižnice, ki povezujejo oba kroga, daljše kot ravne črte, je
obseg katenoide manjši kot pri valju. 'Tako katenoida predstavlja nekakšno

ravnotežje med dvema skrajnostma: valjem in stožcem. V višjih dimenzijah

postane ta pojav še bolj izrazit in v IRŠ se zgodi, da postane hiperploskev,

ki pri danem robu S? x S? minimizira prostornino, kar stožec 7, napet na

S? x S, Le-ta seveda ima singularnost v svojem vrhu, točki 0.
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4. Zaključek

Reševanje problema iskanja minimalnih ploskev z metodami, predsta-

vljenimi v tem sestavku, spada v široko in danes nadvse aktivno mate-

matično področje, imenovano geometrična teorija mere, ki povezuje mate-

matike s področij analize, geometrije in parcialnih diferencialnih enačb, Med

številnimi rezultati v zadnjih tridesetih letih ne moremo mimo domneve o

pozitivni masi iz splošne teorije relativnosti, ki sta jo konec sedemdesetih

in v začetku osemdesetih let dokazala R. Schoen in S.-T. Yau (S.-T. Yau je

leta 1982 za svoje raziskovalno delo dobil Fieldsovo medaljo).

Kljub splošnosti, s katero smo se s pomočjo rektifikabilnih ploskev lotili

problema iskanja minimalnih ploskev z danim robom, in nekaterim nadvse

spodbudnim rezultatom, pa ima ta pristop še vedno nekaj pomanjkljivosti,

ki so bile v naši razlagi skrite.

Vse naše ploskve pa morajo biti orientirane. 'lako, recimo, na ta

način sploh ne moremo ,,pridelati" Mobrusovega traku. Prav tako določenih

ogrodij y (npr. y < vsi robovi tetraedra) ne moremo skladno orientirati.

Tako se lahko vendarle zgodi, da se deli ploskve, ki jo ustvari milnica na

takem ogrodju, stikajo vzdolž singularne krivulje, tj., minimalna ploskev

ni gladka. Tudi za vse te probleme so matematiki že razvili teorije, ki jih

učinkovito rešujejo, ampak to je že druga zgodba.
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POSPLOSITVE IZREKA O MONOTONI KONVERGENCI

BORIS LAVRIČ

Math. Subj. Class. (1991) 40A05, 06F'20

Izrek o monotoni konvergenci realnih zaporedij razširimo na končno razsežne delno

urejene vektorske prostore. Dokažemo, da sta v končno razsežnem arhimedskem delno

urejenem vektorskem prostoru V za nenegativna realna števila x,,...,cp ekvivalentni

naslednji izjavi: '

(i) Vsako omejeno zaporedje (£n),—; prostora V, ki ustreza pogojem

Pp

Tndp Z ) XiEN4p—j, nN <1,2,...,

jsl

je konvergentno;

(ii) Velja >. , a; <— 1, poleg tega pa so naravna števila j < p, ki ustrezajo pogoju
jel

aj; > 0, tuja.

GENERALIZATIONS OF THE MONOTONE CONVERGENCE

THEOREM

The theorem of the monotone convergence is extended on finite dimensional partially

ordered vector spaces. It is proved that in every finite dimensional archimedean partially

ordered vector space V for nonnegative real numbers a;,...,cap the following conditions

are eguivalent:

(i) Every bounded seguence (zn), in V satisfying

Pp

np Ž OjEn4p-j: n<—1,2,...,

jsl

is convergent;

li , a; — l, and the natural numbers j < p satisfying a; > 0 are relatively prime.jel tj ; BA; yYP

1. Konvergenca realnih zaporedij

Osnovni izrek o monotoni konvergenci pravi, da vsako omejeno mono-

tono realno zaporedje konvergira. 'Ta preprost, a izredno uporaben rezultat

lahko posplošimo na razne načine. V tem prispevku si bomo ogledali nekaj

takih posplošitev. Najprej bomo ostali pri realnih zaporedjih, monotonost

pa bomo nadomestili s širšim pogojem — z rekurzivno neenakostjo za člene

zaporedja. Poiskali bomo potreben in zadosten pogoj za konvergenco vsa-

kega omejenega zaporedja, ki ustreza tej rekurzivni neenakosti.

Izrek 1. Naj bo p dano naravno število 1n a,,...,c, nenegativna realna

števila. Potem sta ekvivalentni naslednji izjavi:

(1) Vsako omejeno realno zaporedje (x,)%.,, ki ustreza pogoju

p

np Ž », AjEntp-j; j<sl,2,..., (1)

jel

je konvergentno;
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(ti) Velja Mi aj — l in naravna števila j < p, ki ustrezajo pogoju a; > 0,

so tuja.

Za dokaz izreka 1 bomo potrebovali dva pomožna rezultata.

Lema 2. Naj bodo aj,..., ap realna števila, za katera velja Mia aj Z 1.
CO

Potem obstaja nekonstantno realno periodično zaporedje (z,).,, ki izpol-

njuje pogoj (l).

Dokaz. Naj bo najprej p > 1. Če je aj — ... < ap <— 0, lema očitno
velja, zato predpostavimo, da je

ao — zmax laj! > 0.

Postavimo

ter si oglejmo nekonstantni periodični zaporedji s členi

—1-e, če p| nm. — le, če p|n

LOON —1, sicer1 sicer
oziroma 4, — |

V]

Če je o < 1, za člene prvega zaporedja velja

p .

Tp.ep — $ ajEn4p-j >1-(o-4eag) < (1—o)/2 > 0,

jel

torej prvo zaporedje ustreza pogoju (1), če pa je oc > 1, za člene drugega

zaporedja velja

p

Enjp — 0 ajEnp-j > —1-(-o-4ea) <(c—1)/2>0,

jsl

torej tudi drugo zaporedje izpolnjuje pogoj (1). Dokaz za p > 1 je sklenjen,

pri p <— l pa se lahko skličemo na primer p — 2, kjer vzamemo cv — 0.m

Lema 3. Naj bodo ji;,...,J, tuja naravna števila. Potem za vsako

naravno število n > 1 obstaja tak M ec N, da množica

l l

15l i5l

vsebuje n zaporednih naravnih števil.
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Dokaz. Ker so števila ji,...,j, tuja, obstajajo taka cela števila Kki,... k;,

daje MI , k;j; — 1 [1, izrek 8]. Postavimo
4—

k — max/k;, M <— 2kln.
i<i<l |

Za vsako nenegativno celo število r < n naj bo m;(r) < rk; - nk. Potem

velja

l

m;(r) >0 in » milr) < M.
151

Od tod sledi, da M vsebuje števila

l l

r - nk $ ji — Ž mi(r)ji,
151 i5l

kjerjer<—0,1,...,n.m

Dokaz izreka 1. (i) —> (ii). Iz (i) z uporabo leme 2 dobimo >);., a; <

— I. Zaznamujmo z d največji skupni delitelj števil iz množice

J—ljef(l,...,ph:a;>0).

Če je d > 1, zaporedje s členi

-ip če d| n
En E

0, sicer

ne konvergira in je omejeno. Dokažimo, da ustreza pogoju (1). Kadar d deli

np, je £nyp — l, od koder s pomočjo enakosti 0 ;-1 aj < 1 brž sledi (1).

Kadar d ne deli n -- p, je x,4p — 0. Za vsak j € J velja d | j, zato d ne deli

n-ptjinje £nypaj — 0. Ker poleg tega za vsak j € 11,...,p$A J velja

aj <— 0, je tudi v tem primeru izpolnjen pogoj (1). Torej iz (i) sledi d < 1.

(ii) —> (1). Ker je za p — 1 ta implikacija izrek o monotoni konvergenci,

predpostavimo, da je p > 1 in da velja (ii). Naj bo (z,);?, omejeno

zaporedje, ki ustreza pogoju (1). Potem obstajata najmanjše in največje

stekališče zaporedja (z,),, z <— liminf z, in y <— limsup r,, torejnz—lo

x — sup inf z;, y < Inf supt;.

Seveda je z < y, dokazati pa moramo, da velja x < y. Predpostavimo, da

je z < y in brez škode za splošnost dokaza privzemimo, da je z <— 0 (sicer

nadomestimo , Z £n — 4).
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Vzemimo poljuben z > 0 in poiščimo dovolj velik m ec N, da je

u — inf z; tey>0.
jžm

Ker je y — limsupz, in u > 0, obstaja tak n > m, da velja z,,p tu > y in

tedaj tudi

v —< mini£njp tu—y,uj>0.

Z uporabo neenakosti u — ey — inf;>,,4; < 0 od tod po kratkem računu

dobimo H
Znp Ž vd (1 — e)y (2)

in zaradi u > v še

z; > v —ey za vsak i > m. (3)

Ker velja (ii), množico J sestavljajo tuja števila. Zaznamujmo jih z
ji,..., Ji In zabeležimo

a < minja;:j€ J]>O0.

