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VLADIMIR BATAGELJ

Math. Subj. Class. (1985): 05 C 20, 05 C 50, 05 C 75, 92 A 20

V sestavku vpeljemo pojem vrednostne matrike grafa in njene ovojnice nad us-

treznim polkolobarjem. To uporabimo pri izgradnji odločitvenih postopkov za vprašanji

uravnoteženosti in razcepnosti označenega grafa.

Two closed semirings are constructed. The corresponding closures of the matrix of

a given signed graph can be used to decide whether the graph is balanced or clusterable.

1. Graf, točke, povezave, sprehodi, verige

Graf imenujemo trojico G <— (V, E, A) , kjer so V, E in A paroma ločene

(končne ali števno neskončne) množice. Množici E in A sta lahko tudi

prazni. Množica V je množica točk grafa G ; množici E in A pa zaporedoma

množica neusmerjenih povezav in množica usmerjenih povezav grala G

Vsaki povezavi iz L < EU A pripadata dve točki— njeni krajišči. Če
je povezava usmerjena, je eno krajišče začetek, drugo pa konec povezave. Da

ima neusmerjena povezava e krajišči u in v, bomo zapisali e(u : v) oziroma

enakovredno e(v : u) ; in a(u,v) , da je točka u začetek in točka v konec

usmerjene povezave a . Rekli bomo tudi, da povezava e € E veže svoji

krajišči, in da povezava a € A gre (vodi) od svojega začetka do svojega

konca. V primeru, ko predstavlja obe krajišči povezave ista točka, pravimo

taki povezavi zanka. Povezavi sta vzporedni, če imata isti krajišči. Točka, ki

ni krajišče nobene povezave, je osamljena (izolirana) točka.

Grafje neusmerjen, če je A — (; in je usmerjen, če je E — 0. Če so vse
tri množice V, FE in A končne, je tudi graf končen. V tem sestavku se bomo

ukvarjali le s končnimi grafi, zato bomo ta pridevnik opuščali.

V nadaljnjem nam bosta prišli prav naslednji okrajšavi: naj bopeL,

potem pomeni |

plu,v) <:(peEe EAplu:v)) V(peE AV plu,v))

in

plu : v) E p(u,v) V p(v,u)

Graf lahko narišemo tako, da za vsako točko narišemo krogec, povezave

pa prikažemo s črtami, ki vežejo ustrezne točke. Če je povezava usmerjena,

nakažemo smer s puščico. Pogosto tudi tako dobljeni sliki grafa pravimo kar

graf.

Končno zaporedje točk in povezav 7 — vo4d;V;43V2...V;-104KVx Je SPre-
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hod po G natanko takrat, ko velja

k

A a;(v;-1,v;)
izl

in je veriga po G natanko takrat, ko velja

k

A a;(v;., : v;)
izl

Število k je dolžina sprehoda/verige. Točka v, je začetek, točka v, je
konec sprehoda, obe pa sta krajišči verige. Vsak sprehod je tudi veriga.

Sprehod/veriga je sklenjen(a), če krajišči sovpadata, vo — v;.

2. Polkolobarji

Algebrska struktura (S,--,-,0,1) na množici S je polkolobar, glej npr.

[1,3,10,2], natanko takrat, ko:

e (S,--,0) je Abelov monoid z nevtralnim elementom 0 (ničla);

e (S,-,1) je monoid z nevtralnim elementom 1 (enota);

e množenje - je distributivno čez seštevanje - : za vsako trojico z, y, z € S

velja

z-(y tz) <z-yftr:z in (z4ty) z<r-zty:z

V izrazih bomo privzeli, da množenje veže močneje od seštevanja.

Tako so polkolobarji |

(40,11 v,A,0,1)

(R) U (ooj,min,, co, 0)
Polkolobar (S, --,-,0,1) je poln natanko takrat, ko je vsota dobro defini-

rana tudi za števno neskončne množice elementov iz S in za seštevanje veljata

posplošena komutativnost in asociativnost, poleg tega pa tudi posplošena

distributivnost.

Če je množica S končna in je seštevanje tdempotentno, t.j., za vsak
z € S velja: z - z — z, potem je polkolobar poln.

Polkolobar (S,--,-," ,0,1) je zaprt natanko takrat, ko za enomestno o-
peracijo zaprtja " za vsak x € S velja

z —Sldirae Sli -r

Nad istim polkolobarjem lahko obstaja več zaprtij. Poln polkolobar je vselej
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zaprt za zaprtje določeno z izrazom

) zr cltoba? ba? bes
k<0

V nadaljevanju bomo zaprtje imenovali operacijo, določeno s tem predpisom.

Graf z vrednostmi na povezavah imenujemo urejeni par (G,d), kjer je

G — (V, L) grafin d: L — S vrednostna funkcija, pri čemer je (S,-t,:,0,1)

polkolobar.

Vrednost d lahko razširimo:na sprehode in množice sprehodov po G s

predpisi

e naj bo c,, ničelni sprehod v točki v € V, potem d(e,) <— l;

e naj bo 7 — v6d;V142V2...Vp-14pv, Sprehod dolžine k > 1 po G potem

d(r) — d(a;) :d(a,):::d(a;)

e za prazno množico sprehodov 0 je d(0) — 0;

e naj bo P — (7;,7.,...) množica sprehodov po G, potem

d(P) ZE d(7,) -- dla) ---

S PP? označimo množico vseh sprehodov dolžine p iz točke u v točko v;

in s 2" množico vseh sprehodov iz točke u v točko v.

Vrednostna matrika grafa imenujemo kvadratno matriko D z indeksno

množico V, v kateri je element, ki pripada točkama u in v, določen s

predpisom

Du, v| < », dip)
peEeL:plu,v)

V nadaljevanju bomo predpostavljali, da v polkolobarju za vsak z € S

velja

z -O<Z0-za<0

in da so točke na nek način oštevilčene V < 4v,,v2,...,v,). Tedaj lahko na
običajen način

[a;;] -- [bi;] — (ai; diy]

[ai]: (bi;] < DD, aip ' bkj]
k<il

vpeljemo seštevanje in množenje (kvadratnih) matrik reda n nad polkolo-
barjem, ki prav tako sestavljajo polkolobar. |

Matrični polkolobar nad polnim polkolobarjem je tudi sam poln in zato

zaprt za operacijo zaprtja

x" s XF
k—<0

Obzornik maf. fiz. 37 (1990) 4 99



Matriko X" imenujemo tudi ovojnica matrike X nad danim polkolobarjem.

| TON med vrednostmi poti po grafu in matrikami opisujeta izreka

1,3,10;.

Izrek 1. Naj bo D" k-ta potenca vrednostne matrike D, potem je

Izrek 2. Naj bo D vrednostna matrika nad polnim polkolobarjem in D"
njena ovojnica, potem je

d(Fi,) — D"(u, v]

Za izračun ovojnice nad polnim polkolobarjem lahko uporabimo Flet-

cherjev algoritem [6] H

Co :< D;

for k :<— 1 to n do begin

for 1:< 1 to n do for ; — 1 to n do

C, [8 3] 5 Cp [2,3] bt Ck-a i, k : (C,,-1 |K, k])" : C,-1[k, 3];

end;

D" :<C,,; |

|. Indeksi pri matrikah C pridejo prav pri dokazu pravilnosti postopka,

sicer pa pri izračunu shajamo že z dvema matrikama. Če je seštevanje
idempotentno, lahko algoritem izvedemo 'na mestu' — opustimo indekse

pri matrikah C. Nadaljno poenostavitev lahko naredimo, če v polkolobarju
velja absorbcijski zakon Vz € S:1-4x <— 1. Tedaj je namreč Vz € S:a" <1.

3. Uravnoteženi in razcepni označeni grafi

Označeni graf imenujemo urejeni par (G,o), kjer sta

e G — (V, A) usmerjeni graf brez zank z množico točk V in množico

povezav A; |

e o: A — (p,n) označitvena funkcija. Povezave z oznako p so pozitivne,

povezave z oznako n pa negativne. Množico vseh pozitivnih povezav

označimo z A" in z A" množico vseh negativnih povezav.

Neusmerjene označene grafe prevedemo v usmerjene tako, da vsako neusmer-

jeno povezavo e nadomestimo s parom nasprotno usmerjenih povezav, ki sta

obe označeni z oznako o(e). — UR

Označeni grafi so bili deležni precejšne pozornosti [7,5,8,9|. Po Robertsu

[9, strani 75-77] je označeni graf (G,o):

e uravnotežen natanko takrat, ko lahko množico točk V razbijemo na

dve podmnožici, tako da ima vsaka pozitivna povezava obe krajišči v

isti podmnožici, vsaka negativna povezava pa veže točki iz različnih

podmnožic;

100 Obzornik mat. fiz. 37 (1990) 4



e razcepen natanko takrat, ko lahko množico točk V razbijemo na pod-
množice, tako da ima vsaka pozitivna povezava obe krajišči v isti

podmnožici, vsaka negativna povezava pa veže točki iz različnih pod-

množic.

Veriga po označenem grafu je pozitivna natanko takrat, ko vsebuje sodo

število negativnih povezav; sicer je negativna.

Uravnotežene in razcepne označene grafe opisujeta naslednja izreka [7,

5, 8, 9, 4].

Izrek 3. Označeni graf (G,o) je uravnotežen natanko takrat, ko je

vsaka sklenjena veriga po njem pozitivna.

Izrek 4. Označeni graf (G,o) je razcepen natanko takrat, ko grafG ne

vsebuje sklenjene verige z natanko eno negativno povezavo.

4. Uravnoteženostni in razcepnostni polkolobar

Za ugotavljanje uravnoteženosti in razcepnosti označenih grafov lahko

uporabimo ovojnice njihovih vrednostnih matrik nad ustreznim polkolobar-

jem. Sestavimo najprej polkolobarja:

Tabela 1. Uravnoteženostni polkolobar

fs |O0 n p a O n p a 4 |£"

O JO n p a O j|0 0 0 0 O | p

n |n n a a n |O0 p n a n |a

Pp |Pp a p a p JO n p a P | P

al|a a a a a|0 a a a a | a

Polkolobar za uravnoteženostni problem zgradimo na množici S s štirimi

elementi |.

O ni sprehoda;

vsi sprehodi so negativni;

vsi sprehodi so pozitivni;

obstajata vsaj en pozitiven in vsaj en negativen sprehod.B
o
 
S
 
3

Tabela 2. Razcepnostni polkolobar

-t |0 n p a g O n p a g Z | g"

O J|0 n p a g O |O0 0 0 0 0 O | p

n |n n a a n n |0 g n n g n | a

P|P a p a p p,O n p a g P | Pp

a |a a a a a a|O0 n a a g a | a

9 |4 n p a 4d 9 |0 4 g 49 4 94 | P

Sedaj ni več težko sestaviti Cayleyevih tabel za uravnoteženostni polkolo-

bar (glej tabelo 1), ki je idempotenten zaprt polkolobar z ničlo O in enoto

P.

