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tATNIH

PETER PETEK

Math. Subj. Class. (85) 58 F 08, 58 F 13

Analiza iteracije najpreprostejše nelinearne funkcije je vse prej kot enostavna. 5

spreminjanjem parametra sledimo podvajanju period na poti v kaos.

ITERATION OF OUADRATIC FUNCTIONS

The analysis of the iteration of the simplest nonlinear function is all but simple.

Changing the parameter leads through the period doubling to chaos.

1. Model rasti

Obravnavamo populacijo istovrstnih osebkov, to so lahko mušice, dreve-

sa, bakterije, navsezadnje pa tudi ljudje. Predpostavka linearne rasti pravi,

da je hitrost naraščanja populacije sorazmerna trenutni velikosti populacije.

Model lahko obravnavamo kot diskreten ali zvezen, obakrat zasledimo isti tip

rasti — eksponentni. Zvezni model: koeficient rasti A > O, začetna velikost

populacije z(0) — ro, diferencialna enačba

2(t) < Az(t)

in njena eksponentna rešitev

2(t) — xge?"

Diskretni model: koeficient naravne rasti r > 0, začetna velikost popu-

lacije zo in diferenčna enačba

dns-l — (1 EH r)a,

spet z eksponentno rešitvijo

z, < £o(l rj)"

Narava seveda take neomejene rasti ne prenese. Resda se pri relativno

majhnih populacijah v omejenem časovnem obdobju linearni model kar

dobro ujema z dejanskim stanjem, ko pa populacija narašča, omejuje samo

sebe. Končne zaloge hrane, vode, omejen prostor zahtevajo drugačen model,

model z omejitvijo rasti, model, ki predvideva zasičenje in končno ustalitev

pri neki optimalni populaciji. |

Oglejmo si najprej zvezni model omejene rasti. Naj bo kar optimalna

populacija enaka 1 in začetna populacija enaka z). Diferencialna enačba

z < Az(l—-r),A>0

pove, da populacija narašča, dokler je pod optimalno, in pada, če je večja.

Rešitev

z —(14(1-— goje "7!
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pove, da se velikost populacije asimptotično približuje optimalni, od spodaj,

če je zo < Il, in od zgoraj, če je zo > 1.

Seveda zgornja diferencialna enačba ni edini možni način omejevanja

rasti. Namesto kvadratne funkcije lahko vzamemo kakšno drugo in dobimo

drugačen model (primerjajmo [1)).

Dovolj je razlogov, ki narekujejo uporabo diskretnega modela. To pač

pomeni, da opazujemo populacijo v določenih časovnih presledkih, npr.

enkrat letno. Diferenčna enačba

Engi — (1 £r)e, — rač (1)

vsebuje pozitivni parameter naravne rasti r. Začetni člen si izberimo med 0

in 1; kaj se pripeti pri drugačnih go, si bomo ogledali kasneje.

Takoj povejmo, da diferenčne enačbe ne moremo tako lepo rešiti z

elementarnimi funkcijami, kot je to šlo pri analogni diferencialni enačbi. In

kot bomo spoznali, se tudi obnašanje rešitve bistveno razlikuje, vsaj pri

večjih vrednostih parametra r. Če je parameter majhen, torej skromen
naravni prirastek, pa še vedno lahko opazimo naraščanje populacije, ki se

od spodaj približuje optimalni populaciji x < 1.

2. Diskretni Verhulstov proces

Model kvadratno omejene rasti je obravnaval že sredi prejšnjega stoletja

biolog Verhulst. Oglejmo si nekoliko splošnejšo situacijo, zaporedje, ki je

opisano rekurzivno

L0, Lnsl — f(x,) (2)
kjer je f zvezno odvedljiva realna funkcija. Zaporedje more konvergirati le

k negibni točki funkcije f, rešitvi enačbe

((£) < z

Vendar se to vedno ne zgodi, tudi če začnemo z zo zelo blizu negibne

točke a. Zadostni pogoj za konvergenco je v tem primeru

[f(a)i <1

Definicija. Negibna točka a preslikave f je privlačna (atraktor, ponor),

če obstaja taka okolica točke a, da za vsak z, iz te okolice zaporedje (2)

konvergira k točki a.

Definicija. Negibna točka a preslikave f je odbojna (repelor, izvor), če

obstaja taka okolica U točke a, da za vsak zo c U in zo x a obstaja člen

zaporedja z, € U.

Očitno je zadosten pogoj za odbojnost negibne točke a neenakost

(a), >1

Ce je že odvod v negibni točki absolutno pod ena, nam tudi znak odvoda

nekaj pove o obnašanju zaporedja. Pri pozitivnem odvodu ostanejo členi

zaporedja ves čas na isti strani negibne točke; če je odvod negativen, so
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izmenoma večji in manjši od nje. Če pa je f/(a) < 0, pomeni to zelo hitro

konvergenco zaporedja, kvadratično ali kubično; negibna točka je močno

privlačna, superatraktor.

Kako je v primeru kvadratne funkcije (1)? Negibni točki sta dve, 0 in

1. Nič je vedno odbojna, saj je f/(0) < 1 4r > 1, ena pa je privlačna za

0 < r < 2 in odbojna za r > 2, ker je f/(1) < 1— rr. Dokler je r < 1,

členi od z, — ki ga vedno izberemo na (0, 1) — naraščajo in od spodaj

konvergirajo proti negibni točki, optimalni populaciji 1. Torej je obnašanje

še mogoče primerjati z zveznim modelom. Vrednost parametra l < r < 2 še

vedno prinese konvergenco, le da se zdaj členi z,, z obeh strani približujejo

1. Zgornjo mejo zaporedja izračunamo kot ekstrem funkcije

f(e) < (1 £r)e — ra"

Le-ta je enak

(1-pr)'
dr

Pri p — l moremo analitično izraziti člen zaporedja:

Zn — I-— (1— zo)"

M <

Torej imamo kvadratično konvergenco in členi od spodaj konvergirajo k limiti

1.

Naj bo zdaj r > 2. Če je parameter le malo večji od 2, opazimo, da

sodi členi zaporedja težijo k enemu stekališču, lihi k drugemu. Pravimo, da

imamo privlačni cikel periode 2. |

Definicija. Točka a je periodična točka periode p > 0, če je fP(a) < a

in f'(a) A a za vse 0 < z < Pp.

(Tukaj seveda pomeni f' i-kratni kompozitum in ne potence.)

Definicija. Periodični točki a periode p pripada cikel, t.j. p-terica

(a, fla), f'(a),...f?o'a)).

Seveda so vse točke cikla periodične z isto periodo. Cikel periode ena

vsebuje le negibno točko.

Definicija. Cikel periodične točke a s periodo p je privlačen (odbojen),

če je a privlačna (odbojna) točka preslikave f?.

Očitno so hkrati s točko a privlačne oz. odbojne vse točke cikla.

Poiščimo zdaj cikel periode 2 za našo kvadratno funkcijo (1). Rešiti

moramo enačbo (f o f)(£) < x oziroma f(f(4)) < z.

(1£7)((1 -£r)a — ra?) — ra?(l -r — ra)" < z

Ko izločimo rešitvi 0 in 1, negibni točki, dobimo

rs2d v/(r -2)(r—- 2) (3)

27

Cikel periode 2 je torej en sam (£;,£, < f(z;)h. In kdaj je privlačen! To

di,2 —
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nam pove odvod

(Po dle) < Hm): fen) <5?

ki je absolutno manjši od 1 pri 2 < r < v6.

In kaj se zgodi, ko gremo s parametrom čez 4/6? Cikel periode 2 še vedno

obstaja, le da ni več privlačen. Nastane pa privlačni cikel periode 4. Režim

privlačnega 4-cikla velja za vrednosti parametra med w/6 <— 2.449 in 2.542.

5 povečevanjem parametra dobimo privlačni 8-cikel pa cikel periode 16

itd. Vrednosti parametra, kjer se spremeni obnašanje zaporedja, imenujemo

bifurkacijske vrednosti parametra:

r, <2,r, < v6,r3 — 2.542 itd.

Pokaže se, da ležijo vedno bolj na gosto. Feigenbaum [2] je računal razmerja

razlik
Trn — Tn-i

On —
Trnki — Tn

in našel, da zaporedje kvocientov konvergira k t. 1. Feigenbaumovi konstanti

6 — 4.669...

Torej si sledijo bifurkacijske vrednosti skoraj v geometrijskem zaporedju.

Zato obstaja tudi limitna bifurkacijska vrednost

Pos — lim Pn — 2.57...

3. Kaos

In pri tej vrednosti parametra nastopi kaos. Kaos pomeni neurejeno

gibanje, kjer je nemogoče vnaprej povedati, kako se bo obnašalo zaporedje.

Ce smo natančne]ši, moramo seveda povedati eno od možnih definici] kaosa.
3

Najprej moramo povedati, kaj je občutljivost za začetno vrednost. Ta pojem

srečamo pri zaporedju, ki je določeno z začetno vrednostjo z. in rekurzijskim

predpisom z,4, < f(z,).

Definicija. Naj bo funkcija f definirana na množici D Cc R in naj

preslika D vase. Funkcija f je občutljiva za začetno vrednost, če obstaja

6 > 0, tako da v vsaki okolici vsake začetne vrednosti zo € D obstaja neka

druga začetna vrednost z, € D in naravno število n, tako da je |z, —4:,| > 8.
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Definicija. Funkcija f je na

množici D kaotična, če

(i) je občutljiva za začetno vred-

nost,

(ii) obstaja tak co € D , da je za-

poredje 42,) gosto v D,

(iii) so periodične točke goste v D

Pri r > r,, je kvadratna funk-

cija kaotična bodisi na nekem inter-

valu (ali uniji intervalov) ali pa na

neki Cantorjevi množici. Blemen-

tarno bomo lahko pokazali kaotič-

nost kvadratne funkcije za r < 3 na

intervalu |0, z]

Zdaj pa poglejmo, kaj se do-

gaja med r,, < 2.57... in r < 3.

Slika 1 je nastala takole: pri izbrani i.6.

vrednosti parametra r in slučajno

izbrani začetni vrednosti zg € [0,1;

izračunamo prvih 200 členov zapo- Sl. 1. Bifurkacijski diagram (Narisal

redja, ki jih ne narišemo, nadaljnjih A. Vitek)
500 pa tudi narišemo. Na ta način opazimo na sliki privlačne cikle in pa

kaos na intervalih. V resnici s prostim očesom ne moremo ločiti kaosa od

cikla zelo dolge periode. Najprej vidimo eno samo privlačno negibno točko

a < 1 za 0 < r < 2, nato prvo bifurkacijo in privlačni cikel periode 2 za

2 < r < v6 pa drugo bifurkacijo, po kateri imamo cikel periode 4 itd. do

r,,, kjer nastopi kaos. Vmes vidimo "okna", največje okoli r < 2.83, ko

imamo privlačni cikel periode 3. V manjših oknih so privlačni cikli period

4, 5, itd., nekateri tudi po večkrat, v različnih oknih. Struktura teh oken je

dokaj zapletena, vendar že dovolj dobro pojasnjena. Vrednosti parametra,

ki dajo kaos na intervalih, je le števno mnogo.