Za vsako nenegativno celo število k zapišimo

My, — 4Y mije: 0 < mi € Z, Jimi ca)
i5]l il

in dokažimo, da za vsak r c M;, velja

Enaptr Ž Vt (a —e)y. (4)
Uporabimo matematično indukcijo. Ker je Mo < 410), neenakost (4) za

k — 0 sledi iz (2). Predpostavimo, da (4) velja za kak nenegativen k, in

vzemimo poljuben s € My;,;. Potem obstaja tak r ec M;, da g < s—r€ J.

Z uporabo neenakosti (1), (3) in (4) dobimo

p

UnJp-s > » OUjXnJapiks—j >
jsl

ŽAgEn pr b (1 — a,)(v — ey) >

>u 4 (aga" — e)y > v 4 (a? - e)y

in indukcijski korak je končan.

Po lemi 3 obstajata taki naravni števili M in N, da množica M <

— Upo, M;, vsebuje števila N, N 4-1,..., N 4- p. Torej iz (4) sledi, da za
vsak j€10,1,...,p] obstaja tako nenegativno celo število k; < M, da je

EngpaN4j Ž vb (oči — e)y.
M

Vzemimo e < a" in upoštevajmo, da je a < 1, pa dobimo

EngprNI4j Ž V za ,50,1,...,p.

Od tod s pomočjo neenakosti (1) in z matematično indukcijo brez težav ugo-

tovimo, da za vsak z > ntp-tN velja x; > v. Torej je sup, en nf;>n Z; Š V,

kar pa nasprotuje privzetku sup, cn inf;>n «; — 6<50.m
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2. Zaporedja v delno urejenih prostorih

Najprej razširimo izrek 1 na zaporedja simetričnih matrik. V vektorski

prostor S(r) vseh realnih simetričnih matrik reda r uvedimo relacijo < s

predpisom

A < B <—> B— A je pozitivno semidefinitna.

Dobro je znano, da v prostoru 5(r) velja izrek o monotoni konvergenci, velja

pa tudi naslednja posplošitev.

Izrek 4. Za nenegatwvna realna števila a,,...,a, sta ekviwalentni

naslednji izjavi:

(1) Vsako omejeno zaporedje realnih simetričnih matrik (A,,).,, ki ustreza

pogojem

p

Anp > ajAnypoj, 2 451,2,..., (5)

jel

Je konvergentno;

(ii) j-1 o; < 1, poleg tega pa so naravna števila ; < p, ki ustrezajo pogoju

aj > 0, tuja.

Dokaz. Dovolj je videti, da sta pogoja (i) v izrekih 1 in 4 ekvivalentna.

Predpostavimo, da velja (1) iz izreka 1, in vzemimo omejeno zaporedje

simetričnih matrik (A,),?, reda r, ki ustrezajo pogoju (5). Pri vsakem

v € IR" je zaporedje s členi z,, — v' A,,v omejeno in ustreza pogoju (1), zato

konvergira. Ce je tedaj

— rar ; —A, — [a;; lija in vee;jtej,

kjer sta e; in e; standardna bazna vektorja, zaporedje s členi

(A)

konvergira. Če vzamemo najprej z — j in nato z A j, od tod brž sledi, da

konvergirajo tudi zaporedja (a;; nei 2,1 <1,...,r, in da velja

lim A, < laijli ;-1 € S(r),
n—co

kjer je a;; < lim, ai).

Naj zdaj velja (i) iz izreka 4. Vzemimo omejeno realno zaporedje

(zn), ki izpolnjuje (1). Potem je zaporedje simetričnih matrik A, <

— 4,1 (I je enotska matrika reda r) omejeno in ustreza pogoju (5), zato

konvergira. Seveda potem konvergira tudi zaporedje (£,);" ,. s
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Prostor S(r), opremljen z relacijo <, je delno urejen vektorski prostor

(glej npr. [2]). Se da izrek 1 smiselno razširiti na splošne delno urejene vek-

torske prostore? S presaditvijo pogoja (1) ni težav, pojma omejenost in

konvergenca zaporedja pa sta v takem prostoru lahko opredeljena na zelo

različne načine. Če se omejimo na končno razsežen prostor in ga identifici-
ramo z IR", lahko oba omenjena pojma opredelimo na standarden način —

,po komponentah". V tem primeru je zaporedje omejeno (oz. konvergen-

tno) natanko takrat, kadar je omejeno (oz. konvergentno) v katerikoli normi

prostora. Ali morda izrek 1 (z ustrezno formulacijo točke (i)) ali vsaj izrek

o monotoni konvergenci velja v vsakem končno razsežnem delno urejenem

vektorskem prostoru!

Prostor IR", k > 1, urejen z običajno leksikografsko urejenostjo, je
linearno urejen vektorski prostor, zaporedje

1
€p —(1—- —)ej £(—-1)"ea €R", n<1,2,...

n

pa je omejeno in naraščajoče, vendar ne konvergira.

Odgovor na postavljeno vprašanje je torej negativen, ponuja pa se nov

problem. Za katere urejenosti v končno razsežnem vektorskem prostoru

velja izrek o monotoni konvergenci? Pri reševanju tega problema si bomo

pomagali z naslednjim pojmom.

Naj bo M neprazna podmnožica delno urejenega prostora IR". Potem
je

M" —<4/x€BR":ax y>O0 za vsakye M)

njena dualna množica. Brez težav se lahko prepričamo, da je dualna množica

vedno zaprta za množenje z nenegativnimi skalarji in za seštevanje ter tudi

topološko zaprta. V nadaljevanju bomo potrebovali rezultat o drugem dualu

pozitivnega stožca končno razsežnega delno urejenega vektorskega prostora.

Lema 5. Naj bo P pozitiven stožec delno urejenega vektorskega prostora

R", vj. P— f(x € R":ax > 0), P njegovo zaprtje in P"" — (P")" njegov

drugi dual. Potem je P"" — P.

Dokaz. Množica P"" je zaprta in očitno vsebuje PP, zato velja PC P",

Za dokaz nasprotne inkluzije vzemimo poljuben z c R" VP. Zaradi zaprtosti

množice P obstaja v njej vektor v, najbližji vektorju z. Torej je

| — v|| < min4 || — zl|: z € P).

Množica P je zaprta za množenje z nenegativnimi skalarji, zato za vsak

realen r > 0 velja

[a — v|j S [|e — rv/|.
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Ce postavimo r < 14-s in kvadriramo neenakost, po krajšem računu dobimo

s/(s -- 2)v' v — 2v a] > 0 za vsak s € [—1,1].

Od tod brez težav dobimo enakost v! v — v 4. Vzemimo zdaj poljuben
z € P. Potem za vsak e > 0 velja v -ez € P, in zato

ie — (v -- ez)I| > (ie —- vil.

Od tod podobno kot prej dobimo (v — 1)! z > 0, torej je v—a € P". Zaradi

v' v — v/ x velja

o (u-e)— -|ju- al? <0,

torej z € P"". m

Preden formuliramo izrek o monotoni konvergenci, ponovimo naslednjo
definicijo. Delno urejen vektorski prostor V je arhamedska, kadar velja sklep

(x,y € V, ma < y Vm € Z) —> z1—0.

V članku |2] smo to lastnost označili z A), v izreku 15 iz |2| pa dokazali, da

je končno razsežen prostor V arhimedski natanko takrat, kadar za zaprtje P

njegovega pozitivnega stožca velja PA(—P) <— 40]. Prostor IR" s standardno

, pokomponentno" urejenostjo je arhimedski, z leksikografsko urejenostjo pa

ne. Ni se težko prepričati, da je tudi prostor S(r) z urejenostjo z začetka

razdelka arhimedski.

Izrek 6. Vsako omejeno naraščajoče zaporedje končno razsežnega delno

urejenega vektorskega prostora konvergira tedaj; in le tedaj, kadar je ta

prostor arhimedska.

Dokaz. Denimo, da prostor IR" ni arhimedski. Potem obstajata tak
neničelni x € IR" in tak y € IR", da za vsako celo število m velja ma < y.

Oglejmo si zaporedje

ap < (1 Jy - (—1l)"z, n<1]l,)2,
n

Ker za vsak ne N velja

1 |

nja — 5m — Zoo Uni ba]

zaporedje narašča, očitno pa je omejeno in ne konvergira.

Predpostavimo zdaj, da je prostor IR" arhimedski, in s P zaznamujmo
njegov pozitivni stožec. Po kratkem računu vidimo, da za pravokotni

komplement dualne množice P" velja enakost
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Ker po lemi 4 velja P"" < P in je poleg tega v arhimedskem prostoru

PnN(—P) <— 40), velja (P")? — 10). Zato je (P")-- — R", od koder sledi,

da je P" ogrodje prostora IR".

Naj bo (£,), omejeno naraščajoče zaporedje v IR" in y ec P". Potem

je zaporedje realnih števil y' z,, naraščajoče in omejeno, tore ji konvergira.
Ker to velja za vsak y ec P" in ker poleg tega P" generira IR", konvergira

COtudi zaporedje (£,)? ,. m

Na podoben način, kot smo dokazali izrek 6, lahko razširimo tudi izrek 1

na vsak končno razsežen arhimedski delno urejen vektorski prostor. Se več,

naslednji rezultat zajema tudi primer, v katerem koeficienti iz rekurzivnega

pogoja (1) niso nujno nenegativni.

