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Math. Subj. Class. (1985) : 26 B

Dokaz posplosenega Stokesovega izreka za diferencialne forme je preveden v
popolna m dovolj enostavna dokaza klasicnega Stokesovega in Gaussovega izreka.
Pred samim dokazom so strogo definirani gladke krivulje in ploskve v 3-razseZznem
prostoru ter krivuljni in ploskovni integrali.

The proof of the generalized Stokes’ theorem for differential forms is translated
into complete and fairly simple proofs of the classical Stok Gauss’ theorems.
These proofs are preceded by a rigorous introduction to smooth curves and sur-
faces 1n 3-space and to curve and surface integrals. :

M

ON

v drugem ora] vseh dvoletnih tecCajev
sem Se€ km mda*vamh prvic smgai Z nﬁma

Ta izreka sta na programu
matematike na univerzi. Sam
v Studijskem letu 198 __
VErzl pr @davm predmet A uch @mimv
tujih, pa nikjer msem nasel dokaza, ki bi mi res uga}ai Flementarni dokazi
(v ucbenikih) so praviloma nepopolni, omejijo se samo na nekatere,
lepe ploskve in prostorska obmocja. Pa se ena stvar me je motila:
kljive definicije. Vsaj v nasih ucbenikih [5], [1], [4] bralec nikjer zares ne izve,
kaj so gladke krivulje, gladke ploskve in »prostorska obmocja«. Seveda potem
tudi definiciji krivuljnega in ploskovnega integrala ne moreta bitli popolni.
In na osnovi nejasnih pojmov gotovo ni mogoce napraviti strogih dokazov.

Te besede niso mi$ljene kot ocitek. Jasno mi je, da so na$i ucbeniki na-
menjeni predvsem Studentom naravoslovija in tehnike, pri njih pa si pmda-
vatelj ali pisec ucbenika kratkomalo ne more privosciti, da bi povsod izde-
lal vse podrobnosti; deloma zato, ker je obseg omejen, ponekod pa tudi za-
radi teZavnostl oziroma zapletenosti snovi. Zdi pa se mi, da je bila tudi pri
vzgo]l matematikov pri nas geometrija preveC zanemarjena; vsekakor geome-
tricni pojmi se zdaleC niso bili obravnavani s tolikSno strogostjo kot drugi
deli matematike. Sam sem se odlocil, da bom tudi pri obravnavi krivulj in
ploskev obdrzal primeren nivo in da bom izdelal popolna dokaza Stokesovega
in Gaussovega izreka. V tem ¢lanku bom pokazal, kako sem to napravil.

Naj takoj povem, da se ne mislim postavljati s kako posebno originalno-
stjo. Ze dolgo ni nikakrsne dileme vec glede tega, kaj je »pravi« matematicni
jezik za formulacijo in dokazovanje nasih izrekov: to je jezik diferencialnih

pomanj-

I!Namesto Gaussov izrek bi bilo bolj prav reci izrek Gaussa-Ostrogradskega ali
izrek Ostrogradskega-Gaussa. Uporablja se tudi ime izrek o divergenci. Zaradi
kratkostl in enostavnosti bomo ostali pri Gaussu.

26 (1080) 1 1
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form, ki ga je iznaSel Elie Cartan pred 80 leti. Lahko recemo, da je eden od
malih CudeZev matematike, kako zelo je ta (kasneje ustvarjeni) jezik prila-
gojen (starejSi) vektorski analizi. Npr. oba nasa izreka in Se tretji integralski
izrek vektorske analize, namre¢, da za poljubno orientirano gladko krivuljo
Kz zacetno tocko a in konc¢no toCko b in za poljubno rvezno diferenciabilno
funkcijo f, definirano vzdolz K, velja

(0.1) [ (gradf).dr = f (b) —f (a)
K

(in seveda Greenova formula, ki jo imamo lahko za poseben primer Stokeso-
vega 1zreka), so posebni primeri t.i. posploSenega Stokesovega izreka

(0.2) fw={dw
oM M

(za diferencialno formo @ poljubne stopnje n na kompaktni orientirani mno-
goterosti M dimenzije n). Ta izrek imenujejo tudi osmovni izrek infinitezi-
malnega racuna, ker je posplositev enako imenovanega klasi¢nega izreka

b
[ (x)dx = f(b) —f (a) (primerjaj (0.1)).