Pokažimo zdaj, da pri r—3 v resnici nastopi kaos na intervalu [0, :].

Diferenčno enačbo za ta primer

Zna, — de, — 3x2 (4)

1.8.

namreč moremo analitično rešiti. Linearna transformacija z, < 2(1-— y,)/3

nas privede na diferenčno enačbo

YVn4li — 2yi —-1
2

Ker se spomnimo formule za kosinus dvojnega kota cosža < 2cos'a-— ],

dobimo

Un <— cos(2" arecos yo)

Zdaj pa zaključimo, da imamo občutljivost, gosti tir in goste periodične

točke! |
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Občutljivost. Tu lahko izberemo kar 6 < l. Recimo, da je 27" < a.
2

Zapišemo v binarnem zapisu

(27)7' arcecos yo — 0.5,5383....

Potem je
Pod

2"(27)7' arccos tjo — 0.s,415n42... (mod 1)

Izberemo yo tako, da je s/; — s; za vse z < n; s tem zagotovimo, da w/o

leži v e-okolici yo, nadaljnje vrednosti s/; pa izberemo tako, da se ustrezna

kosinusa razlikujeta za več kot z

Gosti tir. Konstruirati moramo zaporedje s; tako, da se vsako končno

zaporedje ničel in enic v tem zaporedju pojavi neskončno mnogokrat. 'To je

seveda mogoče, saj so skoraj vsa realna števila na (0, 1) takega binarnega

zapisa [3]. Recimo, da je s < 0.s,;5,43... eno takih števil, potem je yo <

cos(275) začetna točka gostega tira. j

Periodične točke. Točka yo je periodična s periodo n, če velja

2" arccos yo — ža arccos yo - 2kr

oziroma
2km

— cos ———

Jo 2n -1
Kosinus vsakega kota, ki je v racionalnem razmerju s polnim kotom, se da

zapisati v taki obliki s primernim n. To pa že pomeni, da so periodične točke

goste na |—1,1].

Funkcija g(y) < 2y? — l je kaotična na [—1,1], zato je tudi f(z) —

4x — 32? kaotična na intervalu [0, 7].

> povečevanjem parametra se interval, na katerem opazujemo kaotično

gibanje, strga, postane Cantorjeva množica, zaprta, totalno nepovezana in

perfektna. Preostale točke, ki ne leže v Cantorjevi množici, pobegnejo v
—O0,.
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OPRAVIČILO

V četrti številki Obzornika za matematiko in fiziko so v tiskarni pomotoma

odtisnili stran 112 v zrcalni legi. Zato v tej številki prilagamo pravilno odtisnjene

štiri strani (111, 112, 113, 114) ter vas prosimo, da jih zamenjate v vašem izvodu.

Uredniki
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BORIS LAVRIČ

Math. Subj. Class. (1985) 26 B 05, 47 H 01

Članek obravnava realne naraščajoče funkcije, definirane na podmnožicah ravnine

IR?. V njem je dokazano, da so takšne funkcije skoraj povsod lokalno omejene in zvezne.

INCREASING FUNCTIONS WITH DOMAIN IN R'

It is proved in this note that a real increasing function defined on a subset of R' is
almost everywhere continuous and locally bounded.

Monotone realne funkcije z realnim definicijskim območjem odlikuje

nekaj pomembnih lastnosti. Mednje lahko uvrstimo lokalno omejenost v

notranjih točkah domene in zveznost povsod, razen v največ stevno mnogo

točkah. V tem prispevku bomo obravnavali sorodne lastnosti monotonih

realnih funkcij, definiranih na podmnožicah ravnine R'. Preden se tega
lotimo, poskrbimo za slovarček terminov in oznak, ki jih bomo uporabljali.

Točki z <— (p,r) in y < (s,t) ravnine IR" sta v relaciji <, kar zapišemo

z z < y, če velja p < sin r < t. Z relacijo < je IR" delno urejena. Interval

[z,y] — (z € R':x < z <y)

je lahko prazna množica (če ne velja x < y), točka, daljica ali pravokotnik.
Zaznamujmo Z

(-oo,e]< (ye R':y< z), [z,40)<(ye€ R':a< y)

kvadranta v IR", ki imata oglišče v točki z. Točko (1,1) € IR" bomo odslej
označevali z e.

Bodi A podmnožica ravnine IR). Potem rečemo, da je A strnjena, če

velja (z, y| C A za vsak par z,y € A. Najmanjšo strnjeno množico V IR", ki
vsebuje A, imenujemo strnjena ogrinjača množice A in označimo z 5( A). Ni

težko videti, da velja

T,YEA

Na ravnini IR" bomo imeli opravka le z običajno topologijo, ki je

določena z evklidsko metriko d. Razdaljo med množicama A in B ravnine
2 ze

R" označimo z d(A, B) in opredelimo z

d(A,B) — infid(z,y):£ € A, y € B)

Notranjost množice A c IR' zaznamujemo z Int A, zaprtje A z A, rob A pa
z ODA.
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Funkcija f : A — IR je naraščajoča (oziroma padajoča), če iz pogojev

z,y€ A, z < y sledi f(r) < f(y) (oziroma f(y) < f(4)) in monotona, če je

bodisi naraščajoča bodisi padajoča.

Funkcija f : A — IR je lokalno omejena v točki z € A, če je omejena na
kakšni okolici točke x. Seveda pri tem z ne leži nujno v domeni A funkcije

f.

Oglejmo si zdaj nekaj lepih in uporabnih lastnosti strnjenih množic.

Trditev 1. Notranjost strnjene množice A C IR" sovpada z notranjostjo

njenega zaprtja A in je tudi sama strnjena.

Dokaz. Bodi z notranja točka zaprtja A. Potem obstaja tak realen

6 > 0, da je (x — 26e,z - 28e] C A (e — (1,1) € IR"). Vzemimo poljuben

y € A v okolici [z — 38€, z — če] točke x — 28e € A in poljuben z € A v okolici

(z 4 če, z - 36€] točke z -- 26e € A. Potem z leži v svoji okolici [y, z], ki je
vsebovana v A (A je strnjena in y,z € A), torej je x c Int A. S tem smo

dokazali inkluzijo Int A C Int A, ker pa očitno velja tudi obratna, notranjosti

množic A in A sovpadata.

Dokažimo še, da je IntA strnjena. Naj velja z,y € MtA in z < z < y.

Izberimo tak 6 > 0, daje z— če € Aingy- če € A. Potemje [z — če, y - čel

okolica točke z in leži v A, torej je z € INtA. gsm

Brez težav vidimo, da velja naslednja

Posledica 1. Notranjost IntA strnjene podmnožice A ravnine IR"
sovpada z notranjostjo svojega zaprtja (IntA je regularno odprta množica),

torej: Int A — IntIntA. g

Rob strnjene množice bolje spoznamo s pomočjo naslednjega rezultata,

ki nam bo služil tudi pri njegovi izmeri.

Lema 1. Naj bo A strnjena podmnožica ravnine IR" in

j— ig€ A: AnlInt(—o0,z] < ()

b;di (ze Z. Am x) i

Potem velja

a) DA< A U A".

b) Za vsak z € A" je A" NA (Int(—coba U Int[z, boo)) < 0.

Za vsak z ec A" je A" N (Int(—co, z] U Int[z, 4oo))< 0.

Dokaz. a) Denimo, da točka z € DA ne oripada niti A" niti A". Potem
obstajata elementa y, z € A, za katera velja

y € Int(—oo,z], z € Int[z, 400)

Od tod sledi, da leži točka z € Int[y,z] v notranjosti Int A, kar pa je v

nasprotju s predpostavko z € 0A. Torej velja relacija OA c A" U A". Če

je z € A" U A", potem z leži v zaprtju možice A, očitno pa ne v njeni

notranjosti, zato je z na robu OA. Torej velja tudi inkluzija AF U A" C dA.
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b) Vzemimo poljuben z € A". Če je y e A" n Int(—oo,z], potem

zaradi y € A presek A O Int(—oo, x] ni prazen, zato z ni v A". Torej se A"

in Int(—0o0, z] ne sekata. Čeje z ec AF nint[z, 40%), potem zaradi veljavnosti

relacije x c Anfilnt(—o9, z] presek AN(—o0o, z] ni prazen, zato z Z A". Torej

se tudi A" in Int[z, doo) ne sekata. Prva trditev točke b) je s tem dokazana,

drugo pa dokažemo podobno.

Trditev 2. Rob strnjene množice A C IR" ima ( Lebesguovo) mero nič.

Dokaz. Dovolj je videti, da ima pri vsakem realnem r > 0 del množice

OA, ki leži v pasu

P — ((s,t)EIR": |s—i| <r)

mero nič. Vzemimo poljuben e > 0 in izberimo tak ne N, da velja ne > r?,

Za vsak k € Z, —n < k < n, postavimo

P, — ((s,t)€ P:kr/n< s-t< (k4ljr/nj

n—l

in zabeležimo, da velja P< |[J P,.
k<—n

Naj bosta A" in A" množici iz leme l. Če presek A" [A P, ni prazen,

potem za vsak z ec A" AP, po točki b, leme 1 velja

A" N (Int(—oo, z] U Int[z, 4-00)) < ()

Od tod vidimo, daje AF NP, podmnožica lika (iz enega ali dveh pravokotnih

trikotnikov) s ploščino, ki ne presega r?/(2n"). Presek A" n P je tedaj

vsebovan v množici z mero, ki ni večja od

2n :(r?/(2n')) < r?/n < e

Ker je bil e > 0 poljuben, ima A" NA P mero nič. Na enak način vidimo, da

ima tudi A" A P mero nič, od koder z uporabo točke a, iz leme 1 sledi, da

je tudi mera roba OA enaka nič.
h GA . 2 h h x h

Naj bo podmnožica A ravnine IR" strnjena in neprazna. Če A nimaroba,

lahko brž ugotovimo, da velja A — IR" (kar je res, tudi če A ni strnjena).
PA o s s va a

Za boljši pregled primera, ko rob OA ni prazen, na ravnino IR" postavimo

pravokotni koordinatni sistem (€,1), ki ima za osi simetrali sodih oziroma

lihih kvadrantov v IR". Predpostavimo, da ima rob OA vsaj eno točko.
Potem se da dokazati, da nastopi natanko ena od naslednjih treh možnosti.

. Če je množica A" prazna, je AF graf zvezne funkcije g,;, < m(6) v

koordinatnem sistemu (€,), definirane povsod na č-osi. Tedaj velja

INtA< ((€6,4):n > m(č), ČER)

2. Če je množica A" prazna, je A" graf zvezne funkcije rj, < m(č) v
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koordinatnem sistemu (€,7)), definirane povsod na £-osi. Tedaj velja

INtA < (6,9): < m(č), če Ri;

3. Če sta A" in A" obe neprazni, je AF graf zvezne funkcije , < m(č),

A" pa graf zvezne funkcije 7, < 3(4) v koordinatnem sistemu (€,17). Obe

funkciji sta definirani na zaprti podmnožici A č-osi, poleg tega pa velja

(6) S Mm(č) za vsak ČE Z,

INtA< ((8,0): m(6) <p < m6), čE Z)

Kadar je množica A neprazna in omejena, je takšna tudi njena strnjena

ogrinjača 5(A). Po prejšnjih ugotovitvah je S( A) tedaj tipa 3.