Ohzarnik mat fiz 87 (10001 A 101



Pri izgradnji razcepnostnega polkolobarja potrebujemo množico S s pe-

timi elementi: |

O ni sprehoda;

n obstaja vsaj en sprehod z natanko eno negativno povezavo in ni

sprehoda s samimi pozitivnimi povezavami;

p obstaja vsaj en sprehod s samimi pozitivnimi povezavami in ni

sprehoda z natanko eno negativno povezavo;

a obstaja vsaj en sprehod s samimi pozitivnimi povezavami in vsaj

en sprehod z natanko eno negativno povezavo;

g vsak sprehod vsebuje vsaj dve negativni povezavi.

Cayleyeve tabele za razcepnostni polkolobar so podane v tabeli 2. Raz-

cepnostni polkolobar je idempotenten zaprt polkolobar z ničlo O in enoto

P.

Obstaja bijekcija med verigami po usmerjenem grafu G in sprehodi po

grafu G, ki je vsota grafa G in njegovega obrata — grafa z obrnjenimi smermi

povezav. Za vrednostno matriko grafa G zato velja:

D(Č) < D(G) 4 D(G)"

kjer D? označuje transponiranko matrike D. Vpeljimo simetrično ovojnico

vrednostne matrike s predpisom

D"' <(D4 DJ

Združimo izrek 2 z izrekoma 3 in 4 pa dobimo:

Izrek 5. Označeni graf (G,0) je uravnotežen natanko takrat, ko dia-

gonala pripadajoče uravnoteženostne ovojnice D% vsebuje samo elemente z

vrednostjo p.

Izrek 6. Označeni graf (G,o) je razcepen natanko takrat, ko diagonala

pripadajoče razcepnostne ovojnice D', vsebuje samo elemente z vrednostjo

D.

Uravnoteženostna ovojnica uravnoteženega označenega grafa ne vsebuje

nobenega elementa z vrednostjo a, kajti sicer bi tudi pripadajoči diagonalni

elementi morali imeti vrednost a. Podobno razcepnostna ovojnica razcep-

nega označenega grafa ne vsebuje nobenega elementa z vrednostjo a.

Skupina imenujemo vsako maksimalno množico točk z enakimi vrsticami

v matriki D". |

V uravnoteženostni ovojnici uravnoteženega označenega grafa in v raz-

cepnostni ovojnici razcepnega označenega grafa imajo vsi elementi, ki pri-

padajo parom točk iz dveh različnih skupin, isto vrednost; vrednosti, ki

pripadajo parom iz iste skupine, pa so enake p.
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V obeh primerih različna raz-

bitja množice točk ustrezajo neena- 8 7

kovrednim barvanjem grafa s skupi-

nami kot; točkami; točki-skupini sta h ZOO.

povezani natanko takrat, ko imajo 9, ROME: . 6

elementi med skupinama v matriki i

D" vrednost n.

Razcepnost označenega grala le. Ba s B

lahko preverimo tudi drugače. Naj UI DO

bo P relacija pozitivne sosednosti Čeč s
2 3 4

uPv < Ja€ A" :alu,v)

in N relactja negativne sosednosti Slika 1. Chartrandov primer - graf

uNvy z Jae A :alu,v)

Tedaj lahko izrek 4 povemo takole:

Izrek 7. Označeni graf (G,o) je razcepen natanko takrat, ko je P"

N <— $, kjer je ovojnica " izračunana v polkolobarju (40,1$,V,A,0,1).

Ta, oblika izreka 4 je posebej zanimiva, ker presek P" o N sestavljajo

povezave, ki preprečujejo razcepnost označenega grafa (G,c).

5. Primer

Na sliki 1 je prikazan graf iz |4, stran 181| in pripadajoča vrednostna
matrika. Pozitivne povezave so narisane z nepretrganimi, negativne pa s

pikčastimi daljicami.

1 2 3 4 5 6 1 8 9 1 2 3 4 5 6 7 8 9

1;j0 n 0 0 p 0 0 0 p l|p n n n p Pp n n p

2;n 0 p 0 0 0 n 0 0 2/n Pp Pp p nn n n n n

30 p 0 p 0 0 0 0 0 8/|N p p p nn n n n n

4 |0 0 p 0 n 0 n 0 0 4 |n p p P n n n n n

> /|p 0 0 n 0 p 0 0 0 5|P n n n p P n n Pp

6/0 0 0 0 p 0 n 0 p 6|p n n n p P n n p

70 n 0 n 0 n 0 p 0 7;nin n n n n p Pp n

8,0 0 0 0 0 0 p 0 n 8;n n n n n n p P n

9;p O 0 O 0 p 0 n 0 9 |[p nin n p P nn n p

Tabela 3. Chartrandov primer — vrednostna matrika (levo), razcepnostna ovojnica

(desno)

Na levi strani tabele 3 je podana uravnoteženostna ovojnica — graf ni

uravnotežen. Iz razcepnostne ovojnice na desni strani pa razberemo, da je
graf razcepen v skupine
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NOVE KNJIGE

VELJAN D., Kombinatorika s teorijom grafova, Školska knjiga,

Zagreb 1989 (Manualia Universitatis studiorum fZagrebiensis)

str. 415.

Pred kratkim smo dobili nov učbenik kombinatorike. Gre za obsežno

knjigo, ki je svež prispevek v svetovno zbirko učbenikov kombinatorike in

je izredno prijetno branje. Ves čas je čutiti, da jo je pisal človek, ki je šel

skozi mnoga matematična tekmovanja že v srednji šoli in ki ima izostren

čut za matematično strogost. V knjigo je avtor vložil veliko dela in veselja.

Marsikateri izrek ima več dokazov.

Knjigo odlikuje uravnotežena in poglobljena obravnava snovi. Prvi del

obsega takorekoč celotno klasično kombinatoriko, ki pa je prežeta z raznimi

zanimivimi manj znanimi podrobnostmi. To velja tudi za drugi del, ki

obravnava osnovni kurz teorije grafov. Bralcu so nevsiljivo ponujene nekatere

zanimivosti, ki poudarj ajo pomen hrvaških oziroma zagrebških matematikov

V kombinatoriki iin teoriji grafovin jih trgajo pozabi.
Da gre v resnici za učbenik, nas prepričajo naloge, ki sledijo vsakemu

poglavju. Knjigo zaokrožata stvarno kazalo ter obsežen spisek literature,
ki zajema, le knjižne vire iz obravnavane tematike. Bralcu v pomoč pri

morebitni specializaciji v kombinatoriki je tudi posrečeno sklepno poglavje,

v katerem avtor v skopih potezah oriše najpomembnejše dele sodobne kom-

binatorike: od končnih geometrij do matroidov.

Brez dvoma Veljanovo knjigo lahko postavimo ob bok svetovnim učbe-

nikom kombinatorike s teorijo grafovin bi bila škoda, če bi ostala dostopna

zgolj bralcem, ki razumejo hrvaško.

Tomaž Pisanski
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Math. Subj. Class (1985) 05 C 25

Prek koncepta grupe avtomorfizmov se na primeru posplošenih Petersenovih grafov

prikaže pojem simetrije in posebej opiše sedmerica tistih grafov, ki se odlikujejo po izjemno

visoki stopnji simetričnosti.

THE SEVEN "WEIRDO8S?

Using the notion of the automorphism group, the concept of symmetry is introduced

on the model of the generalised Petersen graphs. A special emphasis is given to those

seven among them which enjoy a high degree of symmetry.

1. Za začetek

Matematiki menda veljajo za puste ljudi, pa so vendarle zmožni tudi

kakšne šale na svoj račun. Denimo tele.

Potniki v balonu se izgubijo. Pod sabo opazijo kolesarja. Nekoliko se

spustijo, da ga lahko ogovorijo:

"Oprostite, ali mogoče lahko poveste, kje smo."

Na zastavljeno vprašanje se kolesar zamisli v znani pozi Cankarjevega

kipa na Vrhniki. Kar nekaj časa premišljuje, spet pogleda navzgor, proti

balonu in jim odgovori: |

"V balonu ste!"

Eden od potnikov nejevoljno zavzdihne:

"Pa ravno na matematika smo morali naleteti."

< Zakaj matematika?" so radovedni drugi v balonu.

"Ker je dolgo premišljeval, preden je odgovoril, odgovor je bil točen, pa

brez kakršnekoli uporabne vrednosti." |

Kolikor vas bo ta zapis, v katerem bo govor o simetriji, navdal s podob-

nim mnenjem, si pozorno preberite vsaj njegov zaključek.

Simetrija (simetričnost) je, poenostavljeno povedano, mera za dinamič-

no ravnovesje sistemov. Govori nam o tem, kako se v sistemu, v katerem

je bila narejena določena sprememba, ohranja njemu inherentna struktura.

Skratka, bolj kot je sistem neobčutljiv za netrivialne transformacije — torej

transformacije z razločljivo posledico — bolj je simetričen. Ker je mogoče

v množico vseh takšnih transformacij vpeljati strukturo grupe, je za študij

simetrije naprimernejša umestitev znotraj algebre, točneje — v teoriji grup.

Namen tega zapisa je zgornjim mislim dati konkretno predstavitev na prikazu

modela iz teorije grafov.

Graf je urejen par G <— (V, £), kjer je V 7% 0 množica točk in E

— množica povezav — podmnožica množice neurejenih parov elementov

množice V. Za -povezavo s krajiščema z in y vpeljemo oznako xy. Mera
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simetričnosti grafov je grupa avtomorfizmov, ki jo definiramo takole. Per-

mutacija a množice V je avtomorfizem grafa G, če velja za vsak par

x,y eV

zy € E <—> al(rjaye E

Izkaže se, da ima množica vseh avtomorfizmov grafa G — za običajni produkt

permutacij — strukturo grupe. Tej rečemo grupa avtomorfizmov A(G)

grafa G.

S pomočjo grupe avtomorfizmov lahko vpeljemo pojma točkovne in

povezavne simetričnosri. Graf G je točkovno simetričen, če za vsak par

z,y € V obstaja avtomorfizem a c A(G), ki točko z preslika v točko y, in je

povezavno simetričen, če za poljubni povezavi £y in uv obstaja avtomor-

fizem a € A(G), ki povezavo zy pošlje v povezavo uv, torej a(z)a(y) < uv.