Izrek 7. Naj bo V netrivialen končno razsežen arhimedski delno uregen

vektorski prostor. Potem sta za aj,...,c, € IR ekvivalentni naslednji izjavi:

(1) Vsako omejeno zaporedje (x,)/?, v prostoru V, ki izpolnjuje pogoje

> h Uj%n-p—-; J<1,2,..., (6)

konvergira;

(ii) Polinom P(t) < tP — ajt?"! —...— a, ima ničlo 1 in nobene druge

kompleksne ničle z absolutno vrednostjo 1.

Če je a; > O zaj <1,...,p, potem (ii) lahko nadomestimo s pogojem

(iti) j —,4j < 1, poleg tega pa so naravna števila ; < p, pri katerih je

aj > O, tuja.

Dokaz izreka 7 je precej dolg in prezahteven za Obzornik. Bralec ga

lahko najde v članku [3], mi pa se pomudimo le še pri pogoju (ii) iz izreka.

V primeru p < 2 je ta pogoj ekvivalenten konjunkciji zahtev aj; - ax <— 1

in aj Z 0, v primeru p < 3 pa ga lahko nadomestimo z naslednjim pogojem:

aj -aadžaz<l in aa 1 in (az £l ali jaj —1| > 2).

Dokaza obeh ekvivalenc prepuščamo bralcu.
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GOSTOTNI TOK

VLADO MALAČIČ

PACS 47.15Hg, 92.40Fb

Gostotni (gravitacijski) tok je v naravi pogost pojav. Na malo večjem prostorskem

merilu je gostota tekočine zelo verjetno horizontalno nehomogena, kar povzroči gradientno

silo tlaka, ki poganja relativno gibanje med gostejšimi in redkejšimi deli tekočine. V

prispevku je obravnavan dvodimenzionalni ter osnosimetrični gostotni tok tekočine na

vodoravni podlagi.

GRAVITY CURRENT

Gravity current is a common phenomenon in nature. On a large scale the density

of a fluid is very often horizontaly inhomogeneous. [his causes pressure gradients that

drive flows. '[he article deals with twodimensional and axially symmetric gravity current

on a horizontal substrate.

1. Uvod

Z gostotnim tokom (, density current", ali , gravity current") se razlivajo

reke v morje, širi lava po ognjeniku, z njim se opisujejo razlivanje medu

po kruhu, snežni plazovi, plazovi grušča, širjenje oljnega madeža po vodni

gladini in deroče gibanje pridnenih vodnih mas po oceanskih kanjonih.

slednji se imenujejo tudi turbidni tokovi, ki pa gostotno razliko ohranjajo

ali celo povečujejo tudi na račun spodnašanja materiala z morskega dna,

prek katerega drvijo. Tudi v pridneni mejni atmosferski plasti je gostotni

tok pogost pojav: hladen zrak teče navzdol po pobočju ali po dolini, megla

drsi kot gostotni tok v obalnem področju. Gostotni tok lahko dokaj zaplete

atmosfersko strukturo. 'Tako je v [1] opisan prodor hladnega zraka pod

dvoslojno atmosfero, ki povzroči nestabilnost ali hidravlični vdor na meji

med prej mirujočima slojema atmosfere in se kaže kot valovanje mejne

površine. Tudi širjenje hladnega, nevidnega in morda celo strupenega

plina opišemo z gostotnim tokom. Kljub tako široki uporabnosti v izjemno

različnem prostorskem in časovnem merilu pa gostotni tok običajno ni

opisan v učbenikih za dinamiko tekočin, niti npr. v sodobnejših učbenikih,

kot sta [2] in predvsem [3]. V literaturi, ki sodi v fizikalno oceanografijo

obalnih voda, gostotni tok sicer že nastopa [4]. Vendar pa gre pri dinamiki

obalnih voda za specifične primere gostotnega toka, kot je npr. razlivanje

sladke kopenske vode v obalnem morskem pasu, pa najsi gre za razlivanje

v kontinentalni šelf (globine nekaj 100 m), ki je sklopljen z oceanom, ali

pa za razlivanje v bolj ali manj zaprte zalive, kot sta npr. Jadransko morje

ali Tržaški zaliv. Pri tem gre za zapleteno ravnovesje sil, ki se z razvojem

dimenzije problema stalno spreminja.

Izšla je celo knjiga, ki sicer na bolj opisni način obravnava gostotne

tokove [5]. Gostotni tok lahko na preprost način ustvarimo in opazujemo
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tudi v laboratoriju v majhni posodi, v kateri tekočino obarvamo z barvilom

za barvanje živil.

Kot vidimo, se gostotni tok lahko pojavi v merilu od 107? m do 10" ali
celo 10? m. V ravnovesju sil, do katerega pride pri stacionarnem gibanju,

lahko nastopajo različne sile, vendar pa se v njem vedno pojavlja tudi gra-

dientna sila tlaka, ki je posledica (horizontalno) nehomogene gostote. V pri-

spevku bomo obravnavali le kvalitativno ravnovesje med vztrajnostno silo

in silo tlaka. Pri tem bomo obravnavali dva modela. Pri prvem bo prevla-

dovala ohranitev volumna tekočine ali stalen pretok volumna tekočine. Pri

drugem pa bo na izjemno preprost način obravnavano zajetje neturbulentne

tekočine s strani turbulentne tekočine, pri čemer bo opazovana turbulentna

tekočina ohranila vertikalno homogenost gostote. Rezultat bo kvalitativna

ocena gibanja opazovane tekočine, predvsem ocena hitrosti gostotnega toka.

2. Dvoslojna tekočina

Poglejmo, kako je z gradientom tlaka v primeru dveh plasti tekočine

z gostotama p in p — 4p (sl. 1), pri čemer naj pride do gostotnega skoka.

v vmesni, izredno tanki plasti. Naj se vsaka od plasti giblje počasi, tako

da sta lokalni in advektivni pospešek obeh plasti zanemarljiva, prav tako

trenje.

pe PAP

X

Slika 1. Skica dvoslojne tekočine za izračun hidrostatičnega tlaka na nivoju z.

Tako je tlak praktično enak hidrostatičnemu tlaku, kar je pogost pri-

bližek v geofiziki tekočin. Gladina H in višina meje med plastema h sta

funkciji vzdolžne koordinate z. Predpostavimo še, da je mešanje tekočin na

njuni meji zanemarljivo, tlak nad zgornjo tekočino (npr. atmosferski tlak)

pa naj je enakomerno porazdeljen in ga zato postavimo na nič. Na nivoju

z v spodnji plasti je tlak

p—glp- Ap) H — h) - gp(h — z), (1)

zato je horizontalni gradient tlaka

Op OH Oh
— — — Ap) — AP—. 2Dg Je Ap) 57 bt gap (2)

Obzornik mat. fiz. 45 (1998) 5 145



Pri hidrostatični aproksimaciji, ko ni pospeška spodnje plasti in je gibanje

relativno počasno, je tudi trenje zanemarljivo. Tedaj seveda velja, da je

če <— 0. Običajno je gostotna razlika med tekočinama mnogo manjša od

gostote, Hi < 1 in tedaj iz (2) sledi

dah — p dH
3Oz Ap dz ' (3)

kar pa je izredno pomemben rezultat: naklon vmesne gladine je mnogo

večji od naklona zgornje (,, prave") gladine in nasprotno usmerjen. Za morje

lahko mirno rečemo, da je Vi < 0,02, kar pomeni za dva reda velikosti večji

naklon vmesne gladine (, piknokline" v morju) od prave gladine. 'To seveda

pomeni, da bo za gibanja z dovolj nizko frekvenco (npr. poldnevna perioda

plimovanja) tudi amplituda nihanja (valovanja) vmesne plasti mnogo večja

od amplitude valovanja gladine, kjer je to seveda sploh mogoče. Dvoslojni

sistem ima dvoje lastnih valovanj: eno, pri katerem se vrh vmesne plasti

nahaja pod dolom gladine (pravimo mu tudi ,,baroklino" gibanje), in drugo,

pri katerem se vrh vala na vmesni plasti pokriva z vrhom vala na gladini

(, barotropno" gibanje)! [3], vendar se na tem mestu tega problema ne bomo

dotaknili. Povejmo še, da je v dvoslojnem sistemu gradient tlaka v spodnjem

sloju sestavljen iz dveh delov. Prvi člen na desni strani (2) je ti. barotropni

gradient tlaka, ki nastopa tudi v zgornji plasti (ko je z > h) in zagotavlja

praktično enak pospešek vzdolž z-osi v obeh plasteh (razlika v pospeških

zaradi gostotnih razlik med plastema je zanemarljiva). Drugi člen na desni

strani (2) pa je baroklina komponenta gradienta tlaka, ki je značilna le za

spodnjo plast in zagotavlja relativni pospešek in s tem relativno gibanje

spodnje plasti proti zgornji. Ko pozabimo na barotropno komponento

gradienta tlaka, pravimo, da imamo opraviti s ti. ,,rigid-lid" aproksimacijo

ali približkom toge gladine (enakovredno predpostavki čo — 0). Naj zato
v gibalni enačbi nastopa le gradientna sila tlaka, ki zagotavlja pospešek

tekočini. 'To je Eulerjeva enačba. Po času povprečeno Eulerjevo enačbo za

spodnjo plast zapišemo kot

Du l1dp — OH Ap dh
Dt DO: 91 — Ap/p)-- To dx (4)

Du du , udu x x ; ;
bi — 8: px totalen odvod po času povprečene hitrosti u. Oznakekjer je

V resnici se pojma baroklino in barotropno gibanje nanašata na sovpadanje ploskev
(izolinij) tlaka in gostote: kadar ploskve ene količine sledijo ploskvam druge količine,

imamo opraviti z barotropnim gibanjem, ko pa ne sledijo, pa z baroklinim gibanjem.