Dovolj smo pripravljeni, da

pričnemo z nameravano obravnavo

monotonih funkcij. Govorili bomo le

o naraščajočih funkcijah, navedene

trditve pa veljajo za vse monotone

funkcije, saj so dokazi za padajoče

funkcije takorekoč enaki.

Ni težko videti, da je vsaka

naraščajoča realna funkcija realne

spremenljivke lokalno omejena v

vsaki točki iz notranjosti najmanjše-

ga intervala, ki vsebuje zaprtje

domene te funkcije. O podobni last-

nosti splošnejših naraščajočih funk-

cij govori naslednja trditev.

Trditev 3. Naj bo A C IR" in
Jf : A — Ml naraščajoča funkcija.

Potem je f lokalno omejena na AN

Int 5(A).

Dokaz. Bodi x € Anflnt 5(A). Po trditvi 1 je Int 5(A)< Int S(A), torej

za dovolj majhen 8 > 0 velja |z — če,z £ de] C 5(A). Ker je z — če, z 4 de €

S(A), obstajata taka elementa y,z € A, da je y < z — de in z - če < z.

Potem pa za vsak u c A iz okolice |y,z] točke z velja f(y) < f(u) < f(z),

torej je f lokalno omejena v z. ga

Slika 1

Posledica 2. Naraščajoča funkcija f : A — HR. je lokalno omejena v

notranjosti zaprtja množice AC IR". m

Posledica 3. Naraščajoča funkcija f : A — IR je skoraj povsod na A C IR

lokalno omejena.

Dokaz. Če f v točki z € A ni lokalno omejena, potem z ne leži v

notranjosti ogrinjače 5( A), torej je na robu 05(A), ki pa ima po trditvi 2

mero nič. g |
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Lahko se zgodi, da je celo zvezna naraščajoča funkcija f: A— A lokalno

omejena le v notranjosti množice A C R". Za primer najprej postavimo

h(s,t) — (s£0/(2-|s-tl), steR

nato pa opredelimo funkcijo f na domeni A < Int[—e, e| s predpisom

f(6,t) < h(s,)/(1 — h?(s,t)), (si)EA

Funkcija f je zvezna in naraščajoča in ni lokalno omejena nikjer na robu OA.
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Slika 2 Slika 3

Znani izrek iz analize pravi, da ima vsaka realna naraščajoča funkcija

realne spremenljivke največ števno mnogo točk nezveznosti. Še več, znano

je, da za vsako števno množico 7 c IR obstaja naraščajoča realna funkcija

z domeno JR, ki je nezvezna le na I. Podobno lahko poiščemo naraščajočo

funkcijo f : IR? — JR, ki je zvezna povsod, razen na dani števni množici

M < 1(s;,t;) € IR" : s € IN). Za konstrukcijo take funkcije uporabimo

funkcijo g : IR" — IR (glej sliko 3), dano s predpisom

s<0,z:>0

s>0,i<0

s<0,1>0

s>0,t>0

Lahko je preveriti, da je g naraščajoča in zvezna povsod, razen v (0, 0). Ni
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se težko prepričati, da je potem funkcija f : IR"? — IR, dana s predpisom

F(s,t) < Y 27ig(s- si,t- ti)
151

naraščajoča in nezvezna le na M.

Preprosti primeri povedo, da realna naraščajoča funkcija, definirana na

podmnožici IR", ni nujno nezvezna le na števni množici. Taka je na primer

karakteristična funkcija polravnine ((s,t) € IR" :£ > 0) c IR". Vendar pa
je množica točk nezveznosti naraščajoče funkcije tudi v splošnejšem primeru

(zanemarljivo) majhna. Velja namreč

Izrek 1. Naraščajoča funkcija f : A — IR, je zvezna skoraj povsod na

A c R?.

Dokaz. Funkcijo f lahko razširimo na strnjeno ogrinjačo 5( A) s pred-

pisom
DAJ

](e) < sup(f(e) : z € A, z < z), 2€ S(A)

do naraščajoče funkcije f : 5(A) — IR. To nam pove, da smemo brez škode

za splošnost dokaza privzeti (kar tudi storimo), da je A strnjena.

Dovolj je videti, da je za vsak realen r > 0 funkcija f zvezna skoraj

povsod na strnjeni množici

B < 4(s,t) € A : max(|s], li) < r/2)

Pri poljubnem z € Int B postavimo

g(x) < inf4f(zA te) — f(x —te):0 <te R,edilec Aj

Če je s > 0 dovolj majhen, f preslika okolico [z — se, z - se] C Int B točke z

v realni interval [f(£ — se), f(z 4 se)j, ki vsebuje f(z). Od tod hitro vidimo,

da je f zvezna v z € Int B natanko takrat, kadar je g(z) <— 0.

Množica D vseh točk z € IntB, v katerih f ni zvezna, je enaka uniji

() D,, kjer je

neIN

D, <4x€ MtB:g(iz)> 1l/nj, neN

Dokazati bo torej treba, da ima vsaka D,, mero nič. To tudi zadošča,

saj vse točke nezveznosti funkcije f, ki so v BD leže na robu OB, ki ima

po trditvi 2 mero nič.

Najprej bomo pokazali, da je D,, relativno zaprta v Int B, torej da velja

enakost D, n Int B < D,,.

Vzemimo v ta namen poljuben z € (Int B)VD,, in izberimo s > 0 tako

majhen, da velja

(z — se,z- se] C MtB in f(x4 se) — J(z — se) < l/n
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Ker za y € [z — (s/2)e, z 4- (s/2)e] velja inkluzija

[y — (s/2)e,y -- (s/2)e] C [z — se,z se]

je

9(9) S H(y 4 (s/2)e) — f(y — (s/2)e) S

< fla 4 se) — f(x — se) < l/n

in zato y £ D,,. Torej okolica [z — (s/2)e, z -(s/2)e] točke z ne seče D,,, od

koder sledi enakost D,, NA Int B < D,,.

Naj bo e poljubno pozitivno števlio. Pokrijmo rob OB (z mero nič) z

odprto množico V c IR" z mero ju(V) < e/2 in označimo z F razliko BAV.

Ta je očitno zaprta in vsebovana v notranjosti IntB. Čeje D, A F — 0, je

D,, vsebovana v V, ta pa ima mero manjšo od e/2.

Če bi za vsak e > 0 veljalo D,, NAF < ( (kjer je F odvisna od e in izbrana

tako kot prej), bi imela torej množica D,, mero nič.

Predpostavimo zdaj, da presek D,, O F ni prazen, in si pri vsakem

fiksnem z € F oglejmo realno funkcijo

p:t— f(x te)

definirano na odprtem realnem intervalu ft : z 4 te ec IntBj. Ker je

v naraščajoča in doživi skok za vsaj 1/n pri vsakem s c IR, ki zadošča

x -- se € D,,, ima množica D,, na premici z 4 le končno mnogo točk (ali

nobene).

Od premice z - IRe odvzemimo (če je potrebno) končno paroma dis-

junktnih relativno odprtih intervalov na njej, tako da vsebujejo množico

D, NFN(zARe) in imajo skupno dolžino manjšo od e/(3r). Preostali del pre-

mice z -- Re označimo z R(£). Množica R(z) je očitno zaprta in nima nobene

skupne točke s kompaktno množico D,, A F, saj zaradi D, AlntB < D, in

ker je F c Int 5, velja

D, OFna(z slRe)< D,aFn(2- le)

Razdalja med kompaktno in zaprto množico (obe neprazni) je pozitivna,

torej velja |

d(z) < d(R(rz),D, A F)>0

Naj bo P pas iz trditve 2. Potem je družina pasov

T(x) —< (y € IMtP:d(y,z A Re) < d(x)), eE F

odprto pokritje kompakta FF. Iz tega pokritja izberimo končno podpokritje

IT; — T(x;):t< 1,....,k), postavimo [5 < 0 in

U; <TA|JT;, i<l,..,k

j<i
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Int P

Slika 4

Vsak U; je končna unija paroma disjunktnih pasov, vzporednih premici

IRe. Vsoto njihovih širin (širina pasu je razdalja med njegovima robnima

premicama) označimo z r,;.

Iz konstrukcije množice U; vidimo, da je presek U;N D,, F vsebovana

v uniji pravokotnikov s skupno ploščino, ki ne presega r;e/(3r), zato D, NA F

lahko pokrijemo z množico MM z mero

k

wM) < > rie/(3r) < rv2e/(3r) < e/2
il

Ker velja D,AF C V, je D,, vsebovana v uniji M U V z mero

uwMUV)< mV) £uM) < e/2 4e/2<e

Ker je bil e poljubno pozitivno število, od tod že sledi, da ima D,, mero nič.

si

Za zaključek povejmo še nekaj o integrabilnosti naraščajočih funkcij.

Omejena realna naraščajoča, na omejenem intervalu definirana funkcija je

Riemannovo integrabilna, ker ima kvečjemu števno množico točk nezveznosti.

Podobno je s splošnejšimi naraščajočimi funkcijami.

Naj bo A strnjena in omejena podmnožica ravnine IR". Potem je njen

rob OA kompakten in ima po trditvi 2 mero nič, zato je A Jordanovo merljiva.
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Lebesguov kriterij o Riemannovi integrabilnosti pove, da je omejena funkcija

f : A — IR Riemannovo integrabilna natanko takrat, kadar je zvezna skoraj

povsod na A. Torej s pomočjo izreka 1 dobimo naslednji

Izrek 2. Naj bo množica A C IR? omejena in strnjena, funkcija

f : A — IR pa naraščajoča in omejena. Potem je f R1emannovo integrabilna.

V navedenem izreku bi lahko namesto strnjenosti množice A zahtevali,

da je A Jordanovo merljiva. Res, f lahko razširimo (kot pri dokazu izreka

1) do naraščajoče in omejene funkcije s strnjeno in omejeno domeno 5(A);

ta razširitev je po izreku 2 Riemannovo integrabilna, zato je f Riemannovo

integrabilna na A.

NOVE KNJIGE

ERDOS P., ed., Collected Papers of Paul Turan, Vols. 1,2,3,

A kademiai Kiado, Budapest 1990, 2665 - XXXVIIlI str.

Paul Turan (1910-1976) sodi v vrsto vidnih madžarskih matematikov

20. stoletja, ki so živeli in ustvarjali v domovini (v nasprotju s svojimi še bolj

znanimi, v svetu uveljavljenimi rojaki, kot so bili npr. John von Neumann,

George Polya ali Paul Halmos). Na različnih področjih matematike je opravil

pomembno pionirsko delo.