Ce se sploh ne oziramo na sicerSnji pomen diferencialnih form, sta ze
dejstvi, da imajo v tem jeziku razni pomembni klasi¢ni izreki enotno formu-
lacijo (in sicer tako preprosto, kot je formula (0.2)) in da je dokaz formule
(0.2), kot se izkaze, pravzaprav trivialnost, dovolj mocna argumenta za zeljo,
naj bi bil seznanjen z diferencialnimi formami vsakdo, ki pouduje vektorsko
analizo; kdor tega pogoja ne izpolnjuje, je podoben cloveku, ki uc¢i o reSe-
vanju sistemov linearnih enacb, pa ni Se nikoli sliSal za vektorske prostore
in matrike. (Ce se je zaradi teh mojih besed kdo sklenil poboljsati, mu svetu-
jem, da prestudira 4. in 5. poglavje — priblizno 60 strani bolj majhnega
formata — iz Spivakove knjiZice [3]).

Seveda pa tisto, kar sem napisal v prejSnjem odstavku, ne pomeni avto-
maticno, da je treba tudi Studente 2. letnika uciti diferencialne forme. Jaz
sam jih nisem. Zato sem dokaz formule (0.2) »prevedel« iz jezika diferen-
cialnih form v jezik vektorskih polj (to je treba napraviti za vsako od di-
menzij 2 in 3 posebej) in tako dobil zadovoljiva dokaza za Stokesov in
Gaussov izrek. Prevajanje ni Cisto brez tezav. Zato sem tudi napisal tale Cla-
nek: morda bo ta dokaz koristil se komu. Za predavanja nematematikom ta
pot verjetno ne pride v postev, ker je predolga. Tam bo najbrz Se nadalje
najboljse izpusScati definicije in podajati delne in pribliZzne dokaze. Toda
morda bo ta Clanek kaj koristil predavateljem samim.

Kot bo bralec videl, sta dokaza glavnih izrekov sama v resnici dovolj
kratka in tudi dokaj naravna; ogromno vecCino prostora zavzema priprava,
ki sestoji vecidel iz definicij. Pripomniti je treba, da je ta priprava dovol]
vazna zZe sama na sebi, saj gre za razciSCevanje zelo osnovnih geometricnih
pojmov, in da je ne zahteva samo »moj« dokaz glavnih izrekov, temveC vsak
popoln dokaz: kot ze reCeno, brez jasnih idej ni mogocCe napraviti jasnega
dokaza.

Ceprav se zavedam, da je Clanek predolg, se nisem mogel odlociti, da bi
ga bistveno skrajsal. Tudi recenzent je predlagal kveCjemu Se dodatna pojas-
nila. Da ne bi ta ¢lanek sam zasedel veCine ene Stevilke Obzornika, sem ga
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nekaj besed o njem. Ce je n =1 in je Q interval, je Ck-difeomorfizem isto
kot strogo monotona, k-krat zvezno odvedljiva funkcija. Pri n = 3 si dife-
omorfizem nazorno predstavljamo takole. »Prostorsko telo« Q (mislimo, si da
je narejeno iz testa) preoblikujemo — s stiskanjem, raztezanjem, zvijanjem,
upogibanjem itd. — v »telo« ©’; Ce pri tej deformaciji niCesar ne pretrgamo,
Cce vsaka gladka krivulja iz © preide spet v gladko krivuljo v @’ in ¢e ima
povratna deformacija enaki lastnosti, potem je preslikava e iz Q v Q’, ki
vsaki tocCki iz Q pridruzi iz te toCke z gnetenjem dobljeno tocko v Q’, dife-
omorfizem. Podobna nazorna predstava velja za n = 2. |

1.2. Lema. Ce je a: 2 — Q' difeomorfizem med odprtima mnoZicama 2, Q" <
c R%, je za vsak reR" Jacobijeva matrika fa(r) obrnljiva in ( Fa(r))—t =
— j o1 ( 01 (E’)) .

Dokaz. Po veriznem pravilu je Za—! (a(r)) fa(r) = Z(a1oa) (r) = I (r) =

— identi¢na preslikava). Podobno vidimo, da je tudi fa(r) Fa— (a(r)) = I.