Rečemo lahko, da so v točkovno simetričnem grafu vse točke enakovredne.

Iz katerekoli točke je pogled na preostanek grafa enak. Podobno je s po-

vezavno simetričnimi grafi. V hierarhiji simetričnosti so tedaj točkovno in

povezavno simetrični grafi "nad" tistimi, ki so samo točkovno ali samo po-

vezavno simetrični, ti pa so spet "nad" tistimi, ki niso ne eno ne drugo.

Podrobneje si bomo te relacije ogledali v naslednjem razdelku na družini

posplošenih Petersenovih grafov.

2. Tistih sedem in še nekaj čez

Naj bosta n in k naravni števili, za kateri velja 2 < 2k < n. Posplošeni

Petersenov graf P(n,k) ima množico točk V(P(n.k)) < X UY, kjer je

X — (7; :1 € Z,) ter Y < (4y : 1 € Z,), za množico povezav pa

ZUVUN, kjer je Z <— 4r;z;,, : 1 € Z,) množica zunanjih povezav,

V < (z;y; :1 € Z,) množica vmesnih povezav in N < f4yiwji :1 € Z,)

množica notranjih povezav. Na sliki je prikazan Petersenov graf P(5,2),

po katerem imajo ti grafi kot njegova posplošitev tudi ime.

Z A(n, k) bomo označevali grupo avtomorfizmov grafa P(n, k), z B(n, k)

pa množico vseh tistih avtomorfizmov grafa F(n,k), ki ohranjajo množico

V vmesnih povezav. Definirajmo si še permutaciji p in r na točkah grafa

P(n, k) s predpisoma:

(1). p(x;)< z;;;, pl) <5 ai. (CE Z,)

Grupa C(n,k) < (p,r) je tedaj diedrska grupa z 2n elementi. Hitro se

vidi, da je C(n,k) < A(n,k). Nazadnje podajmo še pravilo, po katerem se

ravna permutacija a na množici točk V (P(n,k)).

(8). a(z;) < yx;, (yi) < zr; (8€ Z,)

2.1. Lema. a€ B(n,k) <—> k? < £l (mod n).
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Doka Funkcija a preslika

vmesno povezavo £;'; na vmesno
povezavo 4,;Yki, Zunanjo povezavo

z;%;,i na notranjo povezavo

YriUkixk MA notranjo povezavo

V; V;y, p Na Par 4 gi, Tpiki]. Sled-
nji je povezava v P(n,k) natanko

takrat, ko je k? < tl (mod n).

2.2. "Trditev |1, Lema 2].

Če je k? Z dl (mod n) potem

je B(n,k)< C(n,k)., Če je k?
dl (mod n), potem je B(n, k)

(C(n, k), a).
Dokaz. Naj bo y € B(n,k). Predpostavimo najprej, daje ,(Z)< Z

ter ,( N) — N. Tedaj mora zožitev avtomorfizma ; na množico X pripadati
grupi avtomorfizmov n-cikla, torej diedrski grupi, generirani z zožitvama

avtomorfizmov p in r na množico X. Hitro se vidi, da je slednje mogoče
edinole, če je y € C(n,k).

Predpostavimo zdaj, da avtomorfizem ; zamenja množici Ž in N. Tedaj

produkt avtomorfizma y in neke potence avtomorfizma p preslika točko zo

v točko yo in zato točko yo v zo. Zato mora slika točke z, pripadati množici

fyK,Y-k). V ničemer se ne prekršimo, če predpostavimo, da se točka z,

preslika v točko y,. Ker vsak element grupe B(n,k) ohranja množico

vmesnih povezav V, se mora točka y; preslikati v točko r,;. Torej je produkt

avtomorfizma j z neko potenco avtomorfizma p (in morebiti še avtomorfizma

r) enak avtomorfizmu x. To pa je mogoče samo, če je k? < £l (mod n).

2.3. Posledica. Če je k? < dl (mod n) potem je graf P(n,k)

točkovno simetričen. Mm

S tem rezultatom smo zelo blizu karakterizacije točkovno simetričnih

posplošenih Petersenovih grafov. Naslednji izrek je mogoče izpeljati iz
posledice 2.3 in osrednjih rezultatov v [1].

2.4. Izrek. Graf P(n,k) je povezavno simetričen natanko takrat, ko je

k? < £l (mod n) ali paje n—1l04nk<2.

Če je točkovno simetričnih posplošenih Petersenovih grafov neskončno
mnogo, se z dodatnim pogojem povezavne simetričnosti iz te nepregledne
množice izbistri sedem posebnežev.

2.5. Izrek. /1, str. 212]. Graf P(n,k) je
takrat, ko je (n,k) eden izmed parov (4,1),

(12,5) tn (24,5). s

Iz izrekov 2.4 in 2.5 seveda sledi, da je vsak povezavno simetričen pos-

plošeni Petersenov gral tudi točkovno simetričen. Dokaz zgornjih izrekov
presega okvir tega zapisa. Vedoželjni bralec si ju lahko ogleda v [1 |. Kratek

komentar k dokazu izreka 2.5. Za dokaz povezavne simetričnosti sedmerice

grafov zadošča, da za vsakega od njih poiščemo avtomorfizem y, ki ne

I
L
O

povezavno simetričen natanko

(5,2), (8,3), (10,2), (10,3),
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ohranja vmesnih povezav. 'Tako lahko za kocko P(4,1) vzamemo y; <

(£6)(y2)(yo£145)(yi£2y5), za Petersenov graf pa j < (20)(44)(yo£1)(yiys)

(£,Y2)(£3y4) — bralcu prepuščamo, da poišče ustrezne avtomorfizme tudi

za ostalo peterico. Veliko težje pa je dokazati, da poleg te sedmerice ni

drugih povezavno simetričnih grafov. Sicer pa so med temi sedmimi grafi

tudi drugače spletene prav tesne vezi. Omenimo samo eno. Grafa P(10,2)

— mimogrede, to je dodekaeder — in P(10,3) sta poleg tenzorskega pro-

dukta P(5,2) x K, edina netrivialna točkovno tranzitivna 2-listna krovna

Petersenovega grafa (glej [2]).

Še informacija o moči grupe avtomorfizmov teh sedmih grafov:
[A(n,k)| < 16n, če je n — 5, k — 2ali n < 10, k < 3 ter |A(n,k)| — 8n

za preostalo peterico. V vseh drugih primerih je seveda A(n,k) — B(n,k)

in zategadelj njena moč dn, če je k? < £l (mod n) in 2n, če k? £ tl

(mod n).

3. Za zaključek

Če se povrnemo k začetni zgodbi, lahko tistim bralcem, ki se sedaj
sprašujejo po uporabnosti tukaj predstavljenih rezultatov, odvrnemo, da leži

vsa uporabnost prav v njihovi neuporabnosti. Ne avtor med pripravljanjem

tega članka ne bralci, ki so se prebili do teh vrstic, niso v tem času naredili

nobenih "uporabnih izumov" in s tem tudi nobene sile svojemu edinemu

življenjskemu okolju. To pa je danes že zelo lep dosežek. Še vedno pa
lahko pojem simetrije prenesemo tudi na kakšno drugo, matematiki manj

naklonjeno področje — denimo v politiko — in pritrdimo tistim skeptikom,

ki trdijo, da imajo vse reforme socializma en sam namen: sistem tako

spremeniti, da ostane prav tak kot prej. Trdoživa simetričnost. Te misli se

spomnimo takrat, ko se bo pred našimi očmi vila dolga kolona kameleonov.

Veliko preveč jih bo za sedem dni v tednu.
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|] R. Frucht, J. E. Graver, M. E. Watkins, The groups of the generalised Petersen graphs,
Proc. Cambridge Phil. Soc. 70 (1971) 211- 218.

[2] D. Marušič, Imprimitive groups and covering graphs, poslano v Discrete Math.

NAVODILO AVTORJEM ZA PRIPRAVO ROKOPISA

S pisalnim strojem napisan rokopis predložijo avtorji v dveh izvodih (drugi

izvod je lahko kseroks kopija) na belem papirju formata A-4, z dvojnim razmikom

in vsaj 2 cm širokim robom na vseh štirih straneh. V tekstu morajo biti vse besede,

ki naj bodo postavljene kurzivno, in vsi matematični simboli podčrtani z valovito

črto, besede in simboli, ki morajo biti stavljeni polkrepko, pa podčrtani z ravno

črto. Podrobnejša navodila so objavljena v Obzorniku mat. fiz. 21 (1974) 62-64.

Pri korekturah na krtačnih odtisih uporabljajte dogovorjene znake (glejte Pravila za

slovenski pravopis DZS, Ljubljana 1990.)
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V članku obravnavamo nekatere osnovne lastnosti grafov intervalov in njihovo

uporabo.

INTERVAL GRAPHS

We consider some basic properties of interval graphs and their applications.

1. Motivacija

Grafi intervalov so med najbolj uporabnimi grafi. (Uporabni so v

genetiki, arheologiji, psihologiji, računalništvu, ... in tudi na drugih področ-

jih matematike. Prvi je na problem karakterizacije grafov intervalov naletel

molekularni biolog Benzer [1], in sicer pri študiju strukture genov. Neod-

visno je isto vprašanje (seveda z drugo terminologijo) zastavil matematik

Hajos [9].

Klasične raziskave Morgana in njegove šole so pokazale, da so gens,

tj. dedni elementi kromosoma, linearno urejeni znotraj kromosoma. Benzer

se je vprašal, ali isto velja tudi za strukturo samega gena. Ker neposredno

opazovanje gena ni možno, se je odločil, da bo študiral njegove mutacije.

[OL I, IL Il, l

Ii |l 1 1 1 0 0

h|1 1 1 1 1 1

ii |l 1 1 1 0 0

, |1 1 1 1 1 0

Ii |O 1 0 1 1 ll

iz |0 1 0 0 1 1

Slika 1. Prekrivanje mutacij in ustrezna linearna ureditev podatkov

Benzer je predpostavil, da je mutacija gena dobljena tako, da se spre-

meni struktura njegovih povezanih podstruktur. Za nekatere mikroorga-

nizme lahko tudi predpostavimo, da je vsaka mutacija dobljena iz določene

osnovne oblike gena s spremembami povezanih delov notranje strukture. 5
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poskusi mu je za vsak par mutacij uspelo ugotoviti, ali se tisti njihovi deli,

ki se razlikujejo od osnovne oblike gena, prekrivajo ali ne. Ko je dobil po-

datke o prekrivanju, si je zastavil vprašanje, ali se dobljeni podatki ujemajo

s hipotezo linearnosti. Natančneje, ali lahko linearno nanizamo povezane

podstrukture, ki se spremenijo pri mutacijah?