Prvi uspeh je dosegel leta 1934 z objavo zelo preprostega dokaza Hardy-

jevega in Ramanujanovega izreka, da ima skoraj vsako naravno število n

asimptotično loglogn prafaktorjev. Nekateri štejejo ta dogodek za začetek

verjetnostne teorije števil. Nasploh je bila analitična teorija števil in še

posebej porazdelitev praštevil v aritmetičnih zaporedjih njegova priljubljena

tema. V zvezi s proučevanjem Riemannove hipoteze je tudi nastalo njegovo

najpomembnejše in najoriginalnejše odkritje metode potenčne vsote, ki se

široko uporablja na različnih področjih matematike. O njej je pred vojno

in po njej napisal preko 50 člankov in izdal dve knjigi. Razen s teorijo

števil se je ves čas ukvarjal tudi z interpolacijo in aproksimacijo, polinomi

in Fourierovimi vrstami. Med vojno se je (v delovnem taborišču!) začel

zanimati za ekstremalne probleme v teoriji grafov in kasneje sam ali skupaj

s sodelavci o tem objavil več člankov. Vse do svoje smrti pa se je ukvarjal še

s problemi iz funkcijske teorije, diferencialnih enačb, statistične teorije grup

in numerične algebre

O delu Paula Turana se lahko izčrpno poučimo iz zbranih del, ki jih je

uredil njegov dolgoletni prijatelj in sodelavec Paul Erdos. V treh zajetnih

volumnih je poleg osnovnih biografskih in bibliografskih podatkov in dveh os-
ebnih zapisov o njegovem delu zbranih 246 člankov, ki jihje Turan sam ali kot
soavtor napisal in objavil v madžarščini, nemščini, francoščini in angleščini
po letu 1933. Originalni madžarski članki so prevedeni v angleščino. Med
strogo matematičnimi je nekaj zanimivih člankov o življenju in delu drugih

madžarskih matematikov, npr. Leopolda Fejerja in Alfreda Renyija. Posebno

koristne se zdijo tudi krajše pripombe Turanovih sodelavcev in učencev;

zbrane so na koncu nekaterih člankov in govorijo o kasnejših rezultatih v

zvezi z obravnavano problematiko. .
Milan Hladnik
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FIZIKA IN MATEMATIKA NA MEJI

DAVID J. GROSS

PACS 1190

Clanek razišče povezavo fizike osnovnih delcev in matematike in razpravlja o lepoti

in učinkovitosti matematičnih struktur v osnovnih fizikalnih raziskovanjih.

PHYSICS AND MATHEMATICS AT THE FRONTIER

The relation between elementary particle physics and mathematics is explored. 'The

beauty and effectiveness of the mathematical structures that appear in fundamental physics

are discussed.

Praznujemo stoletnico Ameriškega matematičnega društva in s tem

ameriške matematike in razpravljamo o povezavi matematike z naravoslov-

jem. Obdelal bom sodelovanje fizike z matematiko v fiziki delcev. V razisko-

vanju osnovnih zakonov narave sta bili matematika in fizika najdlje povezani.

Z osnovnimi zakoni bi začeli, če bi poučevali fiziko logično, ne pa zgodovin-

sko. Tedaj bi videli zakone hidrodinamike kot nasledek mikroskopskih za-

konov klasične dinamike, ki so sami dober približek nerelativističnih za-

konov kvantne mehanike atomov. Z nerelativistično kvantno mehaniko bi

v odličnem približku pojasnili atome kot vezana stanja elektronov in jeder

ter jedra kot vezana stanja kvarkov in gluonov. Vse to so sestavni deli stan-

dardne teorije v fiziki delcev, ki je — skupaj z gravitacijo — del kdo ve česa.

Fizika delcev naj išče naslednji klin v lestvi, tisto "kdo ve kaj", iz česar bi

lahko izpeljali naše sedanje, nekoliko nepopolno znanje o snovi in njenih in-

terakcijah. Območje osnovne fizike je tesno prepleteno z raziskovanjem na

meji matematike.

Tako je od začetka sodobne fizike, ko je Galilei prvič predložil, da je

naravni jezik fizike matematika. Newton, eden od najznamenitejših mate-

matikov svojega časa, si je pripravil infinitezimalni račun, da je računal pla-

netne poti in hkrati reševal čisto matematične naloge. V naslednjih stoletjih

se je teorijska fizika komaj razločevala od matematike; Laplace, Legendre,

Hamilton, Gauss, Fourier so veljali med fiziki za fizike in med matematiki

za matematike.

Naše stoletje je doživelo dve revoluciji v fiziki in teorijo o običajni

snovi in njenih interakcijah. Še enkrat smo dobili od matematike orodje
in okvir za ta podvig. Ko je Einstein ustvaril splošno teorijo relativnosti,

dinamično teorijo prostora in časa leta 1915, je imel na voljo potrebno orodje

diferencialne geometrije. Ustvarila sta ga Gauss in Riemann v prejšnjem

stoletju. Splošna teorija relativnosti je poživila matematiko; Riemannova

! Članekje posnet po predavanju na znanstvenem sestanku Matematika in naravoslovje
na 124. občnem zboru Državne akademije znanosti v Washingtonu aprila leta 1987

in je izšel v Proceedings of the National Academy of Science USA 85 (1988) 8371.

Profesor D. J. Gross iz Laboratorija J. Henryja univerze v Princetonu je ljubeznivo

dovolil objavo. Clanek je prevedel Janez Strnad.
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geometrija je postala osrednji predmet geometrije. Kvantna mehanika se

je razvila na razumevanju Hilbertovih prostorov in je vplivala na razvoj

funkcionalne analize. Na začetku si je teorija delcev veliko pomagala s

teorijo zveznih grup, do katere so prišli delno v želji, da bi razumeli simetrijo

kristalne zgradbe.

Ne glede na to sta se matematika in fizika v prvi polovici tega stoletja

razvijali v zelo različnih smereh in sta le malo zares sodelovali. Tega je bila

vsaj delno kriva želja po večji abstraknosti v matematični srenji in vztrajanje

na formalni strogosti Bourbakijeve šole. (Šola je pogubno vplivala na slog

matematičnega pisanja, saj je matematike spodbujala, da izločijo iz opisa

svojega dela vse sledove intuitivnega razmišljanja in vsak namig na to, kako

so prišli do svojih zamisli. 'Ta slog, ki se v zadnjem času spreminja, je

nespecialiste oviral, da bi sledili razvoju sodobne matematike.) Vendar je v

največji meri za to ločitev kriv razvoj v fiziki. Prvič: zgodnji razvoj kvantne

mehanike in njena zgodnja uporaba v razlagi zgradbe snovi sta zahtevala

malo poglobljenega matematičnega znanja. R.Jost je rekel: "V tridesetih

letih je teorijski fizik zaradi demoralizirajočega učinka kvantnomehanične

teorije motenj iz matematike moral znati komaj kaj več kot latinsko in grško

abecedo" [1]. Orodje je v glavnem zadostovalo za začetno uporabo kvantne

mehanike pri raziskovanju snovi. V prvih desetletjih po drugi vojni so se

razgledi fizike delcev hitro razširili. V tem času je bilo veliko presenečenj pri

poskusih in za sestavljanje modelov je zadostovalo običajno matematično

orodje.

To se je korenito spremenilo pred desetimi leti, ko so nas poskusi pri-

peljali do neabelskih umerilnih teorij močne, šibke in elektromagnetne in-

terakcije. Na splošno mislimo, da te teorije dobro opišejo vse interakcije pri

energijah in razdaljah, ki jih za zdaj dosežemo pri poskusih, in da sodijo

med najpomembnejše dosežke znanosti v našem stoletju. Pozornost se je v

zadnjem času obrnila k raziskovanju zgradbe teh teorij in k še zahtevnejšim

načrtom za enotno teorijo vseh interakcij z gravitacijo vred. V razvoju teh

umerilnih teorij, tako imenovanega standardnega modela, so mnoge fizikalne

naloge pripeljale do pomembnih pojmov v sodobni matematiki. Več teh

pojmov so odkrili fiziki in matematiki neodvisno drugi od drugih. lako

je na primer leta 1931 Paul Dirac v enem od najlepših člankov teorijske

fizike raziskal vprašanje, ali lahko obstajajo magnetni monopoli. Ugotovil

je, da so v kvantni mehaniki taki monopoli smiselni, če in samo če je pro-

dukt njihovega magnetnega naboja $ z električnim nabojem elektrona e

cel večkratnih Planckove konstante h: de — ni. To je zelo razburljivo, saj

pomeni, da morajo biti vsi naboji večkratniki 4/4, brž ko obstaja v vesolju en

sam magnetni monopol. V matematičnem jeziku je Dirac odkril celo število,

ki označuje topološko klasifikacijo vektorskih svežnjev, matematičnih tvorb,

ki so jih nekako tedaj izumili matematiki. V sodobnih umerilnih teorijah

imajo vse pomembnejšo vlogo. |

Mnogo smo si sposodili od sodobne matematike, zdaj pa vračamo dolg.

Prijemi, ki so jih razvili v kvantnih umerilnih teorijah, tako imenovani

instantoni, so omogočili Donaldsonu, Taubesu in Floeru, da so izpeljali nekaj
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globokih in osupljivih lastnosti v geometriji tri- in štirirazsežnih prostorov

[2], [3]. Pred kratkimje Witten prevedel Donaldsovo teorijo nazaj v fiziko in

jo uporabil za razmišljanje o novem pogledu na kvantno gravitacijo, čeprav

to najbrž še ne bo konec zgodbe [4]. Nazadnje je nedavni razvoj teorije

strun, častihlepnega načrta za razumevanje snovi in gravitacije, naletel na

prave matematične meje. Teorije so pritegnile pozornost matematikov, ker

močno namigujejo na povezavo med doslej ločenimi deli matematike. Mnogi

fiziki verjamejo, da bo razumevanje teorije strun zahtevalo nove posplošitve

geometrije. Morda vstopamo v zlato obdobje sodelovanja med osnovno

matematiko in fiziko.

O nenavadni učinkovitosti matematike v fiziki

Pred skoraj tridesetimi leti je Eugene Wigner razmišljal "o nerazumljivi

učinkovitosti matematike v naravoslovju". Prevečkrat to učinkovitost jem-

ljemo kot samo po sebi umevno. Po Wignerjevem mnenju je presenetljivo,

da so matematični pojmi uporabni za opis naravnih pojavov. Ti pojmi niso

ne preprosti ne neizogibni. Vsekakor pa so uporabni. Matematična oblika

fizike pogosto vodi do natančnega opisa pojavov. To ujemanje prepričljivo

kaže, da je matematika pravi jezik fizike. Wigner je zapisal: "Velika uporab-

nost matematike v naravoslovjun meji na čudež in je razumsko ne moremo

pojasniti. Sploh ni naravno, da obstajajo 'zakoni narave', še manj, da jih

človek lahko odkrije. Uporabnost matematičnega jezika za oblikovanje za-

konov fizike je čudežno darilo, ki ga ne razumemo in ne zaslužimo." [2].

Najbrž je mislil nazadnje, da ga ne zaslužimo, če ga ne razumemo.