To velja pri zvezno stratificiranih tekočinah, kjer je možen celoten spekter lastnih ba-

roklinih gibanj. V dvoslojnem primeru pa je terminologija pač drugače uveljavljena.
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za časovno povprečje nastopajočih količin pa opustimo?. Obravnavali bomo

le stacionarne primere, če — 0. Vpeljemo še ti. , reducirani težni pospešek"

g. — get, s katerim zapišemo približek pospeška v (4)

Du,, BOH | ,0h (5)

Dt Vox "ar
Od tu dalje pa se bomo ukvarjali le z relativnim gibanjem spodnje plasti

glede na zgornjo, gradientna sila tlaka na enoto volumna v tem primeru

znaša

NA popg: (6)

3. Opis gostotnega toka

Pri analizi gibanja gostejše plasti tekočine se bomo izognili poti, ki

predvideva znanje osnov iz dinamike tekočin, in raje ubrali tisto pot, ki

jo je nakazal Huppert |6|, kjer analiza temelji na oceni velikostnih redov

posameznih sil in njihovem ravnovesju. (Obravnavali bomo nestisljivo in

turbulentno tekočino.

Naj bo / značilna dimenzija, vzdolž katere se spreminja hitrost u, ki jo

ocenimo z U, advekcijski pospešek če tedaj ocenimo z —- viskozno trenje

v V?u za nestisljivo tekočino pa z Vi Kinematična viskoznost v vode pri

sobni temperaturi ima vrednost 0,01 cm?/s. Za Reynoldsovo število Re,

ki podaja razmerje med advekcijskim (vztrajnostnim) členom in viskoznim

trenjem, tedaj zahtevamo

o U?/I. DI

p—Ap

Slika 2. Skica dvodimenzionalnega (2D) problema z gostotnim tokom.

2 Čas povprečevanja je dovolj velik, da nagle fluktuacije hitrosti v turbulentnem
toku izpovprečimo, hkrati pa dovolj majhen, da lahko opazujemo časovni razvoj

povprečnih količin. V oceanografiji je čas povprečevanja običajno velikostnega reda

minute ali ure. V časovno povprečeni Eulerjevi enačbi smo zanemarili tiste dele

advekcijskega člena, ki vsebujejo gradiente produktov fluktuacij hitrosti, npr. (u'w).
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Slika 3. Skica osnosimetričnega (OS) problema z gostotnim tokom v radialni smeri.

Gradientno silo tlaka (6) na enoto volumna opazovane tekočine ocenimo

za dvodimenzionalni (2D) primer (sl. 2) z pg'/h/l, za osnosimetrični (OS)

problem (sl. 3) pa z pg'h/r. Volumen opazovane tekočine V ocenimo v

prvem primeru s hbl, v drugem pa kar s hr?. Ocenjeno gradientno silo tlaka

na enoto volumna množimo z volumnom in dobimo oceno za silo tlaka ali

vzgonsko silo",

Oh 'h?b a 2D primeoh PJ za 2D primer- [es Ax dv — ppi za OS primer ' (8)
ki poganja opazovano tekočino in ji zagotavlja advektivni ali vztrajnostni

u du Ker je [ (2D) ali r (OS)(inercialni) pospešek p"se

značilna dimenzija, vzdolž katere se u spremeni za U v Času T, ocenimo

vztrajnostni pospešek kot PE — Poz > za 2D primer in kot pE — — p-z za OS

primer. Hitrost U je pri tem ocenjena kot [i oz. Z. Ustrezna vztrajnostna

sila

pudu a za 2D primer (9)

F aa dvo prshro?. za OS primer

bo v našem primeru enaka sili tlaka (8).

a) Primer z danim volumnom ali izvorom tekočine

Predpostavili bomo ohranitev volumna tekočine ali pa ohranitev pretoka

volumna tekočine. Slednje velja v primeru stalnega izvora tekočine z gostoto,

ki je drugačna od gostote okolne tekočine. Ohranitev volumna tekočine V

kot tudi pretoka volumna 4 < se < - lahko zapišemo na naslednji način:

hl — gr" 2D primer (10)

2 — Or? OS primer '

kjer je a <— 0 za ohranitev volumna in a < 1 za ohranitev pretoka. V sle-

dnjem primeru bi g pomenil izdatnost izvora volumna tekočine na enoto

Š Vzgonska sila je sicer pojem, ki se običajno uporablja za gradientno silo tlaka vzdolž
vertikalne osi, oz. vzdolž smeri sile teže.
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prečne dolžine (z enoto m?/s), O pa izdatnost izvora, ki je postavljen v iz-

hodišče sistema (z enoto m?/s). V primeru a < 0 pa g in G pomenita ustre-

zna volumna. Predpostavljamo, da sta g in () konstanti. Tako zapišemo

silo tlaka (8) kot

lj 25

,Oh ID T2e za 2D primer
- led zzaVna de | (11)

z T2e za OS primer
r

pri čemer smo se znebili značilne višine h. Podobno storimo z (9)

u du (bro? za 2D primer
— av » 4P4 pi 12F Oz (patra, za OS primer (12)

Končno izenačimo obe sili in zapišimo oceno za časovni razvoj značilne

dolžine [

a (ga rla2)/3 za 2D primer (13)
/gO Tlabi)/A za OS primer |

Iz (10) izrazimo h kot funkcijo ( oz. r in iz (13) dobimo

ho 8/g? /g! rMa-1)/8 za 2D primer (14)

VO/g re! za OS primer

Sedaj še predpostavimo, da se tekočina pri svojem prodiranju ne meša z

okolno tekočino (npr. lava ali med se ne mešata z zrakom). Ko je volumen

tekočine stalen (a — 0), raste / v 2D primeru hitreje (oc 7?/%) kot v OS

primeru (cc r!/?), Tedaj v 2D primeru značilna višina h upada s časom

tako, kot raste dolžina (oc r7?/$). V OS primeru višina h pada linearno

s časom, kot z njim raste r?. Za tekočino s stalnim izvorom (a < 1) [ s

časom linearno raste v 2D primeru, medtem ko se h s časom ne spreminja.

Podobno velja tudi za OS primer: [ raste kot 73/4, višina h pa se s časom
ne spreminja.

Še eno ugotovitev dobimo, če upoštevamo (10) malo drugače in se v

(13) znebimo kar produkta gr" oz. ()r" z neopredeljenim eksponentom a.

Tako dobimo

( > y/g hr za 2D primer (15)

r > a/gd/ hr za OS primer

Pri tej obliki pa je potrebna previdnost, saj je h funkcija časa. Na tem me-

stu končamo analizo ravnovesja med vztrajnostno silo in silo tlaka, ko velja

(10). Slednji pogoj pomeni dvoje: ali je pomemben volumen tekočine, ki

je že v samem začetku dovolj velik, in opazujemo spremembe pod vplivom

omenjenega ravnovesja sil, dokler druge sile ne pridejo do izraza (npr. visko-

zna sila — majhen le), ali pa je izvor tekočine tako izdaten, da je pomemben
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tudi pri večjih oddaljenostih od izvora. Ne smemo pa pozabiti, da obravna-

vani model tudi ne sme biti prevelik: če npr. opazujemo razvoj tekočine na

razdalji več km in so hitrosti dovolj velike (npr. nekaj m/s), potem je Corio-

lisova sila lahko primerljiva s silama, ki nastopata v obravnavanem modelu.

Zato sedaj končajmo primer, ko je veljala pomembnost začetnega volumna

ali izvora tekočine po (10), in se lotimo malo drugačnega problema.

b) Ohranitev mase dvoslojnega sistema tekočin

Sedaj opustimo zahtevo, da se med gibanjem ohranja gostotna razlika

Ap, in si oglejmo primer, ko imamo dve homogeni tekočini drugo vrh

druge (sl. 4). Recimo, da je tekočina v spodnji plasti turbulentna in da

(med gibanjem) zajame nekaj tekočine iz gornje plasti, ki jo izredno hitro

porazdeli po svoji višini h, z vrtinci, ki so tudi velikostnega reda k;. Na tak

način tekočina ohranja vertikalno homogenost. Opis zajemanja (vnašanja)

neturbulentne tekočine s strani turbulentne tekočine (,entrainment") je

pregledno obravnavan v [7], bežno pa opisan v |8|.