Na sliki | imamo primer podatkov o prekrivanju mutacij. Enica na

mestu (t,;) pomeni, da se mutaciji (tj. ustrezni spremenjeni podstrukturi)

prekrivata, ničla pa da ne. Na isti sliki imamo tudi narisano možno linearno

ureditev povezanih podstruktur gena.

V originalnem članku [1] je Benzer opazoval 19 mutacij določenega gena

in za vsak par mutacij odločil, ali se prekrivata. Določil je tudi nepopolno

tabelo za prekrivanje 145 mutacij. Oba eksperimenta sta potrdila hipotezo

- linearnosti. Seveda moramo biti pazljivi. Pozitiven izid poskusa še ne

dokazuje hipoteze, negativen izid pa bi hipotezo zavrgel.

Definirajmo grafG takole. Njegove točke naj bodo podstrukture gena ki

jih obravnavamo, dve točki pa povežemo natanko tedaj, ko se ustrezni pod-

strukturi prekrivata. Ker si linearno ureditev vedno lahko predstavljamo kot

ureditev na realni osi, se Benzerjevo vprašanje glasi: ali obstajajo intervali

na realni osi, ki se sekajo natanko tedaj, ko sta ustrezni točki sosednji? Ali

drugače: ali je graf G graf intervalov?

V drugem razdelku vpeljemo tiste pojme iz teorije grafov, ki jih potre-

bujemo v nadaljevanju. V naslednjem razdelku podamo najvažnejše karak-

terizacije grafov intervalov. Nato omenimo, da so ti grafi popolni in da za

večino problemov, ki so v splošnem NP-polni, na grafih intervalov obstajajo

polinomski algoritmi. Peto poglavje vsebuje nekaj primerov uporabe grafov

intervalov, nazadnje si ogledamo še nekatere njihove zanimive podrazrede.

2. Matematično orodje

Za graf G naj V(G) označuje množico njegovih točk in E(G) množico

njegovih povezav. Vsi obravnavani grafi bodo končni, neusmerjeni grafi brez

zle povezav in zank. Povezavo med točkama u in v bomo označevali

z |u, v

K, jepolni grafna n točkah, C,, je czkelna n točkah. Komplement grafa

G je graf G, za katerega velja V(€) - V(G)in [u,v] € E(G) natanko tedaj,
ko |u,v| £ E(G ).

Graf H je podgraf grafa G, če je V(H) C V(G) in E(H) C E(G).

Podgraf H grafa G je inducirani podgraf, če je H maksimalni podgraf na
točkah V (H). Klika grafa je maksimalni polni podgraf— torej polni podgraf,

ki ni vsebovan v nobenem večjem polnem podgrafu. Število točk največje
klike v G označimo z w(G). Tako je v(K,) < nin w(C,) <2, n > 3.

Preslikava f :V(G) — V(H) je homomorfizem ali grafovska preslikava,

če ohranja sosednjost, tj. če iz |u,v] e E(G) sledi [f(u), f(v)| € E(H). Graf

G je n-obarvljiv, če obstaja homomorfizem c : G — K,,. Če je n najmanjše
število, za katero obstaja homomorfizem c : V(G) — K,,, pravimo, da je
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kromatično število G enako n, x(G) < n. Intuitivno, x(G) < n, če je n

najmanjše možno število barv, s katerimi lahko pobarvamo točke G, tako da

imata poljubni sosednji točki različni barvi. Tako je x(K,) < n, x(C2,) < 2

in x(Ca,41) < 3. Graf G imenujemo dvodelen, če je x(G) < 2. Ali drugače,

graf G je dvodelen, če lahko njegovo množico točk V (G) razbijemo na dve

podmnožici tako, da nobeni točki iz iste podmnožice nista sosednji.

Grafje trianguliran, če vsak cikel dolžine vsaj 4 vsebuje vsaj eno diago-

nalo, tj. povezavo med dvema nezaporednima točkama cikla. G je tranzitivno |

usmerljiv, če lahko njegove povezave usmerimo tako, da predstavljajo tran-

zitivno relacijo.

3. Osnovne lastnosti grafov intervalov

G je graf intervalov, če lahko vsaki njegovi točki priredimo interval na

realni osi tako, da sta točki grafa sosednji natanko tedaj, ko imata prirejena

intervala neprazen presek. Ustrezno prireditev intervalov imenujemo znter-

valna predstavitev G. Namesto realne osi lahko vzamemo poljubno neskončno

linearno urejeno množico in njene intervale — dobimo isti razred grafov. Na

sliki 2 sta dva grafa intervalov in njuna intervalna predstavitev. Tretji grafi

ustreza intervalni predstavitvi slike 1.

Slika 2. Grafi intervalov

Lekkerkerker in Boland |13| sta podala prvo karakterizacijo grafov in-
tervalov. Dokazala sta:

Izrek 1. GrafG je graf intervalov natanko tedaj, ko zadošča nasled-

njima pogojema:

(i) G je traanguliran graf.

(ti) Poljubne tri točke grafa G lahko uredimo tako, da vsaka pot med prvo

tn zadnjo točko poteka skozi srednjo točko ali nekega njenega soseda.

Dejansko pogoj trianguliranosti pomeni, da na koncu pridemo do trikot-

nikov. Poglejmo si cikel acefdb grafa G s slike 2. 'Ta cikel ima diagonalo

[c, d] (in seveda tudi diagonali [5,c] in [d,e|). Seveda mora imeti sedaj cikel

ce fd svojo diagonalo: povezavo [d,e|. Opazimo, da je pogoj trianguliranosti
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na prazno izpolnjen za graf H. Oglejmo si še pogoj (ii) gornjega izreka na
grafu I. Za primer izberimo točke /,, /, in 1,. Za to trojico točk moramo

za srednjo točko izbrati /,.

V članku [|13| sta Lekkerkerker in Boland poiskala tudi minimalne pre-

povedane inducirane podgrafe za grafe intervalov. Dokazala sta izrek:

PAN

n>6

Slika 3. Prepovedani inducirani podgrafi

Izrek 2. GrafG je graf intervalov natanko tedaj, ko ne vsebuje nobenega
izmed grafov s slike 3 kot inducirani podgraf.

Najpomembnejšo karakterizacijo (Izrek 3) sta dokazala Gilmore in Hofi-

man [5]. Naj bo G poljuben graf in predpostavimo, da lahko njegove klike

linearno uredimo tako, da za vsako točko z € V (G) velja: klike, ki vsebujejo

x, nastopajo zaporedoma v linearni ureditvi. Tako ureditev klik imenujemo

zaporedna ureditev klik.

Izrek 3. Za grafG so ekvivalentne naslednje trditve:

(1) G je graf intervalov. |

(ii) G ne vsebuje induciranega cikla C, in G je tranzitivno usmerljiv.

(ui) Obstaja zaporedna ureditev klik grafa G.

C d

d

x f a
Preden izrek dokažemo, si ogle-

jmo sliko 4 in sliko 5. Na prvi

sta tranzitivni usmeritvi za komple- O o

menta grafov G in H s slike 2, na b — N b € a
drugi pa je označena linearna ured- 6 H
itev klik za grafa G in / s slike 2. Slika 4. Tranzitivni usmeritvi za graf G in H

112 Obzornik mat. fiz. 37 (1990) 4



Dokaz. (i) —> (ii). Recimo, da G vsebuje induciran cikel C, z za-

porednimi točkami v,, vs, vs, va, in naj bodo !,, I,, I;, 1, ustrezni inter-

vali predstavitve. Brez izgube za splošnost privzemimo, da interval /, leži

levo od intervala /;. Tedaj mora tudi interval /, ležati desno od [,, torej

[v,, vi] € E(G), protislovje.

aa o 8%,

RR omaro | Mneei osmem?

Slika 5. Linearna ureditev klik grafa G in 1

Naj bo (/,)$,ev(a) intervalna predstavitev G. V G usmerimo povezavo

od u do v natanko tedaj, ko leži interval /,, levo od /,. Definirana usmeritev

je očitno tranzitivna.

(ii) — (ili). Naj bo F tranzitivna usmeritev v G. Če je povezava

[u, v] € E(G) usmerjena od u k v, bomo to pisali kot uFv. Pokažimo najprej

naslednjo lemo:

Lema 4. Naj bosta G; in O, kliki grafa G. Tedaj; 1majo vse povezave

grafa G med 0, in G. isto usmeritev v PF.

Dokaz. V E(G) obstaja vsaj —A,
ena povezava med 0, in (,, sicer

bi bila O, U 0, klika, ki bi strogo m
vsebovala 0, (in tudi 0,). Pred-

postavimo, da je a,c € 0O;, b,d €

O. in aFb,dFc (glej sliko 6: Polne m!

črte so povezave v E(G), črtkane v . |

E4(G)). Slika 6. Povezave med 0, in $G>

Če je a — c, smo v protislovju s tranzitivno usmeritvijo F, saj povezave

[>, d] < E(G) ne moremo tranzitivno usmeriti. Analogno mora biti b z d. V

E(G) ne moreta hkrati obstajati povezavi [a, d] in |c, 5], sicer bi točke a, d,b,c

v G inducirale cikel C,. Brez izgube za splošnost naj bo |a,d] ec E(G). Toda

te povezave ne moremo tranzitivno usmeriti, protislovje. S tem je Lema 4

dokazana.

Naj bo C množica klik grafa G. Za 0,,0, € C naj bo 0; < 0, natanko

tedaj, ko so povezave v F usmerjene od 0, h 0,. Ni težko videti, da relacija

< linearno ureja množico C, zato ta del dokaza prepuščamo bralcu.

Naj bodo klike 0,;,0.,..., 0,, linearno urejene glede na relacijo <,

tj. O; < 0; <%—> i< j. Predpostavimo, da obstajajo klike $;, ;, x,

DOO o mmmle va mnit Bre o BE (H1OOODO JA tih be;



1 < j< kin točka ve V(G), tako da velja: vE0;,v€0,; inv £0;. Ker

v €£ 0; obstaja točka w € 0,;, za katero |v, w| £ E(G), sicer bi bila 0; U4w)

klika, ki bi strogo vsebovala $;. Torej je |v,wj c E(G). Toda iz 0; < 0,

sledi vFw, iz 0; < 0, pa wFv, protislovje.