Zares je presenetljivo, da lahko sestavimo fizikalne teorije, ki omogočajo

neverjetno natančne napovedi o fizikalnih pojavih, in da lahko količine nev-

erjetno natančno izmerimo pri nadzorovanih poskusih. Navedimo enega

izmed presenetljivih zgledov. Vzemimo magnetni moment elektrona jz —

— gleh/2m)s. Za giromagnetno razmerje elektrona g bi na prvi pogled

pričakovali 2. 'To, da se g razlikuje od 2, je bil eden od razlogov, ki so

spodbudili razvoj relativistične kvantne teorije elektromagnetnega polja. Po

dolgem dolgem računanju kvantna elektrodinamika napove:

aa 2 AA 3

g—2|14 — —0,s2844478445(Ž) 41,183() 4 h -
27 TT T

<— 2(1,000 159 652 459 - 0,000 000 000 123)

in po skrbnih skrbnih merjenjih dobijo za to količino

g < 2(1,000 159 625 193 £ 0,000 000 000 004)

Ne vem, ali naredi močnejši vtis natančnost pri računanju ali pri merjenju.

Pri merjenju jo dosežejo s tem, da ujamejo en sam elektron v Penningovo

past [6]. Računati morajo do četrtega reda v teoriji motenj in za člen

četrtega reda izračunati 891 Feynmanovih diagramov [7]. Napake je v
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glavnem kriva nenatančnost konstante fine strukture a z obratno vrednostjo

ač! <— 137,035 963 ž 0,000 015. |

Tolikšno natančnost je mogoče doseči zaradi srečnih okoliščin. Opazo-

vani pojav lahko ločimo od okolice in zaradi invariantnosti osnovnih zakonov

proti izbiri izhodišča in časovnega začetka poskuse lahko ponovimo drugje

in pozneje. Kljub temu je vsekakor tudi povezana s čudežnim prekrivanjem

čisto matematičnih struktur, na katerih stoji kvantna teorija polja, z dejan-

skim, snovnim svetom fizike. Morda bomo o njem kaj več zvedeli, če bomo

raziskali še kak primer za povezanost matematike s fiziko.

O nenavadni lepoti matematike v fiziki

Učinkovitost matematike v osnovni fiziki je mnogo bolj nenavadna kot

njena presenetljiva uporabnost. Navsezadnje ni presenetljivo, da potre-

bujemo matematiko, ko zajamemo sisteme iz številnih sestavnih delov v

zapletenih razmerah, čeprav je vsak od njih sam zase preprost. Spoznali

smo tudi, da se lahko celo preprosti sistemi, za katere mikroskopskih zakonov

razvoja ni težko zapisati, nadvse zapleteno vedejo. Kljub temu pričakujemo,

da lahko opišemo mikroskopske zakone s preprosto matematiko. Najbolj

presenetljivo je to, da globoko matematiko vseeno potrebujemo za osnovne

zakone in da globlje matematične strukture potrebujemo, ko si prizadevamo

razkriti osnovno mikroskopsko preprostost. Še več: te matematične struk-

ture niso samo globoke, ampak tudi zanimive, lepe in učinkovite. Kot je

rekel Dirac: "Zdi se, da je ena od osnovnih lastnosti narave to, da so osnovni

zakoni fizike zelo lepi in učinkoviti." in "S časom se vse bolj kaže, da so

pravila, ki se zdijo matematikom zanimiva, tista, ki si jih je izbrala Narava."

[8].
V tej primeri je vse polno nedoločenih besed: zanimiva, lepa, učinkovita.

Kaj mislimo, ko rečemo, da je enačba lepa ali da je fizikalni pojem učinkovit?

V zemimo matematični izraz standardnega modela, omenjeno teorijo močne,

šibke in elektromagnetne interakcije, za katero sodimo, da opisuje vse grad-

nike snovi in interakcije med njimi do razdalje 107!" m. Akcijo te teorije, s

katero bi lahko poenostavljeno zajeli vso fiziko pri nizkih energijah, podaja

izraz:

S -— ] de /slkonogno AP AP f TrB% BOŠTTOCP?). 4

dati TrBHUB,,, -b gpiz NECCyy 4
3 |

O glOa"DG0; 4 Lay"DI Li) £ gv (D,8) (DG) - V($) 4
il

4 (O TE. 0;8, 4 LT7L;9") 4 R]
ija
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Ali je lep? Morda, a samo za posvečenega. Tako kot v umetnosti je tudi

v matematiki lepota stvar pridobljenega okusa. Da bi občutili matematično

lepoto, je potrebno dolgo učenje, pa še potem jo sprejemamo subjektivno.

Vseeno so matematiki in fiziki precej soglasni o tem, kaj je lepo in kaj ne.

V omenjeni teoriji vidimo precej lepega in tudi takega, kar ni lepo. Lepi

so tisti deli, ki pojasnjujejo sile v naravi kot izraz učinkovitih simetrijskih

načel, bistva "umerilnih teorij". Za fizike so lepi zato, ker iz preprostega

simetrijskega načela skoraj enolično izpeljemo značaj sil v naravi in obstoj

njihovih nosilcev: gravitona za gravitacijo, fotona za elektromagnetno inter-

akcijo, gluonov za močno interakcijo in šibkih bozonov W" in Z? za šibko

interakcijo. Ta del je lep tudi za matematike, ker ponujajo umerilne teorije

zanimive matematične strukture — omenjene vlaknate svežnje.

Nelepi so tisti deli, ki opisujejo nenavaden spekter delcev. Ta ne sledi iz

kakega simetrijskega načela in ga je treba s preštevilnimi parametri posebej

vstaviti, da dosežemo ujemanje z opazovanji. Prav zaradi pomanjkanja

lepote in številnih parametrov, 19 jih je, mislimo, da ta teorija še ni konec

zgodbe — preprosto ni dovolj lepa. V matematiki in v fiziki sta lepota in

učinkovitost kakega pojma močno povezani. Pojmi in strukture se nam zdijo

lepi, če nam omogočijo, da izpeljemo nove rezultate, razumemo nove pojave,

skratka, če so učinkoviti.

Najlepši del standardnega modela je zamisel o lokalnih ali umerilnih

simetrijah. 'Te se razlikujejo od bolj domačih globalnih simetrij, zaradi ka-

terih ostanejo zakoni fizike nespremenjeni, če izvedemo simetrijsko transfor-

macijo vsega sveta hkrati, denimo tako, da ga zavrtimo okoli kake osi. Če
ima svet lokalno simetrijo, lahko izvedemo lokalna vrtenja, različna od kraja

do kraja. Ta simetrija se je prvič pojavila v Maxwellovi obliki zakonov za

elektriko in magnetizem, čeprav se njenega pomena nismo zavedeli, dokler

se ni razvila kvantna mehanika. Teorija z umerilno simetrijo nujno zahteva

posebno polje (umerilno polje ali, matematično, povezavo), s katerim lahko

povežemo predmete v različnih točkah prostora. Skupaj z umerilnim po-

ljem nastopata delec in sila, ki jo ta delec posreduje. V elektrodinamiki

je umerilno polje prav elektromagnetno polje in umerilni delec foton, ki

posreduje elektromagnetno silo med naelektrenimi delci. Pri neabelskih pos-

plošitvah umerilne teorije v standardnem modelu so umerilni delci gluoni

in šibki bozoni, ki posredujejo močno in šibko interakcijo. Matematično je

pripravno vsaki točki običajnega prostora prirediti točko notranjega pros-

tora, na katerega deluje lokalna simetrija. Ta sestava, ki ji pravimo vlaknati

sveženj, zbuja v sodobni matematiki posebno pozornost.

C. N. Yang, eden od odkriteljev neabelskih umerilnih teorij, je opisal

srečanje z matematikom Chernom, pionirjem diferencialne geometrije vlak-

natih svežnjev. Ko je zvedel, da matematiki že leta govorijo o enaki struk-

turi, kot so jo odkrili fiziki, se je zelo začudil in Chernu rekel: "Grozljivo

in skrivnostno je, da so matematiki prisanjali te pojme iz niča." (Chern

je odgovoril: "Ne, ne, teh pojmov nismo prisanjali, so naravni in dejan-

ski." [(9|. "To je zanimiv odgovor. Izraža stališče, ki po mojih izkušnjah

med ustvarjalnimi matematiki ni redko, namreč, da strukture, do katerih se
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dokopljejo, niso umetne tvorbe človeškega razuma, ampak so naravne kot

tvorbe, s kakršnimi fiziki opisujejo tako imenovani dejanski svet. Z drugimi

besedami: matematiki ne izumljajo matematike, ampak jo odkrivajo.

Če je tako, se morda zazdijo nekatere od nenavadnosti, ki jih razisku-

jemo, manj nenavadne. Če matematika obravnava strukture, ki so dejanski

del naravnega sveta, tako dejanski kot pojmi teorijske fizike, ni tako pre-

senetljivo, da je učinkovito orodje pri raziskovanju dejanskega sveta. Tedaj

bi tudi pričakovali, da bo lepota skupna značilnost fizikalnih in matematičnih

struktur. Razum se je zagotovo razvil tako, da so mu naravni vzorci prijetni.

Temu pogledu je očitno mogoče ugovarjati. Teorijske fizike omejujejo

poskusi. Njihove tvorbe morajo biti tudi pravilne, ne samo lepe in učinkovite.

Morajo se skladati s poskusi in uspešno napovedovati. Zdi se, da mate-

matikov ti okovi ne omejujejo. Če iščejo fiziki strukturo, ki opisuje dejanski

svet, raziskujejo matematiki vse mogoče logične strukture in le del teh se

prekriva z dejanskim, edinim svetora. Vendar to ne nasprotuje misli o skupni

osnovni strukturi kot dejanski značilnosti narave.

Če je tako, se utegne matematiku obrestovati, če bo iskal nove misli

in strukture na fizikovem dvorišču, in obratno. 'To je spodbujal Dirac:

«€ Raziskovalec naj bi se v prizadevanju, da izrazi osnovne zakone narave

v matematični obliki, oziral predvsem na matematično lepoto." in "Prav

lahko se bo primerilo, da bo do naslednjega koraka fizike prišlo takole:

najprej bodo odkrili enačbo in nato porabili nekaj let za to, da prepoznajo

fizikalne zamisli zanjo." [10]. Obratno naj bi matematik iskal namige na

novo matematiko v strukturah, ki so jih odkrili fiziki. Strukture, ki so jih

dobili iz fizike, so bile na začetku izredno pomembne za razvoj matematike.

To medsebojno oplajanje so pred kratkim oživili, ne samo v fiziki delcev,

ampak tudi pri raziskovanju kaosa v preprostih dinamičnih sistemih, odkritju

fraktalne geometrije in mnogih drugih primerih.