Znano je, da ta lema dopuscCa »lokalni« obrat (ki ga je pa veliko teze
dokazati):

1.3. Tzrek o inverzni funkciji. Ce je Q odprta mmnoZica v R», ~: Q — R7
preslikava razreda Ck in r e Q2 taka tocka, da je Jacobijeva matrika ¢q(r)
neizrojena, potem a preslika neko odprto okolico tocke rv Q Ck-difeomorfno
na neko odprto okolico tocke a(r) v Rn

Naj bo zdaj Q odprta mnoZica v R3. Med preslikavami, definiranimi na
Q, nas bodo najbolj zanimala vektorska polja, t]. (zvezne) preslikave F: O — R3.
Ce je polje F ZVezno diferenciabilno, lahko izraCunamo iz njega novo vektor-
sko polje rotF: Q2 — R3¥ in skalarno polje (tj. zvezno realno funkcijo)
div F: Q — R takole: ¢e je F = (A, B,(C) (komponente A, B in C polja F so
tedaj zvezno diferenciabilne realne funkcije na Q), je

(14) rotF = (C, —B,, A, —C,/, B/ —A,), divF— A, + B,/ + C.

(s ¢rticami in indeksi x, y, z smo oznacili seveda parcialne odvode na x, vy, 2).
Bralec se bo zlahka preprical, da velja:

1.5. Lema. (1) rotF je tisto (edino) vektorsko polje na Q, za katero je
(FF(r)— #Fr)Th = (rotF) (r) X h (s T smo oznacili transponiranje, vektor
h pa si je tu treba misliti kot stolpec komponent tega vektorja).

(2) div F = Sled ¢F.

Formuli za rotor in divergenco iz te leme sta veC kot le nerodna izrazava
formul (1.4). Uporabimo ju lahko kot definicijo rotorja in divergence, ki ni
odvisna od koordinatnega sistema. Kajti, Ceprav je matrika ZF (r) odvisna
od koordinatnega sistema, je linearna preshkava DF(r): R3 - — R3, definirana
s hi— jF(r)h neodvisna; preslikava DF (r), imenovana odvod ali diferencial
preshkave F v tocki r, se navadno tudi definira tako, da je Ze po definiciji
neodvisna od izbire koordinat — glej npr. [2]. Mi pa bomo formuli iz 1.5 upo-
rabili v dokazu Stokesovega in Gaussovega izreka.

2.

Nazorno — in seveda nenatanc¢no — bi lahko opisali gladko krivuljo v rav-
nini takole: to je taka mnozica v R2, da je vsak njen dovolj majhen kos ne-
kaksna upognjena daljica. Tisto »upogibanje« mora biti dovolj gladko, recimo

Gladke krivulje in ploskve
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Podobno kot gladko krivuljo definiramo gladko ploskev: to je taka mno-
Zica toCk v prostoru, da je vsak njen dovolj majhen del tak kot malo upog-
njena ali zvita ploscCica. Natancneje:

2.1.2. Definicija. MnoZica N = R3 je gladka ploskev razreda Ck, ¢e za vsako
totko r € N obstajajo taka odprta okolica U < R3 to¢ke r, taka odprta mno-
zica U’ < R3 in tak Ck-difeomorfizem a: U — U’, da je izpolnjen eden od po-
gojev:

(@ a(UNN) =U N(R2X {0})

b)a(UNN)=U"N{R2_ X {0}) in a(r)eR X {02}

V primeru (a) je r notranja tocka, v primeru (b) pa robna tocka ploskve N.
MnozZica vseh notranjih toCk je motranjost ploskve N, intN, mnoZica vseh
robnih tock pa rob ploskve N, ON.

Povezani ploskvi, ki lezi v kaki ravnini, bomo rekli tudi (ravninsko) polje.

Oclitna je podobnost med zgornjima definicijama. Precej jasno je tudi,
kako definirati gladkim krivuljam in ploskvam analogne vecCrazsezne objekte
v prostorih viSjih dimenzij. Ti objekti se imenujejo gladke mmnogoterosti.
Mi se s sploSnimi mnogoterostmi ne bomo ukvarjali in bomo le se posebej
definirali gladke 3-razsezne mnogoterosti v R3 (a prav to izogibanje sploSnim
mnogoterostim nas bo prisililo v pogosto in ze kar nadlezno ponavljanje in
tako prepricljivo utemeljilo smiselnost obravnavanja sploSnih mnogoterosti).