Pri vnosu zgornje (neturbulentne) plasti tekočine v spodnjo (turbulen-

tno) plast tekočine? se masa sistema tekočin do višine H ohrani: kar je bilo

zgoraj odvzeto, je bilo spodaj dodano. Pri tem se torej poveča debelina

spodnje plasti tekočine od h; na h, (sl. 4). Pred zajetjem zgornje plasti

tekočine v spodnjo smo imeli maso sistema (na enoto horizontalne ploskve)

enako po(H — hj) - Apih; < poH -- Apihi, po njem pa maso poH -- Apahs.

Iz ohranitve skupne mase sledi, da se pri mešanju ohranja produkt

Aph < konst. (16)

Z

Ap,

< > r Ap

ZA MR ua a

Po p

Slika 4. Skica spremembe gostote spodnje plasti tekočine z zajetjem zgornje plasti. Pri

tem procesu ostaja gostota zgornje plasti tekočine po nespremenjena. Spodnja plast pa

je pred vnosom zgornje plasti imela gostoto po -- Ap; in debelino h; (črtkano), po vnosu

zgornje plasti pa gostoto po -- Aps in debelino ha.

4 Teorija vnosa neturbulentne tekočine v turbulentno je sicer nedokončana. Videti
je, da vrtinci turbulentne tekočine sežejo tudi prek meje med plastema tekočin in

neturbulentno tekočino blizu meje objamejo ter jo tudi pogoltnejo (,engulfment").
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Večkrat pa zvezi (16) pravijo tudi ohranitev vzgona, ki je lahko tudi v

obliki

g'h < konst., (17)

kjer smo v izrazu za reduciran gravitacijski pospešek nadomestili gostoto

spodnje plasti kar s konstantno gostoto zgornje plasti g. — gže, pri čemer
smo naredili zanemarljivo napako. Pri vnosu zgornje plasti tekočine v spo-

dnjo plast smo povečali potencialno energijo sistema na račun turbulentne

kinetične energije.

Sedaj pa si predstavljajmo, da se spodnja turbulentna plast tekočine

med vnašanjem zgornje plasti po (17) tudi horizontalno giblje. Gostota spo-

dnje plasti, kot tudi njena debelina, sta torej funkciji vzdolžne koordinate.

Med gibanjem posameznega stolpca tekočine v spodnji plasti pa se njegova

debelina krepi, gostota se manjša in bliža gostoti zgornje plasti, ohrani pa

se produkt (17), ki ni funkcija vzdolžne koordinate. V oceni za silo tlaka

(8) je tokrat produkt g'h konstanta. Silo tlaka enačimo z vztrajnostno silo

(9) in dobimo

k v» x/g hT za 2D primer (18)

r >» a/g/ hr za OS primer

Zaradi (17) pa tokrat (v nasprotju s (15)) dobimo znani rezultat za hitrost

gostotnega toka

Cc — ka/ g'h (19)

kjer je k konstanta (blizu ena), ki se običajno opredeli s poskusom.

Vredno je še omeniti, da je hitrost c po (19) zelo blizu hitrosti c <

— x/g'h širjenja internih valov, ki se v primeru dvoslojne tekočine gibljejo

po tanki vmesni plasti in tudi odnašajo energijo proč od frontnega območja.

Ta pomembni rezultat nima zveze z ohranitvijo volumna ali izvora tekočine.

Spodnja plast tekočine mora biti dovolj turbulentna, da hitro porazdeli

vneseno tekočino in s tem ohranja vertikalno homogenost.

4. Laboratorijski poskus in primeri iz narave

Na poletni šoli leta 1992 smo opravili laboratorijski poskus gibanja

sladke vode preko slane vode. (be tekočini skupaj sta zavzeli volumen

kvadra dolžine 170 cm, širine 2l cm ter višine 44 < 12 cm. Potem ko

je bila posoda napolnjena s sladko vodo, smo na polovici dolžine posode

namestili pregrado in v eno polovico dodajali sol ter tako zagotovili štiri

vrednosti reduciranega pospeška g' — 1, 2, 5 in 10 cm/s?. Pregrado smo

dvignili po nekaj minutah, ko se je sol dodobra raztopila in je gibanje v

obeh polovicah posode zamrlo. Gostejša slana voda se je klinasto gibala

pod sladko vodo, ta pa se je zgoraj gibala v nasprotni smeri. Merili smo čas

prehoda fronte zgornje in spodnje tekočine mimo ekvidistantnih oznak na
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posodi. Za gibanje sladke vode smo dobili, da je k < 0,58, za gibanje slane

vode pa k < 0,5, pri čemer pa je bila debelina spodnje plasti h v izrazu (19)

zamenjana s celotno višino 4. Po času 7, ki je nekajkrat večji od 4/H/g',

pa pričneta hitrosti upadati zaradi trenja, in sicer tem kasneje, čim večji je

g.
Čeprav smo izpeljali oceno hitrosti širjenja spodnje plasti tekočine skozi

redkejšo zgornjo plast, pa je izraz (19) v rabi tudi za hitrost gibanja fronte

osladkane vode prek morske vode na gladini morja. Zaradi zahtevnosti

izvedbe ustreznih meritev v naravi je še najprimerneje postaviti k <— 1, za

debelino h pa je izbrana značilna debelina zgornje plasti [9].

Slika 5. Posnetek megle, ki je z gostotnim tokom dne 22. decembra 1989 ob 16:10

prodirala iz I[ržaškega zaliva mimo piranskega rta Sv. Madonna.

Dne 22. decembra 1989 je klinasto oblikovana fronta meglene zračne

plasti prilezla iz Tržaškega zaliva z gostotnim tokom (sl. 5). Megla je bila

ustvarjena s kondenzacijo nad gladino izhlapele vodne pare v območju hla-

dnega zraka. Iz slike ocenimo višino meglene zračne mase na h < 100 m.

Nekdanja meteorološka postaja Hidrometeorološkega zavoda na Belem Križu

v obdobju posnetka sicer ni bila v megli in zato težko ocenimo gostoto me-

glene plasti, ki je seveda nasičena z vodno paro, poleg tega pa je še polna

drobnih vodnih kapljic. Časovno zaporedje vrednosti temperature in rela-

tivne vlažnosti na tej postaji od 15. do 17. ure pa je zgovorno: Ob 15. uri je
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bila temperatura zraka 13,4"C, relativna vlažnost 77 %, ob 16. uri 12,4? C

in 85 % vlažnost, ob 17. uri pa 11,8%C in 84 % vlažnost. Zato sklepamo, da

je bila meglena zračna masa za najmanj 1,5" C hladnejša od okolne zračne

mase. Če predpostavimo, da je med vztrajnostno silo in silo tlaka ravno-

vesje, hitrost gibanja takšne mase ocenimo z (19), kjer postavimo kar k — 1.

Velikostni red hitrosti gibanja meglene zračne mase je tako ocenjen na nekaj

m/s ob predpostavki, da je zračni tlak tik nad megleno plastjo enak tlaku

v megleni plasti, kjer zanemarimo vodne kapljice, v grobi prvi aproksima-

ciji pa tudi vodno paro. Slednja aproksimacija je sicer težko upravičena,

zaradi številnih aproksimacij, napak in pomanjkljivih podatkov pa bo ta

ocena velikostnega reda hitrosti gibanja meglenega klina zadostna. Žal bi

bilo potrebno imeti nekaj zaporednih (avionskih) posnetkov, da bi eksperi-

mentalno ocenili pravo smer gibanja, vzdolž nje pa tudi hitrost meglene pla-

sti, in to primerjali z oceno (19), za katero pa bi imeli vse potrebne podatke.

V takšnih primerih je enostavnejša izvedba posnetkov v goratem območju

s pobočja nad kotlino. 'Tedaj pa je treba upoštevati še dinamično kompo-

nento sile teže, za katero pa je potrebno poznati tudi topografijo območja.

5. Zaključek

V prispevku smo obravnavali dva primera gostotnega toka, v obeh

simo imeli opraviti zgolj z ravnovesjem med silo tlaka in vztrajnostno silo,

pri čemer smo seveda predpostavili, da preostale sile lahko zanemarimo.

Viskozni sili smo se izognili s predpostavko o visokem Reynoldsovem številu

(npr. Re > 2000). Vendar iz omenjenega ravnovesja sil lahko hitro uganemo,

da bi moralo obstajati še brezdimenzijsko število, ki bi bilo kot razmerje

med vztrajnostno silo (» U?//) in silo tlaka (» g'h/l) konstantno. Gre za

ti. interno Froudeovo število [10]?

Fr < (20)

ki je koren omenjenega kvocienta sil in ima pomembno vlogo v dinamiki

tekočin, še posebej v hidravličnih (nelinearnih) problemih. Njemu je sorodno

Richardsonovo število plasti tekočine Ri < 1/Fr?, ki je bolj v rabi v geofiziki

tekočin, V internem Froudeovem številu nastopa reducirani gravitacijski

> William Froude (1810—1879) je kot eden prvih z laboratorijskimi poskusi proučeval
upor toka na ladijske modele. Ugotovil je, da se lahko laboratorijski rezultati

prenesejo na plovila, če v obeh primerih nastopa enako /'r število.