Oživitev povezave med matematiko in fiziko je posebno izrazita na

območju fizike delcev. Nedavna prizadevanja, da bi sestavili enotno teorijo

snovi in gravitacije so pripeljala do teorije nove vrste — teorije strun, ki

namiguje na bistvene povezave z mnogimi območji na meji sodobne mate-

matike. Teorija strun, ki so jo odkrili po naključju, ko so poskušali pojasniti

jedrske sile, se je v zadnjih letih razvila v obetajočo teorijo vseh interakcij in

prvič tudi v skladno teorijo gravitacije. Do neke mere je teorija strun pre-

prosta posplošitev običajne kvantne teorije polja, le da osnovnih gradnikov

snovi nima za točkaste, ampak za enorazsežne. Pomembno je, da samo ta

razširitev od točk do razsežnih strun, ne da bi kako drugače spremenili os-

novne zakone fizike, pripelje do bogate strukture. Le-ta kaže, da lahko obsta-

jajo samo sile, kakršne poznamo — umerilne sile in gravitacija. Tudi lahko

pripelje do snovi in sil, ki jih poznamo. Vsebuje pa nenavadno ugotovitev, da

mora imeti prostor-čas deset razsežnosti. Zaradi ujemanja z opazovanji mora

biti šest krajevnih razsežnosti zvitih v majhen zaprt prostor, tako da jih ne

zaznavamo. "To je mogoče doseči, ker teorija kot posplošitev Finsteinove

splošne teorije relativnosti zajema dinamiko prostora-časa in vsebuje rešitve

s šestimi kompaktnimi, vase zvitimi smermi v prostoru.
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Teorija strun je že dala mnogo zanimivih matematičnih povezav. Upo-

rablja globoke strukture iz diferencialne in algebraične geometrije in se

navezuje na teorijo modularnih funkcij in končnih grup. Zdi se celo, da

zajema veje matematike, za katere ne bi mislili, da bi imele vlogo v fiziki —

na primer teorijo števil in teorijo vozlov. O tem razvoju sem pripovedoval

znanemu matematiku, ki so ga zanimale teorija in v njej uporabljene mate-

matične zamisli. A njegovo prvo vprašanje se je glasilo: "Ali je to fizika?"

Ta teorija načelno dopušča, da izračunamo parametre standardnega

modela in razumemo razlog za marsikatero njegovo lastnost. O začetnih

zelo optimističnih pričakovanjih, da bo hitro pripeljala do novih napovedi in

preskusov, so trezno ponovno premislili. Ni nasprotovanj z izidi merjenj in

notranjih nesoglasij, vendar je jasno: ne vemo še dovolj o strukturi teorije,

da bi obvladali njeno dinamiko in segli do poskusov. Del težav izvira iz tega,

da smo se spotaknili ob teorijo po naključju, ne da bi poznali njen osnovni

logični položaj. (Pravijo, da so teorijo strun iz 21. stoletja po naključju

odkrili v 20.)

Na bolj neposredno težavo naletimo, ko želimo spoznati nasledke teorije

in jih uporabiti za dejanski svet, da bi jih preskusili: osnovna enota razdalje

v teoriji je zelo zelo majhna. To je Planckova razdalja, ki jo sestavimo iz

gravitacijske konstante G, Planckove konstante fi in hitrosti svetlobe ec:

klp — GR z 107??m
C

Planckov čas meri [p/c x 107 s in Planckova masa (ch/G)'/? x 107 kg,

to je 10!? nukleonskih mas. Enota razdalje je za osem velikostnih stopenj

manjša od najmanjše razdalje, ki jo lahko opazimo z najbolj ločljivimi

mikroskopi, to je najzmogljivejšimi pospeševalniki. Iz tega izvira nekaj naj-

bolj presenetljivih lastnosti vesolja. Zvezde so tako velike, ker je gravitacija v

razdalji velikosti atoma ali jedra zelo šibka (ker je masa atoma 17 velikostnih

stopenj manjša od Planckove). Sesedejo pa se gravitacijsko vezane gruče s

približno (101%)? < 10"" nukleoni.

Planckova razdalja opozarja, da teorija strun močno močno presega

današnje poskuse. Četudi imamo kako zamisel o fiziki pri neznansko majh-
nih Planckovih razdaljah, je težko narediti vso pot do razdalj, pri katerih

merimo dandanes. Preden bi segli do poskusov, bi morali na tej poti še

veliko razumeti. Zgodovina fizike ne pozna tolikšne ekstrapolacije. Dvom v

tako tvegano početje, ki so ga nekateri izrazili, je upravičen. Nič ne zaleže,

če jih poskušamo opozoriti na to, da je pri visokih energijah lestvica razdalj

logaritmična (pojavi se pri zelo majhnih razdaljah spreminjajo z logarit-

mom razdalje), tako da ekstrapolaciji za faktor 10!" ustreza v resnici samo

faktor ln10!' x 40. Prav tako nič ne zaleže pripomba, da nimamo izbire

glede ekstrapolacije, če želimo raziskovati osnovna vprašanja. Jasno je, da

potrebujemo drugačno strategijo kot v prejšnjih desetletjih, ko so nas vodila

eksperimentalna odkritja. Še naprej pričakujemo taka odkritja. Vse enotne

teorije, vključno s teorijo strun, napovedujejo veliko novih pojavov, ki bi jih
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lahko dosegli s superprevodnim supertrkalnikom (S5C), za katerega upamo,

da ga bodo gradili. Čeprav nas ti poskusi še ne bodo popeljali do območja,

na katerem postane gravitacija tako močna kot jedrska sila, bodo pomem-

bno vodilo za zvezo fizike pri Planckovi razdalji in našim nizkoenergijskim

svetom.

V času, ko ni presenetljivih presenečenj pri merjenjih in teorija strun

namiguje na globoko matematično strukturo, postaja Diracova strategija

vse privlačnejša. Mnogo raziskovalcev v teoriji strun raziskuje matematične

strukture, ki jih je razkrila ta teorija, v upanju, da bodo spoznali njeno

osnovno ogrodje in dobili namige o njeni dinamiki. Nekateri nasprotujejo

tem prizadevanjem in vsej teoriji strun in jo zmerjajo z rekreacijsko mate-

matiko. Čeprav nočem, da bi me klicali rekreacijski matematik, mislim, da

je nasprotovanje vsaj nekoliko (čeprav malo) utemeljeno. Opozarja nas na

nevarnost, da bi postali matematiki, če bi sledili Diracovemu vodilu. To bi

bilo za fiziko — in mislim tudi za matematiko — nezaželeno. Spomnimo se

na nekatere razločke mad matematiko in fiziko.

Matematiki izhajajo od dokaza in logične ubranosti rezultatov. Končni

sodnik teorijskega fizika je poskus. Dirac je rekel: "Ne zanimajo me dokazi,

ampak le to, kaj dela narava", čeprav so ga spodbujale matematične zamisli.

Ko je njegova relativistična enačba presenetljivo napovedala, da bi moral

obstajati pozitivni delec z natanko tolikšno maso kot elektron, in ni bilo

sledu o njem (Anderson je odkril pozitron pet let pozneje), je bil pripravljen

žrtvovati lepo simetrijo svoje teorije in videti pozitivni delec v protonu s

1836-krat večjo maso od elektrona. H.Weyl, ki je bolj kot drugi matematiki

v tem stoletju imel matematiko in fiziko za organsko celoto, pa je nasprotno

menil: "Moje delo je vedno poskušalo združiti dejansko z lepim, toda če sem

moral izbirati, sem navadno izbral lepo." Na drugi strani je Weyl ugotovil

simetrijo Diracove enačbe pri konjugaciji naboja in je vneto nasprotoval

temu, da bi imeli proton za pozitivno sliko elektrona. Nazadnje so odkrili

pozitron z enako maso kot elektron, skladno s simetrijo Diracove enačbe.

Weyl je imel prav. V tem primeru sta se dejanskost in lepota pokrili, saj ni

treba, da bi si nasprotovali. Vseeno se mora vsakdo umakniti v svoje osebne

varne kotičke, če je treba izbirati med njima.

Matematiki razmisljajo drugače in imajo drugačne delovne navade kot

fiziki, četudi raziskujejo podobne strukture. Radi posplošujejo, razširijo

svoje pojme na najsplošnejši mogoč primer, sestavijo najširšo mogočo teorijo.

Fizikov seveda ne zanima najsplošnejši primer, ampak posebni primer de-

janskega sveta. Poenostavljajo, idealizirajo in si zamišljajo posebne primere.

Lahko bi rekli, da se matematiki trudijo sestaviti zanimive in uporabne
definicije, ki dajo dobre izreke, fiziki pa zanimive in uporabne modele, ki

dajo dobre napovedi.

Matematiki in fiziki imajo tudi različne zmožnosti. Po moje je najpo-

membnejša lastnost velikih matematikov njihova zmožnost abstrakcije. V

tem so zmožni junaštev, ki vzamejo sapo. Sumim, da matematiki podobno

občudujejo fizike zaradi intuicije, ko uporabljajo matematični formalizem

podobno kot pesniki jezik. Nasprotno kot matematiki smejo zanemariti
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strogost, uganiti kaj, ne da bi to dokazali, in pohiteti, da bi primerjali

zamisli s poskusom. Sovjetski matematik Ju.Manin pritrjuje: "Izbira La-

grangeovega operatorja v enotni teoriji šibke in elektromagnetne interakcije

. uvedba Higgsovih polj, odštevanje vakuumskih povprečnih vrednosti in še

druga čaranja, ki pripeljejo, denimo, do napovedi nevtralnih tokov, osupnejo

matematika." [11].

Nazadnje, matematike in fizike učijo, da mislijo drugače. Celo poučujejo

oboje različno. Fiziko vedno poučujemo zgodovinsko, od dna navzgor.

Začnemo s klasično mehaniko, nato pridemo do nerelativistične kvantne

mehanike in šele nazadnje do relativistične. Tako si študenti lahko pridobijo

intuicijo na posameznih zgledih. Sodobno matematiko pogosto poučujejo z

vrha navzdol. $ tem učijo zmožnost abstrakcije. Manin je zapisal, "da bi

bilo čudovito, če bi obvladali oba načina mišljenja, enako kot uporabljamo

desno in levo roko." [11]. To je najbrž nemogoče, ker bi prekršilo nekakšno

načelo nedoločenosti:

Amatematika- Afizika > C

Vsekakor sta potrebna oba načina. Fiziki potrebujemo nadarjenost in

bistroumnost matematikov in oni našo. Nadaljujmo s sodelovanjem in ga

razširimo.

Toda vive la difference!
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OBVESTILO ČLANOM DRUŠTVA

Ob izidu pete številke Obzornika za matematiko in fiziko smo poslali skoraj

400 opominov tistim članom našega društva, ki še niso nakazali letošnje članarine.

Vse dolžnike prosimo, da svojo obveznost poravnajo vsaj do 15. decembra 1990. V

nasprotnem primeru jih bomo žal morali črtati s seznama članov in jim v prihodnjem

letu ustaviti pošiljanje revije.

Milan Hladnik, Janez Strnad, Ciril Velkovrh
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MATEJ OREŠIČ, ANDREJ ČADEŽ in TOMAŽ PROSENku

PACS 04.80.--z

Težo vrtavke z maso 45 g smo merili za obe smeri vrtenja okoli navpične osi do

frekvence 4000 vrtljajev na minuto. Zmanjšanja teže, o katerem sta poročala Hayasaka

in Takeuchi, nismo opazili, čeprav je bila merska napaka desetkrat manjša kakor njuna

napoved.