2.1.3. Definicija. Mnozica M < R3 je gladka 3-razseina mnogoterost razreda
Ck, e za vsako toCko re M obstajajo taka odprta okolica U < R3 toCke r,
taka odprta mnozica U < R3 in tak Ck-difeomorfizem ¢: U — U’, da je iz-
polnjen eden od pogojev:

@ a(UNM) =U (tj. U c M)

b) a(UNM) =U NR3_ in a(r) eR2 X {0}

V primeru (a) je r mnotranja tocka, v primeru (b) pa robna tocka mnogo-
terosti M. MnoZica vseh notranjih toCk je mnotranjost mnogoterosti M, intA],
mnozica vseh robnih to¢k pa rob mnogoterosti M, oM.

Povezani 3-razsezni mnogoterosti v R3 reCcemo tudi (prostorsko) obmocdje.

Iz izreka 1.3 o inverzni funkciji se da izvesti, da (pri vseh treh definicijah)
nobena toCka ni obenem notranja in robna. |

Ce pri definiciji 2.1.2 toCka r € N ustreza pogoju (b), potem oclitno vse
tocke iz a—! (R X {02}) lezijo v ON, preostale tocke 1z U N pa v intN.
Cisto podobno je pri definiciji 2.1.3. Od tod pa takoj sledi:

2.2. Trditev. Rob gladke ploskve je gladka krivulja brez krajisc. Rob gladke
3-razseine mnogoterosti je gladka ploskev brez roba. (V obeh primerih rob
pripada istemu diferenciabilnostnemu razredu Ck kot prvotna mnogoterost.)

Po naSih definicijah ravninski mnogokotniki niso gladke ploskve in pro-
storski poliedri niso gladka obmocja. Ce zZelimo vkljuciti te in Se druge
»mestoma oglate« objekte, moramo definiciji 2.1.2 in 2.1.3 nekoliko razsiriti,
kot sledi.

Vsak kvadrant ravnine R2 je omejen z dvema poltrakoma. Druzino kvadran-
tov v R?2 bomo imenovali dopustno, Ce vsak njen Clan seka unijo vseh drugih
Clanov v uniji svojih mejnih poltrakov. Nedopusten je torej samo par kvad-
rantov, ki se sekata samo v izhodisSCu, in zato obstajajo natanko 4 paroma ne-
skladne mnozice, ki so unije (nepraznih) dopustnih druzin kvadrantov: kvad-
rant, polravnina, komplement odprtega kvadranta in vsa ravnina.

6
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2.5.1. Trditev. Naj bo J < R interval. Preslikava f:J — R3 je regularna pa-
rametrizacija kake gladke krivulje razreda Ck natanko tedaj, ko izpolnjuje
pogoje: B je k-krat zvezno diferenciabilna, B’ (x) # 0% za vsak x e J in B pre-
slika J homeomorfno na B(J).

2.5.2. Trditev. Naj bo E < R? ravninsko polje. Preslikava f: E — R3 je re-
gularna parametrizacija kake gladke ploskve razreda Ck natanko tedaj, ko
izpolnjuje pogoje: B je k-krat zvezno diferenciabilna, £, (s) X B,/(s) s 03 za
vsako tocko s € E in B preslika E homeomorfno na B(E).

Gladko krivuljo ali ploskev bomo imenovali elementarno, ¢e ima kako re-
gularno parametrizacijo. Za zgled navedimo, da kroznica ni elementarna Kkri-
vulja (ker pa¢ ni homeomorfna nobenemu intervalu). ObiCajna »polarnac
parametrizacija kroznice postane regularna, ¢e iz kroZnice odstranimo (vsaj)
eno tocko. Podobno 2-razseZzna sfera ni elementarna ploskev, dobimo pa ele-
mentarno ploskev, ¢e iz nje odstranimo en meridian skupaj s poloma (para-

metrizacija s polarnima koordinatama), ali tudi, ¢e odstranimo eno samo
tocko (stereografska projekcija).