Lewis Fry Richardson (1881-1953) je eden od tvorcev dinamične meteorologije

(rešitve diferencialnih enačb za gibanje atmosfere v obliki končnih diferenc) ter eden

od prvih, ki so poskušali numerično napovedovati vreme še pred dobo računalnikov.

Ri število, definirano v besedilu, ne gre zamenjevati z gradientnim Rs številom, ki

je v rabi pri problemih s stratificirano tekočino, kjer se gostota zvezno spreminja po

vertikali p < p(z).
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pospešek g', študentom hidrodinamike pa je bolj znano navadno ali eksterno

Froudeovo število, kjer nastopa navadni težni pospešek. Navadno Froudeovo

število namreč nastopa v dinamiki homogene tekočine in zato tudi v teoriji

valov na njeni gladini. Za prej opisane primere torej velja, da se Fr ohranja

Fr 1. (21)

Bralec ima morda pomisleke, da je vse v prispevku ,le približno" in

morda pogreša eksaktno analitično rešitev. Seveda v nekaterih primerih ob-

stojijo tudi te. Vendar pa je opisani način dokaj v navadi pri obravnavi tur-

bulentnih problemov. Pokaže se, da je celo nujen, saj z njim ocenimo ,, težo"

posameznih vplivov in velikokrat celo vidimo rešitev, še preden začnemo

problem reševati analitično ali numerično. Podobna analiza gostotnega toka

za majhna Reynoldsova števila (vztrajnostna sila ni več pomembna, pač

pa nastopi viskozna sila) vodi do kvalitativno enakih rešitev kot zahtevno

reševanje sistema diferencialnih enačb. 'Ta problem pa presega območje pri-

spevka. Povejmo le, da tudi ta rešitev odpove, ko je ukrivljenost površine

gibajoče se tekočine zadostna in nastopi sila površinske napetosti (do nje

pride, ker v , viskozni rešitvi" plasti z večjo debelino potujejo hitreje in se

na čelu fronte kopičijo). Zato se npr. pri širjenju medu po kruhu na čelu

(fronti) pojavijo ,, prstki" nestabilnosti, ko je plast medu dovolj razvlečena.

Kako pa naj bi bilo s širjenjem velikega oljnega madeža na vodni gladini?

Recimo, da zanemarimo vplive, kot so tvorba finih oljnih kapljic, tok vodne

mase ipd. Sprva bi se madež razlezel zaradi ravnovesja vztrajnostne sile in

sile tlaka, kot smo opisali v prispevku (primer a), po dovolj dolgem času pa

pride do ravnovesja med viskozno silo in silo tlaka.

Pri obravnavi oblike konice fronte opazovane tekočine (npr. konica

mejne površine sladke vode, ki drsi prek morske vode) pa se ne da izo-

gniti stratifikaciji opazovane tekočine (zvezna odvisnost gostote od verti-

kalne koordinate), ki privede tudi do vertikalne porazdelitve sile trenja med

sosednjimi tankimi plastmi, nanizanimi druga vrh druge ([4] ter [10|). Te-

daj opazujemo obliko fronte v koordinatnem sistemu, ki se s fronto giblje.

Vztrajnostna sila (sorazmerna advekcijskemu pospešku) pa se v nekaterih

primerih lahko celo zanemari proti gradientni sili tlaka in sili trenja. Tedaj

Je zvezno porazdeljena gostota funkcija tako vzdolžne kot; vertikalne koor-

dinate p < p(, z), vendar se dinamika poenostavi z zahtevo, da je se zgolj
funkcija vzdolžne koordinate x. Sila trenja med plastmi pa ni sila mole-

kularnega značaja (viskozna sila), gre za silo, ki je mnogo večja od visko-

zne sile in je posledica turbulentnega prenosa horizontalne komponente gi-

balne količine vzdolž vertikalne osi. 'Ta sila je sorazmerna z Ku) kjer
sta u in w' fluktuaciji komponent hitrosti, oklepaj ( ) pa pomeni ustre-

zno časovno povprečje. Običajno namesto turbulentnih pretokov gibalne
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količine (npr. (u'w')) vpeljemo turbulentne napetosti (npr. —p(u'w')), ki po-

menijo silo na ploskovno enoto. Izvirni greh tega trenja pa velikokrat spre-

gledamo: le-ta je posledica povprečevanja nelinearnega advekcijskega člena

v Navier-Stokesovi enačbi, ki jo povprečujemo hkrati s kontinuitetno enačbo

[8]. Tako smo zopet pri vztrajnostnem členu — le da upoštevamo njegovo

, turbulentno komponento" namesto , povprečne komponente". Slednja je

bila uporabljena v prispevku — ima enako obliko kot izvorni advekcijski člen,

le da namesto trenutnih hitrosti v njej nastopajo po času povprečene hitro-

sti.
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BD,

VESTI

Poročilo o zasedanju Mednarodne matematične unije (IMU) v

Dresdenu

Po štirih letih smo imeli spet generalno skupščino IMU. Skupščina je

bila uvod v Mednarodni matematični kongres v Berlinu. Približno sto

trideset delegatov in kakih deset opazovalcev je zasedalo v Dresdenu 15. in

16. avgusta.

Matematična društva posameznih držav imajo — glede na svojo mate-

matično , težo" — pravico poslati od enega do pet delegatov. Zanimivo je,

da je že med skupščinami veliko prošenj za uvrstitev v višjo kategorijo in

da jim je navadno ugodeno, saj to pomeni tudi večji prispevek v blagajno

IMU.

Obzornik mat. fiz. 45 (1998) 5 155



Izvršni odbor IMU je tradicionalno sestavljen iz slavnih matematikov.

Predsednik David Mumford s harvardske univerze je podal poročilo, v

katerem je omenil nekaj problemov, ki pravzaprav niso novosti. Naraščajoča

specializacija ovira sporazumevanje med področji. IMU ima malo denarja,

vodijo jo ljudje, ki se ne potegujejo za tovrstne položaje.

Med najbolj občutljive naloge Izvršnega odbora sodi organizacija Med-

narodnega matematičnega kongresa in izbira tajnega odbora za podelitev

Fieldsovih medalj, ki so nekakšne Nobelove nagrade na področju matema-

tike. Tokrat je bil prvič že pred kongresom znan predsednik programskega

odbora kongresa. Velika čast je imeti uvodno besedo v sekciji kongresa. Da

bi se izognili morebitnim pritiskom, so bila imena članov programskega od-

bora tudi tokrat tajna.

Paul Griffiths je kot predsednik programskega odbora kongresa ocenil,

da se je sprememba v glavnem obnesla, saj je tako dobil več spodbud in bodo

uvodničarji tudi nekateri manj znani matematiki. Negativna stran novosti

je bila, da je doživel dve organizirani kampanji, ki pa sta bili neuspešni.

Eno so pripravili prijatelji nekega matematika, drugo pa kar kandidat za

uvodničarja sam. Ta je zaradi zavrnitve zagrozil celo s tožbo.

Na skupščini smo zvedeli, da je bil predsednik odbora za podelitev

Fieldsove medalje Juri Manin. Letos je nastal poseben problem, saj je

Andrew Wiles pred kratkim dokazal stoletja stari veliki Fermatov izrek. Ker

pa je Wiles star več kot štirideset let, ni prišel v poštev za Fieldsovo medaljo

in je dobil le posebno srebrno plaketo IMU.

IMU namerava izdati knjigo Matematika jutri. Avtorje so poiskali med

dobitniki Fieldsove medalje in drugimi slavnimi matematiki. Večina od

kakih trideset naprošenih je bila voljna sodelovati. Zanimivo je, da je prišlo

do tekmovanja med založniki za izdajo te knjige. Pravkar pa je izšla knjiga

finskega matematika Lehta z naslovom: Zgodovina IMU (Olli Lehto: History

of IMU; Mathematics without borders, Springer- Verlag 1998).

Leto 2000 bo po sklepu IMU mednarodno leto matematike. Sponzor bo

UNESCO. Posebno zagnano se na to pripravljajo v Franciji, kjer obstaja

poseben odbor za to priložnost.

Nemčija in deloma Evropska skupnost sta se izkazali zelo radodarni

in sta subvencionirali udeležbo na Mednarodnem kongresu za sto mladih

raziskovalcev in štirideset starejših znanstvenikov iz dežel v razvoju. 'To

je stalo 400000 DEM, še nekaj večjo vsoto pa so dali v enak namen za

matematike iz vzhodne Evrope. Sredstva za IMU so radodarno prispevali

še člani Ameriškega matematičnega društva (AMS), Brazilija (!), od koder

je dosedanji tajnik IMU Jacob Palis, Velika Britanija, Royal Society itd.

Komisija za razvoj in izmenjavo pomaga zelo nadarjenim posameznikom

iz dežel v razvoju. Pri tem skrbi, da je režija kar se da majhna.

IMU je pravkar izdal World Directory of Mathematicians. Kriteriji za

uvrstitev so nekoliko bolj ohlapni kot prej. Tehnično delo je opravila AMS.
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Izvolili smo tudi iniciativni odbor za elektronsko izmenjavo informacij

in elektronsko založništvo. Na tem področju je mnogo problemov. Nekatera

velika društva, kot npr. AMS, so obenem tudi založbe. Ščitijo svoja delovna

mesta in tako pogosto niso pripravljena na spremembe standardov ipd. Zato

so francoski delegati predlagali, da predstavnike založb izključijo iz odbora.