GYROSCOPE-WEIGHING

The weight change of a spinning mechanical gyroscope with rotor's mass 45g and

highest freguency of rotation 4000 rpm was measured. We observed no change at the level

predicted by Hayasaka and Takeuchi although our measurement error was 10 times less

then their prediction.

Decembra 1989 je fizikalno javnost razburila novica, da so meritve teže

vrtavke [1] pokazale linearno manjšanje s frekvenco za desno vrtenje (smer

vrtilne količine napično navzdol), pri levem vrtenju pa naj bi se teža ne

spreminjala. Eksperimentalno ugotovljena formula za desno vrtenje naj bi

se glasila

AF, < -K-mRou (1)

Pri tem je AF, sprememba teže, K < 2- 10? s"!, m masa vrtavke,

1 ca
jh < — 2 " drd 2—] r p(z,r)r" dr dz (2)

in w njena kotna hitrost. Tako velike in povrhu asimetrične spremembe teže

ne napoveduje nobena fizikalna teorija. |

Februarja 1990 je bil že objavljen prvi negativni rezultat podobnega

eksperimenta [2]. S.H. Salter je v svojem članku [3] avtorjema [1] očital, da

sta uporabila za meritve navadno kemijsko tehtnico, ki zaradi nelinearnosti

v ležajih ni primerna za merjenje dinamičnih obremenitev.

Marca smo ponovili podobne meritve tudi pri nas. Uporabili smo

vrtavko z rotorjem mase 45 g in R < 2.79 cm. Po [1] naj bi se pri 4000

vrtljajih na minuto pri desnem vrtenju teža zmanjšala za 1.07 mg. Tako

lahek rotor smo vzeli zato, da bi lahko uporabili zelo natančno tehtnico s

skalo, razdeljeno na 0.01 mg (SARTORIUS 2400 z največjo dovoljeno težo
1.6 N ). Rezultate meritev kaže slika 1. Pozitivna abscisna os ustreza levemu

vrtenju, to je navzgor obrnjeni vrtilni količini. V nobeni smeri vrtenja ni bilo

mogoče opaziti spremembe teže, ki bi presegla mersko napako.

Tehtanje je potekalo v 6 nizih. V vsakem nizu smo merili težo pri

mirovanju, vrtenju v desno pri 3000 vrtljajih na minuto in 4000 vrtljajih

na minuto, zopet v mirovanju, nato pa v levo pri 3000 in 4000 vrtljajih na

minuto in na koncu spet v mirovanju. Za spremembo teže pri dani kotni

hitrosti smo vzeli razliko izmerjene teže pri tej kotni hitrosti in povprečne
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vrednosti treh izmerkov v mirovanju za dani niz. Za takšen način tehtanja

smo se odločili zato, da bi bil potek eksperimenta čim manj odvisen od

morebitnih sprememb okoliščin pri tehtanju, na primer premika posodice z

vrtavko zaradi prehitrega pospeševanja. (Slika 1 je na prvi strani ovitka)

Sama izvedba meritve je bila pri nas nekoliko drugačna kot pri Hayasaki

in Takeuchiju [1]. Mislimo, da je glavni vzrok njunega nenavadnega rezultata

v tem, da sta merila težo vrtavke med ustavljanjem. Trdita, da navor, ki

zaradi prekinitve električnega kroga ustavlja rotor, ne vpliva na izid tehtanja,

ker nastopa trenje le v sistemu vrtavke (in posode). S tem se ne strinjamo.

Iz izreka o vrtilni količini namreč sledi, da mora na vrtavko, ki se zaradi

trenja ustavlja, delovati navor. To pomeni, da se navor prenaša na posodico

tehtnice in naprej na njene ležaje, kar prav lahko vpliva na izmerek teže

na način, ki je odvisen od konstrukcijskih detajlov tehtnice. Tudi pri naši

tehtnici je prišlo do takega pojava. Zato smo merili, ko je motorček tekel s

konstantno kotno hitrostjo.

Hayasaka in Takeuchi sta med meritvami prekinjala električni krog iz

bojazni, da bi kot težo merila tudi magnetno silo zaradi sklopitve med

zemeljskim magnetnim poljem in magnetnim poljem, ki ga povzročata tok v

dovodnih žičkah in tok v rotorju motorčka. Da bi ugotovili, kolikšna bi lahko

bila takšna sklopitev, smo blokirali rotor elektromotorčka in pri različnih

tokovih izmerili težo. Na naši skali nismo opazili nikakršne spremembe.

Zato mislimo, da je tak pojav vsaj pod mejo občutljivosti naše tehtnice.

Omenimo naj še, da smo uporabljali elektromotorček z zelo majhno porabo

6 mA pri 24 V.

Za meritev pri neprekinjenem električnem krogu smo se odločili tudi

zato, ker so bile meritve pri prekinjenem krogu (med ustavljanjem) zelo

nenatančne in neponovljive (odmiki med posameznimi meritvami so bili več

kot 1 mg). Posodico z vrtavko je pri prekinitvi kroga pogosto celo nekoliko

premaknilo. S tem se je spremenila tudi lega prevodnih žičk in možno je, da

je tudi zaradi tega nastal še dodaten navor.

Vzrok premika posodice bi lahko bili tudi morebitni tresljaji vrtavke, ki

bi se prenašali na posodico. Ti tresljaji bi se seveda prenašali tudi na ležaje

tehtnice. Zaradi tega smo vrtavko kolikor mogoče natančno izbalansirali

in jo obesili na lahke gumice (Sl.2). Kljub temu se blagim tresljajem pri

začetnem pospeševanju nismo mogli izogniti. Prav tako je vrtavka prišla v

mehansko resonanco z obeso pri frekvencah nad 4200 vrtljajev na minuto.

Ti tresljaji niso bili dovolj močni, da bi vidno premaknili vrtavko, vendar pa

dovolj, da smo opazili tresenje na skali tehtnice. Povprečni odčitek se sicer

ni opazno spremenil, vendar je bilo odčitavanje na tehtnici toliko oteženo,

da smo se odločili za merjenje le do frekvence 4000 vrtljajev na minuto.

Posodico z vrtavko smo neprodušno zaprli s tanko celofansko folijo,

vendar je nismo evakuirali. 5 tem smo zagotovili konstantnost mase v

posodici. Zavedamo se, da to ne zagotavlja kostantnosti prostornine, ker

se lahko spremeni meniskus celofanske folije. Sprememba prostornine zaprte

posodice povzroči spremembo vzgona v zraku, kar lahko vpliva na rezultat.

Ta prispevek smo ocenili z naslednjim sklepom. Do največje spremembe
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vzgona pride, če je folija povsem gibka, tako da je tlak v posodici vedno
enak tlaku v okolici.

le, če se spremeni razlika temperatur

med zrakom v posodici in v okolici.

Pri večjih frekvencah vrtavke se

sprošča v posodici večja moč, zato

se temperatura gotovo nekoliko dvi-

gne. V tem najslabšem primeru do-

bimo za spremembo vzgona

AT

AF s — 9 Pzr Vpos mzo (8)

pri čemer je AT' razlika med tem-

peraturo zraka v posodici in zunanjo

temperaturo. Razliko med zunanjo

in notranjo temperaturo smo Mmer-

ili s termočlenom, ko se je ro-

tor vrtel s 4000 vrtljaji na minuto

(termočlen ni bil dovolj občutljiv, da

bi lahko zanesljivo odčitali povišanje

pri nižjih frekvencah] in dobili rezul-

tat med 0.05 in 0.1 K, kar po

formuli ustreza spremembi teže za

okrog 0.1 mg. To je na robu naše

natančnosti in desetkrat manjše od

napovedi |1]. 'Tako napovedana

sprememba teže je konsistentna z

našimi merskimi rezultati (Sl.1), če-

prav meritve niso dovolj natančne,

da bi lahko govorili o kvantita-

tivnem ujemanju.

ZVO
ode

V tem primeru pride do spremembe prostornine

Sl.2. Konzerva coca-cole ima primer-

no velikost, je lahka in trdna. Videti je

tri gumice, na katerih je obešen motorček

in vrhnji del motorčka. Posodica je zaprta

s celofansko folijo podobno kot kozarci za

vlaganje sadja. Packi na sredini folije sta

kepici lepila, ki tesnita prehod žičk z debe-

lino 0.05 mm za pogon motorčka. Rotor je

globlje in ga zato ni videti.

Zahvaljujemo se dipl. ing. Ivi Levstik z Instituta J. Stefan, ki nam je

omogočila tehtanje na zelo natančni tehtnici, prof. Ivanu Zupančiču za pomoč

pri meritvah temperaturnih razlik, Andreju Trontlju za izdelavo rotorja in

Juretu Javoršku za pomoč pri sestavljanju eksperimenta.
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NOVE KNJIGE

AGANOVICI., Veselič K., Uvod u analitičku mehaniku. Matema-
tički odjel Prirodoslovno-matematičkog fakulteta Sveučilišta u Za-

grebu, 1990, 124 str.

Knjižica je namenjena predvsem študentom matematike in "je napisana

koncizno, tako da bo kljub elementarni vsebini od začetnika zahtevala

določen napor." Vsebuje štiri poglavja: Newtonovo mehaniko, Lagrangeovo

mehaniko, mala nihanja in gibanje togega telesa. Vsebina je standardna in

o knjižici lahko povemo samo najboljše.

Zanimivo jo je primerjati z Uvodom v analitično mehaniko Šergeja Pa-

horja, ki je izšel pred kratkim in o katerem smo obširneje poročali (Obzornik

mat.fiz. 36 (1989) 114). V kolikšni meri je razlika povezana z razliko med

zagrebško in ljubljanska fizikalno šolo, je težko reči. Vendar se spomnimo,

da imajo v Zagrebu fiziko, ki izhaja iz naravoslovno-matematične fakultete,

medtem ko je ljubljanska nastala s spojitvijo naravoslovno-matematičnega

in tehniškega dela in najbrž ni pretirano reči, da se je študij razrasel zaradi

drugega dela.

Pahorjeva knjiga je manj obsežna (110 strani), a vsebuje več snovi. V

njej so tudi poglavja o faznem prostoru in Hamiltonovi formulaciji gibalnih

enačb, integralskih formulacijah gibalnih enačb in kanonskih transformaci-

jah, Hamilton-Jacobijevi enačbi ter Poissonovih oklepajih in Liouvillovem

izreku. za

Pahor zagovarja matematično strogost v fiziki, če za to ni potreben

dodaten trud, Aganovič in Veselič pa se z njo ponašata. Njun prvi stavek

se glasi: "Naj bo A? štirirazsežni afini prostor, V" — prirejeni translacijski

prostor in T : V? —: R linearni operator." Toda obdelani zgledi so lažji.