(iii) — (i). Za vsako točko v ec V(G) naj bo I(v) množica klik, ki

vsebujejo v. Očitno je I(v) interval v linearno urejeni množici klik. Ker

vsaka povezava |u,v] < E(G) leži v neki kliki, je |u,v] c E(G) natanko

tedaj, ko je I(u) o I(v) zA 0. 41(v)) je intervalna predstavitev grafa G. m

Posledica 5. G je graf intervalov natanko tedaj, ko je G trzanguliran
tn je G tranzitivno usmerljiv.

Dokaz. Naj bo G graf intervalov. Po Izreku 3 je G tranzitivno

usmerljiv. Naj bo C,, n > 4 induciran podgraf v G. Ker je vsaka povezava

cikla C,, vsebovana v neki kliki, je nemogoče poiskati zaporedno ureditev

klik. s

Točko (iii) Izreka 3 lahko preoblikujemo v matrično obliko. Naj bo dan

graf G, V(G) < (v,,wa,..., v,) in naj bodo 0;,02,..., 0,, klike grafa

G. Matrika klik C(G) grafa G je matrika m x n z vrednostmi

O, sicer

Posledica. Graf G je graf intervalov natanko tedaj, ko lahko vrstice

matrike klik permutiramo tako, da enice v vsakem stolpcu nastopaja zapore-

doma.

Dokaz. Klike uredimo tako, kot pravi točka (iii) Izreka 3. m

Posledica 6 je osnova algoritma, ki za dani graf G v času O(|V (G)| -H

E(G)/) odloči, ali je graf intervalov. Algoritem sta razvila Booth in Leuker

[3]. Algoritem je iz dveh delov iste časovne zahtevnosti. Najprej preve-

rimo, ali je G trianguliran graf. Če je, potem nimamo več kot |V(G)]|

klik. Oštevilčimo jih po točki (iii) Izreka 3. Nazadnje preverimo, ali klike

zadoščajo Posledici 6. Natančnejši opis algoritma zasluži poseben članek,

razen v originalnem članku je lepo opisan tudi v Golumbicovi knjigi [6].

4. Popolni grafi

Kromatično število grafaje vsaj toliko, kolikor je točk v njegovi največji

kliki, saj moramo v kliki vsako točko pobarvati z različno barvo. Za nekatere

grafe je kromatično število enako velikosti največje klike (npr.: Če je G

dvodelen graf, je x(G) < v(G) <— 2), za druge pa ne (npr.: x(C2,41) < 3, —

Graf G je popoln, če za vsak njegov inducirani podgraf / velja x(H) <

w(H). V posebnem mora torej veljati x(G) < w(G). Ker je inducirani

podgraf dvodelnega grafa dvodelen, so, koti smo videli v gornjem primeru,
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dvodelni grafi popolni. O popolnih grafih je Golumbic napisal odlično knjigo

|6]. Dokažimo najprej:

Izrek 7. Vsak tranzitivno usmerljiv grafje popoln.

Dokaz. Naj bo G tranzitivno usmerljiv graf, v(G) < n in F njegova

tranzitivna usmeritev. Naj bo V(K,) < 41,2,..., nj. Za poljubno točko

v ec V(G) definirajmo f(v) kot največje število točk na usmerjenih poteh,

ki se začne v točki v. Če takih poti ni, je f(v) < 1. Ker je F tranzitivna
usmeritev, vsaka usmerjena pot te usmeritve ustreza neki kliki grafa G,

zato je f(v) < n. Funkcija f : G — K,, je tudi homomorfizem, zato je

x(G) < v(G). Ker je vsak inducirani podgraf tranzitivno usmerljivega grala

tranzitivno usmerljiv, je izrek dokazan.

Berge [2] ter Hajnal in Suranyi [8] so dokazali naslednji pomemben

rezultat:

Izrek 8. Vsak traanguliran grafje popoln.

Ker so grafi intervalov po Posledici 5 triangulirani, imamo:

Posledica 9. Vsak graf intervalov je popoln.

Omenili smo že, da lihi cikli C,,,,;, n > 2, niso popolni grafi. Po

slavnem Lovaszovem izreku [14/

Izrek 10. GrafG je popoln natanko tedaj, ko je G popoln.

tudi komplementi lihih ciklov niso popolni. Lihi cikli in njihovi komplementi

so tudi edini znani minimalni nepopolni grafi. Bergeove domneva iz leta

1960, ki je eden najslavnejših odprtih problemov teorije grafov, pravi:

Domneva. Graf G je popoln natanko tedaj, ko G in G ne vsebujeta
enduciranih ciklov C,,4,, n> 2.

5. Še o uporabi grafov intervalov

Navedimo najprej primer uporabe, pri katerem bo potrebno o grafih

intervalov vedeti še kaj več kot le izreke za njihovo prepoznavanje.

V laboratoriju imamo snovi s;, Sa,..., Sn, ki jih moramo hraniti pod

natančno določenimi pogoji. Snov s; mora biti stalno na temperaturnem

intervalu med t; in t;. Koliko je najmanjše število hladilnikov, ki nam še

zagotavlja hranjenje vseh snovi!

Naj bo G graf intervalov s točkami s;, s3,..., s, in naj bosta dve točki

sosednji natanko tedaj, ko se ustrezna temperaturna intervala prekrivata.

Spomnimo se klasičnega Hellyjevega izreka (dokaz najdemo npr. v [18]):

Izrek 1l. Naj bo C < 4C,, C2,..., C;j družina konveksnih podmnožic

prostora IR". Če ima vsaka poddružina v C z n - l ali manj množicami

neprazen presek, potem ima tudi cela družina C neprazen presek.

Naj bo O klika grafa G. Ker so intervali konveksne množice v IR'. imajo
po Izreku 11 temperaturni intervali, ki ustrezajo kliki ), neprazen presek.
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Rešitev našega optimizacijskega problema je torej najmanjše število klik, ki

pokrije graf G.

Slednji problem je v splošnem NP-poln, v razredu grafov intervalov

pa je polinomski (gl. 6, Remark, str. 174]). Razen problema minimalnega

pokritja s klikami so v razredu grafov intervalov polinomski tudi mnogi drugi,

v splošnem NP-polni problemi. Naštejmo nekatere: določitev kromatičnega

števila grafa, določitev največje klike grafa, določitev hamiltonskosti grafa,

določitev pasovnosti grafa.

Oglejmo si še zvezo grafov intervalov z relacijami urejenosti. Relacija

R je polurejenost na množici X, če za vse z, y, z,w € X zadošča naslednjim

aksiomom: |

Aksiom l: -rRr

Aksiom 2: zRyA zkw — zRwV zRy

Aksiom 3: zRyA yRz — zRwV wRz

Relacija, ki poleg irefleksivnosti (aksiom 1) zadošča še aksiomu 2 je

intervalna urejenost, tisto pa, ki zadošča aksiomoma 1 in 3, imenujemo delna

polurejenost.

Ce je RyA yRz, iz Aksioma 2 sledi x Rz V yRy. Ker je intervalna ure-

jenost irefleksivna, je intervalna urejenost tranzitivna. Podobno ugotovimo,

da je delna polurejenost tranzitivna.

Izrek 12. GrafG je graf intervalov natanko tedaj, ko obstaja ortenta-

cija njegovega komplementa G', ki je intervalna urejenost na V (G).

Dokaz. Naj bo G graf intervalov in (Z, $,<y(c; intervalna predstavitev

G. Za [u,v] < E(G) naj bo u < v natanko tedaj, ko leži interval 7,, levo od

I,. Ni težko preveriti, da je < intervalna urejenost na V (G).

Naj bo F orientacija povezav v G, ki je intervalna urejenost na V(G).

Če je cikel C, inducirani podgraf v G, potem imamo v G dve neodvisni
o . P B ) P LJ e LJ .

povezavi, kar Je v protislovju z intervalno urejenostjo. Ker je intervalna

urejenost trazitivna, je G tranzitivno usmerljiv, zato je po Izreku 3 G graf

intervalov, m

Izrek 13. je osnovna zveza med grafi intervalov in strukturami ure-

jenosti. Več o tem lahko preberemo v Fishbournovi knjigi [4].

Kot smo poudarili, so grafi intervalov silno uporabni. Bralec, ki bi

o možnih nadaljnjih uporabah rad zvedel še kaj več, bo to našel npr. v

Robertsovi knjigi [16] in Golumbicevi knjigi [6].

6. Podrazredi grafov intervalov

Pravi podrazred grafov intervalov dobimo, če dovoljujemo za intervalno

predstavitev grafa le intervale enotske dolžine. Ustrezne grafe imenujemo

grafi enotskih intervalov. Tudi grafi enotskih intervalov so v tesni zvezi s

strukturami urejenosti:
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Izrek 13. GrafG je graf enotskih intervalov natanko tedaj, ko obstaja

usmeritev povezav njegovega komplementa G, ki je polurejenost na V (G).

Čeprav je na prvi pogled Izrek 13 zelo podoben Izreku 12 in torej dokaz
ne bi smel delati večjih težav, ni tako. Dokaz Izreka 13 je narejen v [12] s
pomočjo Scott-Suppesovega izreka.

Presečne grafe intervalov, kjer

ni noben interval v celoti vsebovan

v drugem, imenujemo grafi pravih

intervalov. Dejansko s to definicijo

ne dobimo nobene nove strukture,

saj je Roberts [15] dokazal: Slika 7. Graf K,,s

Izrek 14. Za grafG so ekvivalentne naslednje trditve:

(1) G je graf intervalov, ki ne vsebuje inducitranega podgrafa, ku je 1zomorfen

K, 5 (glej sliko 7).

(wi) G je graf enotskih untervalov.

(11) G je graf pravih intervalov.

Dokaz. (i) —> (ii). Ker je G graf intervalov, po Izreku 12 obstaja

orientacija F njegovega komplementa G, ki je intervalna urejenost na V (G).

Pokažimo, da je F tudi delna polurejenost. Predpostavimo nasprotno:

aFy, uFz, -aaFw, awFz. Če je wFr, zaradi tranzitivnosti dobimo wFz,
protislovje. Analogno protislovje dobimo za primer zFw. Torej je |£,w| €
E(G)in [z,w] € E(G). Dalje, (y, w] £ E(G), sicer bi bil graf X,,s induciran

podgraf v G. Sedaj je ali yFw ali wFy. Ker v obeh primerih pridemo v
protislovje z tranzitivnostjo F, mora biti F delna polurejenost in torej tudi

polurejenost. Po Izreku 13 je G graf enotskih intervalov.
ii) —> (iii). Ni težko videti, da za za vsak graf intervalov obstaja

intervalna predstavitev iz samih različnih intervalov. Če so vsi intervali
take predstavitve enotski, noben ne more biti vsebovan v drugem.