Iz definicije 2.1.1 sledi, da je vsaka gladka krivulja unija elementarnih,
v tej krivulji odprtih podmnozic, in podobno velja za ploskve (preslikava «—1
iz definicije je regularna parametrizacija). Pravzaprav so elementarne (pod)
krivulje in (pod)ploskve, ki jih dobimo i1z definicij 2.1.1 in 2.1.2 Se malce »bol]
elementarne« kot splosne elementarne krivulje in ploskve. Domenimo se, da
bomo za ploskev N rekli, da je cdisto elementarna, Ce ima kako regularno pa-
rametrizacijo §: E — N, pri kateri ]e E povezana, v ravnini R2? ali polravmm
Rz, odprta mnozica. (Po definiciji je mnozica V odprta v mnoZici X < R
ce ]e V =UN X za kako odprto mnozico U <« R3).

3. Orientacija

3.1. Definicija. Naj bo X < R3 gladka mnogoterost (dimenzije 1, 2 ali 3)
in r e intX. Vektor v € R3 je tangenten vektor za X v toCki r, ¢e ob-
stajata tako Stevilo ¢ >0 in taka odvedljiva funkcija y: (—¢, &) — R?, da je
y((—e¢,¢)) <« X, y(0) =r in y'(0) = v. Tangentne vektorje v robni toCki r € 0X
definiramo popolnoma enako, le da zahtevo y((—e¢,¢)) < X zamenjamo s Sib-
kejsSo: y((—-=¢,0]) =« X ali ([0, ¢) < X; pri tem pravimo, da je v obrnjen nav-
zven, Ce je y((—e,0]) < X, in da je v obrnjen navznoter, Ce je y([0,¢)) = X.

Ni tezko pokazati, da so v robni tocCki r € ¢X tangentni vektorji na X, ki
so obrnjeni obenem navznoter in navzven, natanko tisti, ki so tangentni za 9X.

3.2. Trditev. MnoZica T,X vseh tangentnih vektorjev mmnogoterosti X v toc-
ki r je linearen podprostor v R3 iste dimenzije kot X.

Dokaz bomo izpustili.

Ce je X krivulja, je torej 7.X premica (imenovana tangenta krivulje X
v toCki r), Ce je X ploskev, je T, X ravnina (tangentna ravnina), ce je X pro-
storsko obmocje, pa je T,X = R3.

Oznacimo z S enotsko sfero v R3, tj. mnozico vseh v ¢ R3, ki imajo |v| = 1.

3.3.1. Definicija. Lokalna orientacija gladke krivulje K < R3 v tocki r ¢ K
je podana z enotskim vektorjem na tangenti krivulje K v tocCki r (torej z izbi-
ro ene od dveh tocCk iz $2 N T.K. Globalna orientacija (ali kratko orientacija)
krivulje K je podana z zvezno izbiro lokalnih orientacij v vseh toCkah 1z K,
torej z zvezno preslikavo &: K — S2 (imenovano tangentna Gaussova preslikava

8
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3.4.2. Definicija. Z 8 inducirana orientacija v N je (pri zgornjih oznakah)
podana z normalno Gaussovo preslikavo ri>n(r) / n(r)|. Ce je ploskev N Ze
vnaprej orientirana, bomo rekli, da g ohranja orientacijo, Ce se z f inducirana
orientacija ujema z naprej izbrano.

Pravkar opisana konstrukcija kaze, da je vsaka elementarna ploskev ori-
entabilna. K zadnjima definicijama sodi Se

3.4.3. Definicija. Linearen izomorfizem L:R3 — R3 ohranja orientacijo,
Ce preslika pozitivno orientirane trojice (linearno neodvisnih) vektorjev v
pozitivno orientirane, negativno orientirane pa v negativno orientirane, tj.
Ce ohranja znak mesanega produkta; L obrne orientacijo, Ce preslika pozitivno
orientirane trojice v negativno orientirane (tj. Ce spremeni znak pri meSanih
produktih). Za difeomorfizem a: Q — ' (pri katerem sta Q in Q° odprti mno-
Zici v R3) pa pravimo, da ohranja orientacijo, Ce njegov odvod Da(r) : R3 — RS3

3.5. Trditev. Linearni izomorfizem L: R3— R3 ohranja orientacijo natanko
tedaj, ko je det L >0, in obrne orientacijo natanko tedaj, ko je det L <0.
Difeomorfizem a: 2 — Q' torej ohranja orientacijo natanko tedaj, ko je
det Za(r) >0 za vsak r e Q.