Zares v Ljubljani morda študenti fizike, ki se bodo ukvarjali s teorijsko

fiziko, slišijo premalo matematike, posebej zato, ker ne poslušajo istih pre-

davanj kot študenti matematike, za bolj v tehniko usmerjene študente pa

je matematike morda celo preveč. S fizikalne strani je zahtevnejša ljubljan-

ska knjižica, z matematične pa zagrebška. Zagrebška ima morda v mislih

bolj nadaljevanje v teorijo relativnosti, ljubljanska pa v kvantno mehaniko.

seveda ne gre pozabiti, da je ljubljanska namenjena fizikom in matematikom

v tretjem letniku, zagrebška pa predvsem matematikom — kakor kaže — v

nižjem letniku.

Knjižici sta vzbudili razmišljanje, ki bi lahko pripeljalo tudi do kakega

zaključka, če bi ga bolj zavzeto nadaljevali. Tako, kot je, pa želi povedati le

to, da so mogoča pri poučevanju in pisanju učbenikov različna izhodišča in

da bi bilo pusto, če ne bi bilo tako.

Janez Strnad
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ANDREJ GUŠTIN

PACS a 951099

Sončnega obsevanja za kraj na Zeralji z znano zemljepisno širino ni težko oceniti.

INSOLATION

The insolation for a place with known geographycal latitude is estimated.

Zemlja sprejema od Sonca veliko energije, ki bi jo radi čim bolje izko-

ristili. V tej zvezi nas zanima sončno obsevanje, to je energija, ki jo na

dan prejme kvadratni meter vodoravne ploskve v kakem kraju na Zemlji ob

jasnem vremenu.

Najprej moramo za izbrani kraj poznati vpadni kot a sončnih žarkov

in gostoto sončnega energijskega toka. Absorpcijo in lom svetlobe v ozračju

zanemarimo, saj sta pojava povezana z velikom številom parametrov, ki

račune otežkočijo. Zelo težko je upoštevati vreme in krajevne značilnosti;

te pa bistveno vplivajo na energijski tok, ki dospe do površja. Računajmo,

kakor da Zemlja nima ozračja in vzemimo za gostoto sončnega energijskega

toka na površju ; < 10? W/m?. Vpadni kot v odvisnosti od zemljepisne

širine $ podaja enačba [2]:

cos a < — sine cos(277/T) sin9— cos $ cos wt[1 —sin" e cos? (277/T)]Y? (1)

T je obhodni čas Zemlje ekrog Sonca, w njena kotna hitrost pri vrtenju okoli

lastne osi, e je 23.5? naklon ekliptike, 7 čas, štet od zimskega solsticija in t

meščanski čas.

Pri privzetku, da je Zemlja gladka krogla brez ozračja, ki se enakomerno

vrti in kroži okrog Sonca, je j cosa osvetljenost kakega kraja na Zemlji.

Obsevanje dobimo, ko jo integriramo v danem dnevu od sončnega vzhoda t,;

do zahoda t,.
lo

w—j | cosa di | (2)
it, |

Zaradi preprostosti naj bo deklinacija Sonca med dnevom konstanta.

Integral (2) je najlažje izračunati z računalnikom. Iz (1) računalnik tudi

mimogrede izračuna čas vzhoda in zahoda Sonca.

Najprej poglejmo, kako se obsevanje w spreminja s časom r v krajih z

različno zemljepisno širino (Sl. 1). |

Bolj kot potek krivulj preseneti to, da je največje obsevanje za kraje

z večjo zemljepisno širino večje kot ob ekvatorju. Razlika med največjima

vrednostma na ekvatorju (4 < 0") in našimi kraji (g <— 45?) je približno
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1.4 kWh/m?. Tegani težko

pojasniti. Dan na ekva-

torju je vse leto enako dolg

in se obsevanje spreminja

le zaradi spremembe dekli-

nacije Sonca. Za kraje, ki

ne ležijo na ekvatorju, se

dolžina dneva z datumom

spreminja, zato je poleti v

naših krajih Sonce več kot

12 ur nad obzorjem. Ob

poletnem solsticiju (21. ju-

nij) pri nas meri obsevanje

okrog 9 kWh/m?.

Poglejmo še, kako se

med letom spremija obse-

vanje z zemljepisno širino.

Najmanjše obsevanje (Sl. 2 a,

c, d) je odvisno od datuma. Tedaj

je za dani kraj kvocient povprečne

dnevne višine Šonca in dolžine

dneva najneugodnejši. Ob ekvinok-

cijih pa je severna polobla enako os-

vetljena kot južna in je obsevanje

največje na ekvatorju.

Privzeli smo, da se oddaljenost

Zemlje od Sonca ne spreminja. Če
bi upoštevali ekscentričnost Zem-

ljinega tira (e x 0.01672), bi

morali za osvetljenost površja vzeti

da/r(T))cosa, če pomeni r(7) <

a(l -- ecos(277/T — 8)) trenutno

oddaljenost Zemlje od Sonca. Kot

6 vpeljemo zato, ker afelij in zimski

solsticij, od katerega štejemo čas 7,

ne sovpadata. Popravljena vrednost

w se od (2) razlikuje največ za 3%,

kar je pri naši oceni zanemarljivo.

Hi

z-6S?

PTT TI AT JE
no XI DJE

h PA H ras

4 T z x K
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Sl. 1. Časovna odvisnost obsevanja v našem približku

za kraj z zemljepisno širino $. Čas štejemo od zimskega
solsticija.

SI. 2. Obsevanje v našem približku v

odvisnosti od zemljepisne širine za dneve:

a — 21. december, b — 21. marec/23. sep-

tember, c — 5. avgust, d — 21. junij.

Ploščina je pod vsemi krivuljami enaka,

saj prestreže Zemlja vedno enako energijo

s Sonca ne glede na datum.

Oblika krivulj (Sl. 1 in 2) bi se spremenila, če bi upoštevali absorpcijo

sončne svetlobe v ozračju. 'Ta je velika, ko je Sonce nizko nad obzorjem.

Zaradi tega je sončno obsevanje precej manjše od izračunanega. Popravek

Je večji za kraje ob polih, kjer je Sonce v povprečju nižje nad obzorjem.
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UMRLA JE PROFESOR

V osemdesetem letu starosti je 24. novembra 1989 v Ljubljani umrla

profesorica Marija Pilgram.

Marija Pilgramje bila rojena 25. maja 1910 v narodno zavedni slovenski

družini na Dunaju, kjer je bil njen oče visok državni uradnik. Ko je bila

stara osem let, je njen oče umrl. Mati se je po razpadu Avstro-Ogrske s

hčerkama vrnila v Slovenijo, čeprav jim Avstrija tu ni izplačevala pokojnine.

Živeli so skromno v Škofji Loki, kjer je mati poučevala klavir. Marija je po

končani osnovni šoli hodila šest let na ženski licej v Ljubljani, nato pa je

naredila diferencialne izpite in nadaljevala na klasični gimnaziji v Ljubljani

ter jo tudi končala. Njena velika želja je bila, da bi študirala medicino,

a je bil študij medicine predrag. Veselil jo je študij jezikov, a za filologe

tedaj ni bilo delovnih mest. Odločila se je za študij matematike in fizike,

kjer je bilo še največ možnosti za službo. Ob materialni pomoči starejše

sestre je ta študij končala na ljubljanski univerzi leta 1933. Po diplomi je

poučevala matematiko in fiziko najprej na gimnaziji v Kranju, od leta 1939

do upokojitve 1968 pa na viški gimnaziji v Ljubljani.

Njeni učenci se profesorice Pilgramove spominjamo po njenih izredno

dobrih razlagah matematičnih in fizikalnih pojmov. Bila je stroga, a pravična

pri ocenjevanju in tudi učenci, ki so imeli z matematiko in fiziko težave, jo

imajo danes v lepem spominu. Profesorica Pilgramova je imela veliko veselje

za dodatno delo z boljšimi učenci. Podpisani sem imel srečo, da sem bil v

njenem matematičnem krožku in se vedno rad spominjam njene zagnanosti

pri zbiranju različnih problemov in nalog, njenega veselja, ko se nam je kaj

posvetilo, in njenega zadovoljstva, ko smo dosegli uspehe na srednješolskih

matematičnih tekmovanjih.

Profesorica Pilgramova je med prvimi štirimi člani prejela priznanje

Društva matematikov, fizikov in astronomov Slovenije za delo z mladimi

nadarjenimi učenci.

V prostem času je profesorica Pilgramova pomagala svojemu soprogu

Vladimirju Pilgramu pri sestavljanju srednješolskih matematičnih učbenikov

in zbirk nalog.

Nekateri njeni učenci smo jo obiskovali, odkar nas je učila v srednji šoli.

Vedno znova nas je presenečala njena bistrina, širina in zanimanje za veliko

različnih stvari. Radi se bomo spominjali teh pogovorov in pogrešali bomo

našo drago profesorico.

Josip Globevnik
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Društvo matematikov, fizikov in astronomov Šlovenije prireja ob sode-

lovanju Oddelka za fiziko Fakultete za naravoslovje in tehnologijo ter ob

pomoči Zavoda republike Slovenije za šolstvo 15. in 16. februarja 1991

14. seminar iz fizike

ASTROFIZIKA ZVEZD

Seminar je namenjen strokovnemu izpopolnjevanju učiteljev fizike, as-

tronomije in matematike na srednjih in osnovnih šolah. Vabljeni so tudi

drugi člani društva.

V soboto, 16. 2. 1991 bo popoldan delovala astronomska delavnica,

če se bo prijavilo 20 do 30 članov društva. V delavnici bomo obdelali

fotometrične podatke sistema SS433 z Evropske južne zvezdarne v Čilu in

podatke z novega merilnika CCD z Golovca ter modelirali zvezde v mladih

kopicah in jih primerjali z opazovalnimi podatki. Vsi, ki se želite udeležiti,

se prijavite najpozneje do 30. 12. 1990 na naslov Oddelek za fiziko, A. Čadež,

Jadranska 19, 61111 Ljubljana, p. p. 64.

Delo seminarja in delavnice v predavalnici l na Fakulteti za

elektrotehniko in računalništvo, Tržaška 25 v Ljubljani bo potekalo

takole:

Petek, 15. februar

9.00 do 10.45 Martin Čopič, Kaj merimo v astronomiji

11.15 do 13.00 Andrej Čadež, Fizikalni podatki, ki jih daje svetloba z

zvezd

16.15 do 18.00 Tomaž Zwitter, Vesolje na različnih velikostnih skalah

19.15 Družabno srečanje z večerjo v Maximu

Sobota, 16. februar

9.00 do 12.00 Andrej Čadež, Zvezdne kopice

14.00 do 19.00 Tomaž Zwitter, Astronomska delavnica

Vodstva šol prosimo, da prispevek za seminar 800.— dinarjev nakažejo

na žiro račun DMFA Slovenije Ljubljana 50101-678-49168, lahko pa ga

udeleženci poravnajo tudi na seminarju.

Sekretarka seminarja Vodja seminarja

Milena Strnad Andrej Čadež
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Zvezdana Radašin, prev. Milan Hladnik)...................................... 74-84
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