(iii) — (i). Naj bo G graf pravih intervalov in predpostavimo, da

vsebuje induciran K,;s. Naj v intervalni predstavitvi intervali /;, /, in 43

ustrezajo točkam stopnje ena podgrafa K, 5, ! pa srednji točki. Brez izgube

za splošnost naj /, leži med [, in I5. Tedaj je očitno, da mora interval / v

celoti vsebovati interval /,, protislovje. sm

Na sliki 2 sta grafa G in ! grafa pravih intervalov, H pa očitno ni tak.

Zanimivo strukturo grafov dobimo tudi, če je intervalna predstavitev

sestavljena iz poltrakov na realni osi. Ustrezne grafe imenujemo grafi neome-

jenih intervalov. Zanje velja naslednji izrek [11]:

Izrek 15. G je graf neomejenih intervalov natanko tedaj, ko je G
trianguliran in G dvodelen.

O eno in več dimenzionalnih posplošitvah grafov intervalov pa ob kaki

drugi priložnosti.
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OBVESTILO ČLANOM DRUŠTVA

Ob izidu četrte številke Obzornika za matematiko in fiziko smo

poslali vsem članom, ki še niso nakazali članarine, izpolnjeno položnico

s prošnjo, da nam čimprej nakažejo vpisani znesek 110,00 din (članarina

in opomin). S pravočasnim plačevanjem članarine boste pripomogli k

rednemu izhajanju društvenega glasila.

Milan Hladnik, Janez Strnad, Ciril Velkovrh
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BOJAN MOHAR

Math. Subj. Class. (1985) 05-01, 05 C 10

Omenjenih je nekaj osnovnih lastnosti ravninskih grafov.

PLANAR GRAPHS

Basic properties of planar graphs are presented.

1. Osnovni pojmi

Z besedico graf bomo mislili na končen, neusmerjen graf, ki ne vsebuje

zank ali vzporednih povezav. Množico točk grafa G bomo označili z V (G),
množico povezav pa z E(G). Povezavo med točkama u in v na kratko

zapišemo kot uv (<vu). Če je X C V(G), označimo z G — X graf, ki ga
dobimo, če iz G odstranimo vse točke iz X in vse povezave, ki imajo kakšno

krajišče v X. Če e € E(G), označimo z G — e graf, ki ga dobimo iz G z
odstranitvijo povezave e.

Graf G je ravninski, če ga lahko "narišemo" v Evklidski ravnini IR?
tako, da se nobeni dve povezavi ne sekata. Takšno "risanje" imenujemo tudi
vložitev grafa v ravnino in ga natančneje definiramo takole. Povejmo najprej,

da bomo z besedico lok mislili na injektivno, zvezno in odsekoma gladko sliko

enotskega intervala v ravnini IR?. Vložitev grafa G v ravnino je potem par

preslikav, o: V(G) — R? in v : E(G) — (loki v IR"), za kateri velja:

(1) p je injektivna,

(2) če je e < uv poljubna povezava iz G, je v(e)ap(V(G)) < te(u), e(v)j in
o(u), (v) sta ravno konca loka w(e),

(3) če sta e in f različni povezavi, je presek lokov y(e) AY(/) € g(V(G)), tj.
basa?

skupni sta kvečjemu eno ali obe krajišči.

(d)

Slika 1.

Na sliki l je prikazanih več vložitev istega grafa v ravnino. Vsaka

vložitev določa eno ali več le, ki jim pravimo tudi območja ali celice dane
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vložitve. To so povezani kosi, ki jih dobimo, če iz ravnine odstranimo vse

točke in vse loke, ki jih določa vložitev. Pri risbi na sliki la imamo pet lic,

ki so označena z A,B,C,D, E. Lice D, ki je neomejeno, imenujemo tudi

zunanje lice. Vsako lice ima na svojem robu sklenjeno zaporedje povezav, ki.

mu pravimo rob lica. Na primer: rob lica D na sliki la je 12, 23, 36, 65, 53,

31. Če graf ni povezan, so robovi lic lahko sestavljeni iz več delov.

Med številom točk, številom povezav in številom lic vloženega ravnin-

skega grafa velja enostavna zveza, ki jo je poznal že Euler in se po njem

imenuje Eulerjeva formula.

Izrek 1. (Euler). Naj bo G povezan graf, vložen v ravnino. Če je
v < |V(G)|, e< |E(G)| in je f število lic, tedaj jev—e4- f <2.

Dokaz. Izrek bomo dokazali z indukcijo glede na število povezav grafa

G. Edini povezani graf z e — O povezavami ima eno samo točko, zato je

v < f < ]. Zanj izrek očitno velja.

Naj bo sedaj e > 0 in predpostavimo, da izrek velja za vse povezane

grafe s kvečjemu e — l povezavami. Če graf G ne vsebuje nobenega cikla (je

drevo), obstaja točka z < V (G), ki je stopnje 1. (Tako točko lahko enostavno

poiščemo s "požrešno metodo"!) Naj bo G' :< G — 4r). Za število točk,

povezav in lic vloženega grafa G' očitno veljaw < v-l,e' <e-lin f' — f.

Iz indukcijske predpostavke v' — e' -- f — 2 sledi veljavnost Eulerjeve formule

tudi za graf G. Če pa G vsebuje kak cikel, recimo C, naj bo a poljubna
povezava na CU. Sedaj naj bo G' :< G — a. Tako dobljeni graf je še vedno

povezan in vložen v ravnino. Vloženi cikel C določa v ravnini Jordanovo

krivuljo, ki deli ravnino na dva dela in zato leži povezava a na robu dveh lic

vložitve grafa G. Torej je f' < f —1. Iz indukcijske predpostavke za G' tako

kot prej sledi Eulerjeva formula za vloženi graf G. m

2. Enoličnost vložitev v ravnino

Vsak ravninski graf ima mnogo vložitev v ravnino. Vendar pa so si

nekatere med njimi lahko zelo podobne. Kljub temu, da si vložitvi s slik la

in 1b na prvi pogled nista zelo blizu, opazimo, da imajo njuna lica enake

robove. Dokler nas zanimajo kombinatorične lastnosti vložitev, lahko taki

vložitvi enačimo. V splošnem pravimo, da sta dve vložitvi istega grafa

kombinatorično ekvivalentni, če so vsi robovi lic prve vložitve tudi robovi

lic druge vložitve in obratno. Morda ne bo odveč poudariti, da so robovi lic

zaporedja povezav in da gre pri njihovem ujemanju za enako ali za obratno

zaporedje povezav. Ni takoj očitno, vendar pa lahko enostavno preverimo,

da sta tudi vložitvi na slikah 1c in 1d ekvivalentni, medtem ko vložitvi 1b in

lc nista. Za ravninski graf G bomo dejali, da ima kombinatorično enolično

vložitev v ravnino, če so vse njegove vložitve med seboj ekvivalentne.

Povejmo še, kaj je to 3-povezanost. Graf G je 3-povezan, če vsebuje vsaj

štiri točke in pri odstranitvi poljubnih dveh ali manj točk (ter njim sosednih

povezav) dobimo povezan graf. Za 3-povezane grafe je Whitney [10] pokazal

naslednje.
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Izrek 2. (Whitney). Povezan ravninski graf G brez točk stopnje

< 2 ima kombinatorično enolično vložitev v ravnino natanko tedaj, ko je

3-povezan.

Dokaz. Najprej pokažimo potrebnost 3-povezanosti. Recimo torej, da

G ni 3-povezan. Tedaj bodisi obstaja taka točka v € V(G) ali pa tak par

točk v,u e V(G), da graf G — (v) oz. G — (v,uj ni povezan. Ker ni točk

stopnje manj kot 3, ni treba skrbeti za primer, ko ima G manj kot 4 točke.

Poglejmo najprej prvi primer. Slika grafa G — (v) v ravnini je sestavljena iz

dveh (ali več) povezanih kosov. Tedaj obstaja taka Jordanova krivulja y v

IR?, ki loči eno takih komponent od drugih. Za y lahko predpostavimo, da

v nobeni točki razen v sliki p(v) točke v ne seka slike grafa G v IR" (gl. sliko
2). Tedaj lahko vložitev spremenimo tako, da izrežemo disk, ki ga omejuje

4 in ki vsebuje izbrano komponento G;, ga "obrnemo" in ponovno nalepimo

nazaj. Pri tem večina lic ohrani enak rob. Vendar pa lice, ki vsebuje v, ne

more ostati enako. Če se ne bi spremenilo, bi morala povezavi a (glej sliko):

slediti povezava 5. To pa je res le v primeru, ko je b < cali pa a < d. V

prvem primeru je G, "pripet" na v le z eno povezavo in, ker ni točk stopnje 2,

je a z£ d. Pomaknimo se s točko v v drugo krajišče v' povezave b — c. Tudi

G — v' ni povezan (ker v G ni točk stopnje 1). Ponovimo sedaj isti sklep kot

prej, tokrat za točko v' namesto v. Ker v' ni stopnje 2 in ker a Z d, vidimo,

da imamo vložitev, ki ni ekvivalentna prvotni. Še druga možnost, a < d.

Tedaj pa je b -£ c. Sedaj napravimo tako, kot smo prej, le da se pomaknemo

v drugo krajišče v' povezave a — d.

Slika 2.

Slika 3.



Možnosti, ko je G — 4u,v) nepovezan, se lotimo na enak način. Naj

tokrat zadostuje le slika 3.

Dokaz zadostnosti je malo težji. Naj bo G 3-povezan. Potem v G ni

točk stopnje < 2. Bralcu prepuščamo razmislek, da na robu nobenega lica

ne more priti do ponovitve iste točke. Z drugimi besedami, robovi lic so cikli

grafa G. Recimo sedaj, da imamo dve neekvivalentni vložitvi, in naj bo C

cikel v grafu, ki je rob lica v eni in ni rob lica v drugi vložitvi. Vsak cikel

določa v ravnini Jordanovo krivuljo, ki razdeli IR" na dva dela. Ker pri drugi

vložitvi C ni rob lica, v vsakem od teh delov najdemo točke grafa, pa pri

prvi vložitvi eden od delov, recimo notranji, ne vsebuje nobene točke grafa.