Prevladalo je Mumdiordovo mnenje, da je bolje zagotoviti sodelovanje AMS

v odboru. Kot smo zvedeli pozneje, pa je že na prvi seji odbora prišlo do

zapletov zaradi zelo odločnih stališč AMB.

Čeprav smo matematiki prepričani o izredni uspešnosti jezika TpX kot

sredstva za matematični zapis, brskalniki na svetovnem spletu tega izuma ne

podpirajo. Med dobrimi novicami sino slišali — in to z ruske strani — pohvalo

za ameriški arhiv povzetkov znanstvenih člankov http://xxx.lanl.gov (ki

je sicer bolj fizikalno orientiran).

Izraelski delegati so opozorili na nerazumno povečevanje cen revij —

kljub napredku tehnike. Naročnina za neko revijo enakega obsega kot Israel

Journal of Mathematics je deset- do enajstkrat tolikšna kot za njihovo.

Elektronska izdaja Mathematical Reviews stane trikrat toliko kot papirna.

Burna razprava se je razvila ob odločanju o kraju naslednjega med-

narodnega kongresa. IO je priporočil Kitajsko — pod pogojem, da bodo

lahko prišli vsi povabljeni matematiki, kandidirala pa je še Norveška. Za-

radi občutljivosti izbire je bilo glasovanje tajno. Rezultat: 99 glasov za Ki-

tajsko, 23 za Norveško, 6 vzdržanih. Naslednji kongres bo torej v Pekingu.

Norveška pa bo leta 2002 v vsakem primeru slavila dvestoto obletnico roj-

stva Nielsa Henrika Abela (1802-1829).

Drugi dan kongresa smo se v glavnem ukvarjali s sestavo novega

izvršnega odbora in drugih komisij. Na koncu je skoraj v celoti obveljal

predlog starega I0. V novem IO je tako dve tretjini članov prejšnjega, na-

mesto prej predlaganega nemškega predstavnika pa je v IO Martin Groet-

schel, ki je zbudil simpatije zaradi učinkovitosti pri organizaciji mednaro-

dnega kongresa. Precej časa smo razpravljali o večjem sodelovanju žensk in

matematikov z manj znanih področij ter manjših držav v IMU in končno

sprejeli ustrezno resolucijo.

Novi predsednik IMU je Jacob Palis z IMPA (Inštitut za čisto in upo-

rabno matematiko) v Rio de Janeiru. Podpredsednika sta Simon Donald-

son in Shigefumi Mori, tajnik je Phillip Griftiths, direktor znanega Insti-

tute for Advanced Study v Princetonu. Člani so: V. Arnold, J. M. Bismut,
B. Enguist, M. Raghunatan, M. Groetschel in avtomatično bivši predsednik
D. Mumford. Komisijo za pouk matematike (ICMI) vodi Hyman Bass z

univerze Columbia v New Yorku, komisijo za razvoj in izmenjavo (CDE)

pa Rolando Rebolledo iz Čila. V komisiji za zgodovino matematike sta

J. P. Hogendijk in Karen Parsahll.

Peter Legiša
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Peto mednarodno tekmovanje študentov matematike

Peto mednarodno tekmovanje študentov matematike je potekalo od

29. julija do 3. avgusta 1998 v Blagoevgradu v Bolgariji. V slovenski ekipi

so bili Jernej Barbič, Bojan Gornik in Dejan Velušček iz tretjega in Iztok

Kavkler iz četrtega letnika.

Študentje so dva dni, vsak dan po pet ur, reševali naloge. Pravilna

rešitev je prinesla 20 točk. Številke v oglatih oklepajih povejo, koliko je bil
vreden posamezen rešeni del. Naloge pa so bile naslednje:

1.

158

Naj bo V 10-razsežen realni vektorski prostor, U; in U> pa taka pod-

prostora, da velja U; C Us, dimU; <— 3 in dimU; <— 6. Z € označimo

množico vseh linearnih preslikav V — V, ki imajo U; in U, za invari-

antna podprostora. Izračunaj razsežnost prostora £ kot realnega vek-

torskega prostora.

. Pokaži, da naslednja trditev velja za n <— 3 [5 točk] in n <— 5 [7 točk],

ne velja pa za n — 4 [8 točk]:

Za poljubno permutacijo 7 števil 1,2,...,n različno od identitete, ob-

staja taka permutacija p, da se da poljubno permutacijo števil 1,2,...,n

dobiti samo s sestavljanjem permutacij 7 in p.

. Funkcija f : R — R je podana s predpisom f(4) < 24(1 — 7). Naj bo

(a) [10] Poišči lim,,.,.6 [o fn(r) de.

(b) [10] Izračunaj integrale Im f(x) de.

. Za dvakrat odvedljivo funkcijo f : R — R velja f(0) < 2, f'(0) < —-2

in f(1) < 1. Pokaži, da obstaja realno število č € (0,1), za katero velja

HO) F(O£F(0 0.

. Naj bo P realni polinom stopnje natanko n, ki ima same realne ničle.

(a) [15] Pokaži, da za vsako realno število z velja neenakost

(n — 1)(P'(x))? > nP(x)P"(r).

(b) [5] Kdaj v zgornji neenakosti velja enačaj?

. Naj bo f : [0,1] — MR zvezna funkcija, za katero velja: za poljubni

števili z,y € [0,1] je

2f(y) dt yf(g) S1.

(a) [15 Pokaži, da je ih Hx)dea < 1.

(b) [5] Poišči funkcijo f, za katero v zgornji neenakosti velja enačaj.

Naj bo V realni vektorski prostor (lahko neskončno razsežen), f, fi, fa,

.., k pa linearni funkcionali V — MR. Naj bo f(£) < 0, če je le
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fa(x) < falx) — ...fy(g) <— 0. Pokaži, da je funkcional f linearna

kombinacija funkcionalov fi, fh,... fe.

8. Naj bo

Pi—<11, f(r) — nI apa", ap € R,> |f(£1)| <1, |F(H:| <1.
k—0

Izračunaj

sup max |f'(r)]
fEP —l<x<1

in poišči vse polinome, za katere je supremum dosežen.

9. Naj bo O<cec<l11in

za x € |0,c],

Ha) — ka za x € |c, 1].
Pravimo, da je p € |0,1| n-periodična točka, če je

in je n najmanjše število s to lastnostjo. Pokaži, da je za vsako naravno

število n množica n-periodičnih točk neprazna in končna.

10. Naj bo n > 3 in A, :— 41,2,...,n). Množico /F sestavljajo funkcije

J: A, — A,, za katere hkrati velja

(a) (k) < [(k 4-1) zak<1,2,...,n—lin

(b) f(k) < f(f(k41)) zak<1l,2,...,n—1.
bdi da bi

poljubnih dveh leži največ ena točka. Naj bo MM množica točk, ki

pripadajo vsaj dvema različnima sferama iz družine 8. Pokaži, da je

množica M največ števna.

12. Naj bo f : (0,1) — |0,co) funkcija, ki je nič povsod, razen v točkah

ai,aa,..., ki so paroma različne. Naj bo še b, < f(a,) zan <—1,2,...

(a) Če je 0, b,, < oo, pokaži, da je funkcija f odvedljiva vsaj v eni
od točk iz intervala (0,1).

(b) Pokaži, da za vsako zaporedje nenegativnih realnih števil (b,),? ;,

za katero velja >, 0, — oo, obstaja zaporedje (a,);?,, za katero

zgoraj definirana funkcija f ni nikjer odvedljiva.

11. Naj bo S družina takih sfer v prostoru IR", n > 2, da v preseku

Naši študenje so dosegli zelo dobre rezultate. Bojan Gornik je dobil

prvo nagrado (v skupni razvrstitvi je dosegel odlično sedmo mesto), Iztok

Kavkler, Dejan Velušček in Jernej Barbič pa so dobili drugo nagrado.

Iztok Kavkler je dobil tudi posebno nagrado za fair-play. Po objavi

neuradnih rezultatov se je pritožil, ker je zaradi tipkarske pomote dobil 20
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točk pri nalogi, ki je sploh ni reševal. 'Tako mu je za sedem točk ušla prva

nagrada.

Letos je bilo tekmovanje v primerjavi s prejšnjimi leti veliko bolje

organizirano, saj je potekalo v prostorih in campusu Ameriške univerze v

Blagoevgradu. Zaradi finančne podpore programa Tempus za Bolgarijo je

bilo tekmovanje doslej vsako leto v Bolgariji. Naslednje leto bo ob Blatnem

jezeru na Madžarskem. Organizatorji in vodje ekip smo izrazili željo, da bi

bilo tekmovanje odslej vsako leto v drugi državi.

Margan Jerman

Poročilo o skupščini Evropskega matematičnega društva (EMS)

Po končanem Mednarodnem matematičnem kongresu je zadnje dni

avgusta 1998 na Humboldtovi univerzi v Berlinu zasedala skupščina EMS.