Dokaz. Vzemimo poljubne vektorje a, b, ¢ ¢ R3. Oznadimo z [a, b, c]
matriko, ki ima te vektorje — trojice realnih stevil — za stolpce, in naj ima
[La, Lb, Lc] analogen pomen. Potem je [La, Lb, Lc] matricn: produkt L. [a, b, €]

in zato
(La,Lb,Lc¢) = det [La,Lb,Lc] = (detL) (a, b, c)

Trditev 3.5 oc¢itno sledi.

3.6.1. Trditev. Vsaka orientirana elementarna gladka krivulja K < R3 ima
orientacijo ohranjajoc¢o regularno parametrizacijo. Ce sta f1:J;—> K 1n
B:: Jo—K poljubni dve orientacijo ohranjajoci regularni parametrizaciji za
K, obstaja tak difeomorfizem h: Jo—J, da je Bz = B1oh in W' >0 povsod na
int ];2,

Dokaz. Naj bo &: K — §2 tangentna Gaussova preslikava, ki ustreza izbrani
orientaciji. Po definiciji elementarne krivulje obstaja vsaj ena regularna pa-
rametrizacija za K, recimo f:J — K. Za vsak xeJ sta vektorja &(f(x)) in
p'(x) /| (x)| = :t(x) enaka ali nasprotna. Za s = +, oznac¢imo z J, mno-
zico vseh tistih x iz J, za katere je t(x) = s &B(x)). Mnozici J  in J_ sta v J
komplementarni in — Ker so preslikave t, o f in —&o f§ zvezne — zaprti. Ker
je interval J povezan, je torej enak J, ali J_. V prvem primeru f§ ohranja
orientacijo. V drugem primeru pa zamenjamo J z intervalom J,: = {x € R
—x € J} in preslikavo @ s preslikavo B,:J, — R3, definirano z f.(x): =

p(—x); ocitno je tudi B, regularna parametrizacija za K in ker je f.'(x) =
—f'(—x), B, ohranja orientacijo.

Vzemimo preslikavi #; in #y kot v trditvi 3.6.1; naj bo B, (p = 1,2) tak

difeomorfizem neke odprte okolice intervala J, v R® na neko odprto okolico
5, | Jp = B, (glej definicijo 2.4.1). Kompozitum H: = Bi—10B;

]

|

krivulje K, da je B
je potem difeomorfizem neke okolice intervala J, na neko okolico intervala J;.
Ker njegova zoZitev na Js, H|Jy = B1—10fs =: h, preslika Jo na Jy, je h difeo-
morfizem J; na Jy (in seveda je fa = B0 k). Dokazati moramo le Se to, da je
h > 0.
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Dokaz. Vzemimo poljuben regN. Izberimo difeomorfizem a: U — U’, ki
ustreza pogoju (b) iz definicije 2.1.2, in naj bo f#: = a—1 in s: = a(r). Ker je
(zozitev) B regularna parametrizacija tako za N 1 U kot gN N U, je B, (s) ne-
niceln vektor v T.oN, g, (s) X 8, (s) pa neniceln vektor v (I'\N)L (glej 2.5.1
in 2.5.2). Ce torej definiramo preslikavo z: N N U — R3 s predpisom

©(v) 1 = B (a(v) X [B: (a(v)) X B, (a(v))]

; t1 preslikavi sta pa obe

se u ujema na ¢gN N U bodisi s ¢/|z| bodisi z — 7/t
Zvezni.

3.8. Definicija. Naj bo N <« R3 gladka ploskev z nepraznim robom, orien-
tirana z normalno Gaussovo preslikavo»: N — S2. Definirajmo : 0N — 82 kot
v lemi 3.7. Za orientacijo, ki jo v g¢N doloCa tangentna Gaussova preslikava
E: = » X y: 0N — 82, pravimo, da je skladna ali koherentna z izbrano orien-
tacijo v N.
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p representations, ergodic theory, operator algebras, and mathematical
physics. Proceedings of a conference in honor of George W. Mackey. Edited
by C. C. M . Math. Sciences Research Institute Publ. 6. Springer Verlag,
New York 1987, vii + 278 str.