Poglejmo sedaj komponente grafa G — C (G brez točk na C in brez

njim sosednih povezav). Če vsako od teh komponent nadomestimo v grafu

G s točko, dobimo graf G', ki je še vedno ravninski in ima tudi dve različni

vložitvi, pri katerih je C enkrat rob lica, drugič pa ne. Vsako tako. točko

skupaj z vsemi povezavami, ki vodijo do C, in vsako povezavo, ki ima oba

konca na C, sama pa ne leži na C, imenujemo most cikla C. Naj bodo

M,,M.,...,M,, vsi mostovi cikla C. Ker je C rob lica v prvi vložitvi in

zato vsi mostovi ležijo v zunanjem območju cikla C, se nobena dva mostova

ne moreta prepletati (gl. sliko 4). To pomeni, da ne obstajajo take različne

točke a,b,c,d na C (v navedenem vrstnem redu), da bi točki a, c pripadali

mostu M;, b in d pa M; (j A 1). Vzemimo sedaj poljuben most, recimo

M,. Ker C ni rob lica v drugi vložitvi, je k > 2 in torej M, Z M,. Točke

pripojitve mostu M, na C razdelijo C na loke. Na enem od teh zaprtih lokov

je pripojen M,. Recimo, da je tak lok P in da sta a in b točki iz M,, ki

določata ta lok. Zaradi neprepletanja mostov je graf G — (a,b) nepovezan.

Edina možna izjema nastopi v primeru, ko je M, pripojen na C le v točkah

a in bin na P ni nobene notranje točke. Vendar pa tedaj M, ni povezava,

saj bi imeli povezavo vzporedno z ab na ciklu C. Torej tudi v tem primeru

G — fa,b) vsebuje vsaj dve komponenti, kar je v nasprotju s 3-povezanostjo

grafa G. m

Ravninski 3-povezani grafi ima-

jo pomembno zvezo z geometrijski-

mi telesi — poliedri. Steinitz [5] je

namreč dokazal, da velja:

Izrek 3. (Steinitz). GrafG je

graf oglišč 1n robov nekega poliedra

natanko tedaj, ko je 83-povezan in

ravninska. |
Slika 4.

Če je G graf robov nekega poliedra, je očitno ravninski, saj lahko dobimo
njegovo vložitev v ravnino s pomočjo vsem znane stereografske projekcije.

Tudi njegove 3-povezanosti ni težko dokazati. Manj očiten pa je obrat.

Omenimo le to, da se lica poliedra in lica (enolične) ravninske vložitve grafa

paroma ujemajo.
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Vložitve z ravnimi črtami3.

Geometrijsko so zanimive le take ravninske vložitve grafov, kjer so vse

povezave vložene kot ravne črte — daljice med ustreznimi slikami točk.

Kateri grafi se dajo vložiti na ta način, nam pove naslednji izrek.
)

Izrek 4. (Wagner-Fary). Vsak ravninski graf lahko vložimo v ravnino

z ravnimi črtama.

Izrek 4 je prvi dokazal Wagner [9], čeprav avtorstvo mnogi pripisujejo

Faryju [1]. Dokaz izreka 4 najdemo tudi v naslednjem razdelku. Dokazali

ga bomo hkrati z izrekom 6. Hkrati pa bomo dokazali še delno poostritev

izreka 4, katere avtorstvo gre Steinu [4] in Tutteu [7]. Povejmo, da je vložitev

grafa G v ravnino konveksna, če je vložitev z ravnimi črtami in je vsako

lice razen zunanjega konveksni mnogokotnik, zunanje lice pa je komplement

konveksnega mnogokotnika.

Izrek 5. (Stein-Tutte). Vsak ravninski 3-povezan graf vma konveksno
vložitev v ravnino.

4. Karakterizacija ravninskih grafov

Zanimivo je, da niso vsi grafi ravninski. Še več, "skoraj noben" graf ni

ravninski. Zato se postavi vprašanje, kako ugotoviti, ali je neki dani graf G

ravninski ali ne. V tem razdelku si bomo ogledali pomembno karakterizacijo

ravninskih grafov, znameniti izrek Kuratowskega.

K33

Slika 5.

Najenostavnejša grafa, ki nista ravninska, sta K; in 43,5 (gl. sliko 5).

Neravninska je tudi vsaka njuna subdivizija, to je vsak graf, ki ga dobimo

tako, da na eni ali več povezavah dodamo nekaj točk stopnje 2 (povezave

nadomestimo s potmi dolžine > 2). Zanimivo je, da so ti grafi tudi edine

«ovire? za ravninskost.

Izrek 6. (Kuratowski). Graf je ravninski natanko tedaj, ko ne vsebuje

podgrafa, ki je subdivizija grafa K; ali K5.3.

Če graf vsebuje neravninski podgraf, tudi sam ne more biti ravninski,

saj bi njegova ravninska vložitev določala tudi vložitev podgrafa. Dokaz
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obrata je težji. Pri dokazu, ki ga povzemamo iz [6], si bomo pomagali z

dvema pomožnima izrekoma.

Naj boG poljuben graf in e <c E(G). Tedaj z G/e označimo graf, ki ga

dobimo iz G tako, da povezavo e stisnemo v točko, oziroma da iz G'najprej

odstranimo povezavo e in zatem identificiramo njuni krajišči. Če pri tem

pride do vzporednih povezav, iz vsakega vzporednega para odstranimo še po

eno od povezav.

Lema l. Če je G 3-povezan graf, ki ima vsaj 5 točk, vsebuje tako

povezavo e, da je graf G/e tudi 3-povezan.

Dokaz. NRecimo, da to ne bi bilo res. 'Tedaj bi imel graf G/e (za

poljubno povezavo e) točki 1, y, ki ga separirata, t.j., G/e—1z,y) ni povezan.

Ena od teh točk mora biti enaka točki, ki smo jo dobili, ko smo stisnili

e — uv, saj bi sicer že G ne bil 3-povezan. Recimo, da je to y. Zato trojica

fu, v,r) separira. grafG, tj. G—(u,v,z) ni povezan. Med vsemi možnostmi

izberemo e in z tako, da bo imel graf G — (u,v,x) kar se da veliko eno od

komponent. Označimo to komponento s H, H, pa naj bo ena od preostalih

komponent v G — (u,v,r1). Naj bo e;, < rt povezava v G, ki povezuje z in

neko točko %t v H,. Ker G/e, ni 3-povezan, obstaja taka točka s v G, da

graf G — (z,t,s) ni povezan. Če s ni v H U 4u,v), ima graf G — (r,t,s)

večjo komponento kot je H (namreč podgraf, induciran na H U4u,vj, ki je

povezan zaradi 3-povezanosti grafa G), kar je v nasprotju z maksimalnostjo

izbire H. Točka s tudi ne more biti v H, kajti tedaj bi že 41,s) separiral

graf in to bi bilo v nasprotju s 3-povezanostjo. Ostane le še možnost s — u

ali s — v in lahko privzamemo, da je s < v. Ker 44,s) ne separira grafa G,

imamo v G — (4,s,t) komponento, ki vsebuje cel H in še točko u povrhu.

Tako smo spet prišli do protislovja z maksimalnostjo H in dokaz je končan.

Lema 2. Naj e€ E(G). Če G/e vsebuje subdivizijo grafa K, ali K;5,

vsebuje subdivizijo grafa K; ali K;z tudi G.

Dokaz. Naj bo e <— uv, z pa točka v G/e, ki nastane, ko stisnemo

povezavo e. Označimo s K podgraf v G/e, ki je subdivizija K; ali K3,5. Če

K ne vsebuje z, je to že iskani podgraf v G in dokaz je končan. Sicer pa

si oglejmo podgraf K v G, ki mu v G/e ustreza K. Konstruirajmo podgraf

K' C G, tako da K dodamo povezavo e, zatem pa v dobljenem grafu pri

vsakem paru povezav uw, vw, kjer je zw iz K, eno od njiju izpustimo. Če

Imata točki u ali v stopnjo 2 v K' ali pa če ima z stopnjo 2 v K, tedaj ni

težko videti, da K' vsebuje subdivizijo K; ali K5;3. Zato mora biti stopnja

xa v K vsaj 4. Torej gre za subdivizijo grafa K;5, v K' pa morata imeti tako

u kot v stopnjo 3. Zato je K' subdivizija grafa na sliki 6. Če temu grafu

odstranimo subdiviziji povezav ab in cd, dobimo subdivizijo grafa K;;5, ki

je torej vsebovana tudi v G.
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Doka ka 6 (le obrat). Naj

n označuje število točk grafa G. Z
indukcijo po n bomo pokazali, da

mora biti vsak graf brez subdivizije

K; ali K; z ravninski.

Slika 6.

| C

Hkrati z izrekom 6 bomo dokazovali tudi izreka 4 in 5. Pri obeh bomo

dodatno pokazali, da lahko katerokoli izbrano povezavo e dobimo na robu
zunanjega lica. Izrek 6 velja, če je n < 5, saj so vsi vsi grafi na < 5 točkah,
razen grafa K;, ravninski. Za majhne) grafe veljata tudi izreka 4 in 5, kakor
tudi ta zadnja trditev. Naj bo n > 6 in privzemimo, da se da vsak graf z
manj kot n točkami in brez subdivizije K; ali K5,5 vložiti z ravnimi črtami,

če pa je 3-povezan, se ga da vložiti konveksno. ln še: poljubna izbrana
povezava lahko nastopi na robu zunanjega lica. V 3-povezanem primeru pa

lahko poljubno lice F dobimo kot zunanje lice konveksne vložitve.

Primer 1: G ni 3-povezan. Recimo, daje G 2-povezan, tj., da se ga ne

da razbiti z odstranitvijo manj kot dveh točk. (Če ni 2-povezan, imarmo
le precej poenostavljeno verzijo 2-povezanega primera in to prepuščamo

bralcu.) Recimo, da G — (u,vj ni povezan. Sestavimo grafa G; in G,,

kot kaže slika 7 (glej I. str. ovitka). Za oba velja indukcijska predpostavka,
saj noben od njiju ne more vsebovati prepovedanih podgrafov, ker bi sicer

tak podgraf imeli že v G. Privzemimo, da je izbrana povezava e v G>.

Tedaj vložimo G, in G, v ravnino tako, da bosta povezavi e, in e pri
vsaki od vložitev ležali na zunanjem licu. Očitno je, da lahko obe vložitvi

kombiniramo tako, da dobimo (potem, ko odstranimo zlepljeni povezavi

e, — ea) vložitev grafa G v ravnino in pri tem ohranimo ravne črte obeh

vložitev (gl. sliko 8).

Primer 2: G je 3--povezan. Po lemi 1 obstaja taka povezava e,— uv, da
je G/e, tudi 3-povezan in po lemi 2 graf G/e, ne more vsebovati subdivizije
K, ali K53. Po indukciji Jje G/e, ravninski. Oglejmo si njegovo konveksno

vložitev v ravnino, ki je po Whit-

neyevem izreku enolična. Naj bo
točka z stisnitev povezave e; v grafu

G/e,. Odstranimo točko z iz G/e;

in poglejmo novo lice, kateremu bi

pripadala točka z. G/e, — (1) je

še vedno 2-povezan, zato je rob tega

lica cikel v G/e, (točke se ne morejo

ponoviti). |

Slika 8.