Evropsko matematično društvo obstaja šele osem let. Pred štirimi

leti sem se udeležil skupščine, na kateri je predsedstvo prevzel Jean-Pierre

Bourguignon (trenutno tudi direktor znane raziskovalne ustanove 1.H.E.S.).

Takrat je društvo lahko le malo pokazalo, bilo pa je mnogo načrtov.

Kot se je zdaj pokazalo, je bilo nekatere namere (denimo povezavo re-

ferativne revije Zentralblatt s sorodnimi revijami in preoblikovanje v osre-

dnjo evropsko matematično bazo podatkov) mogoče le delno uresničiti. Si-

cer pa se je J. P. Bourguignon izkazal kot sposoben organizator. V svojem

uvodnem govoru v Berlinu je nanizal nekatere dosežke, pa tudi probleme.

Podoba matematike v javnosti je problem. Pojavljajo se napadi nanjo

in sovražno obarvani članki, celo v obdobju mednarodnega matematičnega

kongresa. Presenetila nas je izjava, da ima francoski minister za šolstvo

zelo negativen odnos do matematike in da je to že kar tradicionalno. Pri

tem pa je matematik očitno povsod po svetu iskan poklic: nezaposlenih

matematikov tako rekoč ni.

Založba Springer bo l. 1999 v sodelovanju z EMS začela izdajati Journal

of the European Mathematical Society (JEMS).

Ustanovljen je bil Diderotov matematični forum, v okviru katerega so

bila srečanja: Matematika in denarništvo, Matematika in okolje, Prispevek

matematike h kulturi. Vsako srečanje traja dva dni in poteka v treh evrop-

skih mestih hkrati. Za forum o okolju je dal denar ustrezni evropski sekre-

tarlat, ki se ni mogel načuditi, da matematiki zahtevajo tako malo. Pred-

videna so še: Matematika in glasba, Matematika in telekomunikacije. Po-

skusili so tudi s telekonferencami, vendar so težave s tehnologijo, izmenjavo

mnenj pa je treba tudi zelo dobro pripraviti.

Revija Newsletter je dobila novo, privlačnejšo podobo, ki so jo v glav-

nem ustvarili kar matematiki sami. Dodani so intervjuji z znanimi mate-

matiki, predvidene pa so predstavitve matematičnih institucij in intervjuji

z ljudmi iz industrije. Uvedena bodo pisma bralcev.

Organiziranih je bilo več poletnih šol. Predsednik je posebno pohvalil

tisto v Cluju, kjer so romunski organizatorji izredno dobro poskrbeli za

udeležence, stroški pa so znašali le petino tistih na Zahodu.
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Pri tovrstnih srečanjih so težave s financiranjem in s selekcijo študentov,

saj je zanimanje zelo veliko. Za forum o telekomunikacijah je recenzent pre-

dlagal, naj stroške krijejo udeležena podjetja — ki pa ne bodo financirala

študentov. (Mimogrede, še hujše posledice je imelo mnenje recenzenta, ki

je za znana inštituta v Oberwolfachu in Luminyju predlagal stalno financi-

ranje. Zato so kot prvi ukrep prekinili dosedanje neredne prihodke!)

EMS predavanja bo imel profesor Ljubič v treh mestih.

Potrebnih je bilo veliko obiskov v Bruslju. Po Bourguignonu sta glavni

slabosti Evropske skupnosti togost in neprilagodljivost. Matematiki bi radi,

da bi bili novi Centri odličnosti odprti tudi za postdoktorske kadre, ne le

za doktorande. Posrečilo se je doseči, da bo mreža manjših visoko uspo-

sobljenih skupin obravnavana podobna kot velike raziskovalne kapacitete.

Financiranje raznih velikanskih štiriletnih projektov večkrat ni najbolje

premišljeno. 'Tako so se nekatera znanstvena omrežja kopala v denarju,

druga niso dobila ničesar. Kljub vsemu temu se je lobiranje v ES splačalo.

Stiki na vseh ravneh evropske birokracije so pomagali premagati odpor, su-
OROLIKI

Matematična tiskovna agencija (EMPRESSA), ki naj bi zbirala zani-

mive poljudne članke in novice iz cele Evrope, še ni zaživela.

Velike težave so z dogovori glede elektronskega publiciranja, saj se

mnenja Ameriškega matematičnega društva in EMS očitno razlikujejo.

Na izobraževalnem področju po besedah V. Villanija pripravljajo pre-

vode učnih načrtov in zbirajo druge podatke o kurikulih. Prof. Saunders iz

Londonskega matematičnega društva je v zelo črnih barvah opisal stanje v

angleškem izobraževalnem sistemu, kjer med kurikulom in dejanskim zna-

njem zeva precejšen prepad. Eden od vzrokov za to je veliko pomanjkanje

ustreznih učiteljev.

Evropski matematični kongres bo leta 2000 v Barceloni. Hudo pole-

miko je izzval izbor plenarnih govornikov, saj so se mnoga področja čutila

zapostavljena, favorizirana pa naj bi bila teorija števil. Izglasovali smo reso-

lucijo, po kateri naj bi razmislili o razširitvi števila plenarnih govornikov in

večji uravnoteženosti raznih matematičnih vej. Starostna meja za nagrade

mladim matematikom bo ostala pri 32 letih, čeprav se je precej delegatov,

zlasti pa Izraelci, zavzemala za povišanje.

Estonci so pripravili večjezični matematični slovar, ki naj bi bil kmalu

na razpolago na strežniku www.EMIS.de. Potekajo tudi raziskave o ženskah v

matematiki, denimo o tem, ali se ženske v matematiki uveljavijo šele pozno.

Prihodnje leto bo na Poljskem konferenca v čast Schauderju. V Rusiji se

pripravljajo na obletnice Kovalevske, Rohlina in Kolmogorova (2003). Leta

2000 bo v Granadi konferenca na temo: Islamska matematika, simetrija,

umetnost.

Novi predsednik EMS je Rolf Jeltsceh z ETH v ZŽurichu. Ukvarja se

z uporabno matematiko in mehaniko. Podpredsednik je Luc Lemaire iz

Bruslja, tajnik David Brannan z angleške Open University.

Peter Legiša

ZOI 1 a Ce A we? o ZA OAODADN. O m



Društvo matematikov, fizikov in astronomov Slovenije v sodelovanju z Ministrstvom

RS za šolstvo in šport vabi na seminar z naslovom

ASTRONOMIJA

Seminar bo 5. in 6. februarja ter 24. aprila 1999 v Ljubljani, v predavalnicah Fakul-

tete za matematiko in fiziko, Jadranska 21 (2 skupini), ter 26. marca 1999 v pre-

davalnicah za matematiko in fiziko, Jadranska 21, in na astronomski opazovalnici

Golovec (4 skupine).

PROGRAM

Petek, 5. 2. 1999

8.30-10.00 A. Čadež, T. Zwitter: Predstavitev učnega načrta za astronomijo v OŠ
10.30-12.00 M. Galičič, R. Belina: Predstavitev izbranih tem

14.00—15.30 B. Dintinjana, A. Gomboc: Predstavitev izbranih tem

16.00—16.45 A. Iršič: Predstavitev izbranih tem

17.00—17.45 B. Dintinjana: Uporaba astronomskega teleskopa

Sobota, 6. 2. 1999

8.30—10.00 B. Dintinjana, H. Mikuž: Astronomska merjenja

10.30—12.00 R. Belina: Izkušnje z astronomskimi krožki v srednjih šolah

14.00—15.30 A. Iršič: Astronomija z računalnikom na internetu

16:00-17.30'T. Zwitter: Hubblov vesoljski teleskop

Petek, 26. 3. 1999

14.00-15.30 A. Cadež: Nevidna astronomija

16.00-17.30 A. Cadež: Kozmologija — mit in znanost

19.00—-21.00 B. Dintinjana: Astronomska opazovanja na Golovcu

21.00-23.00 H. Mikuž: Astronomska opazovanja na Golovcu

23.00—01.00 B. Kambič: Astronomska opazovanja na Golovcu

01.00—03.00 T. Zwitter: Astronomska opazovanja na Golovcu

Sobota, 24. 4. 1999

8.30—10.00 Udeleženci seminarja in mentorji: Predstavitev in evalvacija seminar-

skih nalog

10.30—13.30 Udeleženci seminarja in mentorji: Predstavitev in evalvacija seminar-

skih nalog

DMFA vljudno vabi na seminar učitelje fizike iz osnovnih in srednjih šol ter učitelje,

še posebej tiste, ki bodo učili izbirni predmet astronomijo v osnovni šoli. Kandidati

naj se prijavijo posamezno do 10. januarja 1999 s prijavnico za stalno strokovno

spopolnjevanje (DZS d.d. — obr. 1,201) in vplačajo kotizacijo 1.800 SIT na žiro

račun št. 50101-678-0708070 DMFA, Ljubljana, Jadranska 19, z oznako ,,Seminar

Astronomija". Udeleženec si lahko pridobi 1,5 točke, če pripravi seminarsko nalogo
ali drug izdelek, ki je ocenjen pozitivno.

K oordinatorja seminarja | Odgovorna oseba

otane Kodba, Janez Krušič Andrej Cadež
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