Označimo ta cikel s C. Če lahko C razdelimo na dva povezana loka tako,

da so vsi sosedi točke u iz G na prvem loku, vsi sosedi v pa na drugem,
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lahko dobimo konveksno vložitev grafa G tako, da narišemo 'dovolj kratko"
povezavo e; < uv tam, kjer je bil prej z. Pri tem moramo obdelati tudi

primer, ko je C zunanje lice, a podrobnosti spet prepuščamo bralcu.

Dodati moramo še en razmislek. Lahko se zgodi, da izbranega lica

F nismo dobili kot zunanje lice. Sedaj pa že imamo ravninsko vložitev

(enolično) in vemo, katero lice F" v vložitvi G/e; ustreza našemu licu F.

Ponovimo cel induktivni postopek z zahtevo, naj bo G/e;, vložen tako, da

bo F" zunanje lice, in sedaj težav ne bo več.

Ostal nam je še primer, ko se cikla C ne da razbiti na ustrezana dela.

Tedaj imamo dve možnosti.

(a) Obstajajo različne točke v,,u;,v2,ua, ki se v naštetem vrstnem redu

pojavijo na C in sta v;, v, sosedni z v, točki u;,u, pa z u. Vidimo, da

nam cikel C skupaj s povezavami ej; < uv, vv;, vva, uu;, uu, določa

subdivizijo grafa K35,3 v grafu G.

(b) Obstajajo točke p,g,r na C, ki so vse sosedne tako z u kot z v. V

tem primeru pa C skupaj s povezavami uv, up, ug, ur, vp, vg, vr določa

subdivizijo grafa Ks.

S tem je dokaz zaključen. m

Obstaja še več zanimivih karakterizacij ravninskih grafov. Najpomem-

bnejše najdemo zbrane na primer v [6]. Vse znane karakterizacije, tudi izrek

Kuratowskega, nudijo učinkovite (polinomske) algoritme za preverjanje, ali

je dani graf ravninski. Hopcroft in Tarjan [2] sta pred kratkim objavila

presenetljiv algoritem za preverjanje ravninskosti, ki v primeru, da je graf

ravninski, tudi konstruira njegovo vložitev. Pomembnost njunega algoritma

je v tem, da je kar se da učinkovit, saj je njegova časovna in prostorska

zahtevnost linearna! Algoritem je povzet tudi v monografiji [3], v kateri so

zbrani še mnogi drugi rezultati o ravninskih grafih.

Za konec si oglejmo le še dokaj enostaven algoritem za določanje kon-

veksnih vložitev 3-povezanih grafov v ravnino, ki ga je našel W.T. Tutte |8|.

Ideja postopka je dokaj preprosta: Vsaka točka, ki ni na zunanjem licu, naj

leži v težišču glede na svoje sosede. Najprej izberemo zunanje lice C. To je

lahko (in mora biti) poljuben cikel C grafa G, ki nima diagonal in ima last-

nost, da ostane graf G — V(C) povezan. Najdemo ga enostavno: vzamemo

poljuben cikel; če ima kakšno diagonalo, ga skrajšamo tako, da vzamemo

le njegov del skupaj z eno od diagonal ter to ponavljamo toliko časa, da

dobimo cikel brez diagonal. Če tako dobljeni cikel separira graf G, postopek

ponovimo na enem od povezanih delov G — V(C), tako da iščemo le cikle,

ki vsebujejo točke iz tega dela in s C. Ko tako določimo zunanje lice, ki je,

recimo, dolžine k, vložimo njegove točke na oglišča pravilnega k-kotnika. Za

koordinate (4;,y;) ostalih točk pa rešimo sistem linearnih enačb za težišča:

1
uč ZG 0 z;, — iEV(G)WV(C)

Jr»

126 Obzornik mat. fiz. 37 (1990) 4



in
1

Yi; — de g(:) Z J
J

Pri tem vsota vsakokrat teče po vseh sosedih ; točke 1, koordinate z; 1n y;

za j € V(C) pa so določene z izbrano vložitvijo zunanjega lica C. Izkaže

se, da je dobljeni sistem enačb enolično rešljiv in da v primeru 3-povezanega

ravninskega grafa dobimo konveksno vložitev.
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UŠAN J., Matematika I, Realne funkcije jedne realne promenljive
1, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, In-

stitut za matematiku, Novi Sad 1988, 141 str.

Skripta so zapis dela predavanj za študente tehniških smeri fakultete za

kmetijstvo v Novem Sadu. Zajemajo osnovne pojme o racionalnih in realnih

številih, o konvergenci neskončnih zaporedij realnih števil in o zveznosti

realnih funkcij realne spremenljivke. Avtor podaja snov na elementarnem

nivoju, z uporabo številnih zgledov in opomb, vendar precej formalistično,

v znanem bourbakijevskem slogu. |

Malan Hladnik
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VESTI

PROFESORICA TEREZIJA URAN JE PREJELA
ŽAGARJEVO NAGRADO ZA LETO 1990

Med letošnjimi dobitniki Žagarjeve nagrade je tudi naša kolegica in
članica Društva matematikov, fizikovin astronomov. profesorica Terezija

Uran. Priznanje za svoje pedagoško delo je dobila z naslednjo utemeljitvijo:

Terezija Uran, višja predavateljica didaktike matematike na Pedagoški

akademiji v Ljubljani, je začela svojo poklicno pot spoučevanjem matematike

v osnovni in kasneje v srednji šoli. Bogate izkušnje, ki si jih je pridobila z

uspešnim 15-letnim vzgojno-izobraževalnim delom, je nato prenašalav širšo

pedagoško prakso kot pedagoška svetovalka za matematiko na Zavodu za

šolstvo. V tem obdobju je sodelovala v operativni skupini za posodobitev

pouka matematike, pri čemer je spoznala, da je uspeh prizadevanj za novo

zelo odvisen od usposobljenosti učiteljev. Zato se je odločila za zaposlitev
na Pedagoški akademiji |in tam deluje še danes.

Vsa letaje njeno delo povezano predvsem s poukom matematike v os-

novni šoli. Je soavtorica učbenikov za matematiko od prvega do osmega

razreda osnovne šole ter za prvi razred šol s prilagojenim programom. Sode-

lovala je tudi pri pripravi didaktičnih gradiv za učitelje in pri recenziji

učbenikov ter učnih pripomočkov. Poleg tega je frontalno uvajanje sodob-

nejšega pouka matematike spremljala glede na primernost in uporabnost

učbenikov na razredni stopnji.

Sodelovala je na številnih seminarjih in sestankih strokovnih aktivov

širom po Sloveniiji, spodbujala vsebinske prispevke in sodobnjejše oblike

in metode dela ter tudi s tem pomembno prispevala k dvigu kvalitete in

posodobitvi pouka matematike.

Uredniški odbor Obzornika za matematiko in fiziko ter upravni odbor

Društva matematikov, fizikov in astronomov Slovenije ji za zasluženo pri-

znanje iskreno čestita.

Crral Velkovrh

Doslej so Žagarjevo nagrado oz. priznanje med člani našega društva prejeli:
1967 pok. Jože Povšič, prof. matematike na tehnični srednji šoli za kemijo v Ljubljani in

sestavljalec bibliografij in biografij vidnih slovenskih matematikov

1982 Komisija za tisk in Komisija za popularizacijo pri društvu matematikov, fizikov

in astronomov Slovenije za izdajanje strokovne periodike in knjig za mladino ter

organizacijo tekmovanj. UR

1984 Tvan Štalec, prof. matematikein fizike ter avtor mnogih učbenikovin zbirk vaj.
1988 prof. dr. Ivan Vidav, slovenski matematik in učitelj večine generacij učiteljev in

inženirjev matematike.
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V Ljubljani je 2. in 3. aprila 1990 potekal 9. seminar Leoben-Ljubljana

iz teorije grafov. Seminar občasno, vendar vsaj enkrat letno, poteka iz-

menoma v Ljubljani in v Leobnu. Jedro seminarja sestavljajo kombinatoriki

iz Leobna in Ljubljane, praviloma pa na seminarju predavajo tudi neka-

teri gostujoči kombinatoriki. Na devetem seminarju Leoben-Ljubljana smo

poslušali naslednja predavanja:

o

o

o

9
0
 

o
b
 
6
 

o
a

V. Batagelj (Ljubljana), Norms Over Finite Groups.

W. Imrich (Leoben, Avstrija), Factoring Cartesian Product Graphs at

Logarithmic Cost per Edge.

M. Juvan (Ljubljana), Optimal Linear Labelling and Eigenvalues of

Graphs.

S. Klavžar (Ljubljana), Absolute Retracts of Reflexive Split Graphs.

B. Mohar (Ljubljana), 7—Critical Graphs of Bounded Genus.

N. Seifter (Leoben, Avstrija), Graphs with Polynomial Growth.

W. Woess (Milano, Italija), Decomposing Graphs.

A. Pultr (Praga, Češkoslovaška), Dimensions and Representations of

Graphs.

D. Marušič (Ljubljana), On the Classification of Vertex-transitive

Graphs of Order pg.

T. Pisanski (Ljubljana), New Guadrilateral Embeddings of Products of

Graphs.

J. Shawe- Taylor (London, Anglija ), PAC Learning and the Vapnik-

Chervonenkis Dimension.

J. Žerovnik (Ljubljana), A Randomised Heuristics for the Probabilistic

Traveling Salesman Problem.

Naslednji, 10. seminar Leoben-Ljubljana bo predvidoma potekal oktob-

ra 1990 v Leobnu.

26. junija pa je v Ljubljani potekal enkratni simpozij iz teorije grafov,

na katerem smo poslušali naslednja predavanja:

e Katherine Heinrich (Simon Fraser University, Burnaby, Canada), Graph

Factorizations.

Bojan Mohar, Laplace Eigenvalues and Bandwidth-Type Invariants of

Graphs. |

Janez Aleš, Random Algorithm for Hamilton Cycles in Cubic Graphs.

Janez Žerovnik, Computing the Diameter in Multiple Loop Networks.

Brian Alspach (Simon Fraser University, Burnaby, Canada), Cycle Cov-

ers of Multigraphs.

Tomaž Pisanski, Counting Lattice Walks.

Marko Razpet, Divisibility Properties of Some Number Arrays.

Dragan Marušič, On --Arc-Transitive Graphs.

Sand, Klavžar
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