Gre za zbornik desetih Clankov, od katerih je bila vecCina predstavljena

na konferenci, ki jo je maja 1984 organiziral Math. Sciences Research In-
stitute iz Berkeleya v ¢ast enemu najvidnejsih matematikov tega stoletja —
Georgeu W. Mackeyu. Ze iz naslova knjige je mogoce zaslutiti Sirino Mac-
keyevega znanstvenega zanimanja in vpliv, ki ga ima njegovo delo. Ker tukaj
ne moremo razclenjevati vsebine vseh desetih Clankov, nastejmo le avtorje
in prevode naslovov Clankov: L. Auslander in R. Tolimieri, Funkcije nejas-
nosti in reprezentacije grup, L. Corwin, Orbite Kirillova in razcep v direkten
integral na dolocenih kvocientnih prostorih; E. G. Effros in J. Kaminker,
Homotopija in teorija oblik za C*-algebre; R. Howe, Majhne unitarne repre-
zentacije klasicnih grup; 1. Kaplansky, Dualni vektorski prostori; C. C. Moore,
Eksponenten razkroj korelacijskih koeficientov za geodetske tokove; G. D.
Mostow, Mreie v U(n,1); 1. E. Segal, Inducirani sveinji in nelinearne valovne
enacbe, M. Takesaki, Kompaktne abelove grupe aviomorfizmov injektivnih
pol-koncnih faktorjev; R. J. Zimmer, Ergodicna teorija in grupe aviomorfiz-
mov G-strukture.

VicCina clankov je tako ali drugaCe povezana s teorijo reprezentacij lo-
kalno kompaktnih grup in njeno uporabo na raznih podrocCjih: od analize
radarskih signalov do teoretiCne fizike. V tem pogledu je izjema morda le
prispevek Effrosa in Kaminkerja, ki obravnava K-teorijo in teorijo oblik za
direktne limite Cuntz-Kriegerjevih algeber.

Ceprav je vecCina izrekov v zborniku opremljena z dokazi, knjiga nikakor
ne nudi lahkega branja in bo dobrodosla predvsem tistim, ki se z obravna-
vanimi podroc¢ji tudi sami aktivno ukvarjajo. Bojan Magajna

12 Obzornik mat. fiz. 36 (1989) 1



PACS ad255-c

Laserji so sestavijeni iz svetlobnega resonatorja n @}&@@V&Enﬁka Smgece valo-
vanje v odprtem resonatorju se ojacuje s stimuliramim sevanjem. Lasersko delo-
vanje nastopl, ko ojacenje krije izgube. S gpmmgam@ n 1zgub v r@mnammu do-
bimo lahko mocne svetlobne sunke, s sklapljanjem ve¢ nihanj pa zelo kratke
sunke. Koherentni curki, dobljeni iz nekoherentnih svetil, so 1 n@g@ velikostnih
stopenj sSibkejsi od Eagem

Lasers consist of light resonator and amplifier. Standing waves in an open
resonator are amplified by stimulated emission. Laser action starts when an phm
fication covers losses. By switching the mmmy @f the resonator strong light
pulses can be obtained. Coupling several resonator modes gives very short j mses
Coherent beams obtained from incoherent source are many orders of magnitud.
weaker than laser beams.
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Frekvenco stojeega valovanja — nihanja zracnega stolpca v pisc¢ali —
doloCa dolZzina cevi (od prve tonske luknjice) in Stevilo vozelnih ploskev
v cevi. Na krajis€u cevi pri ustniku je cev zaprta, zato imamo tam hrbet
tlaka.

Ustnik je polobel zakljuCek cevi, ki ga skoraj povsem zapira ploscat,
prozen jeziCek. Ko glasbenik piha v ustnik, se jeziCek trese in oddaja zvok.
Ce ustnik ni nataknjen na cev, je ta zvok nekaksen Sum. Tresenje jezicka
je le priblizno periodi¢no in vsebuje mnogo frekvenc.

Ko ustnik nataknemo na cev in pihamo vanj, za¢ne tresenje jezicka vzbu-
jati stojeCa valovanja v cevi, katerih frekvence vsebuje tresenje jezi¢ka. Do-
kler je vzbujanje Sibko, se ne zgodi ni¢ posehnega. Ko pa amplituda tlaka
v cevi dovolj naraste, nastopi nov pojav. Nihanje tlaka povratno deluje na
ustnik in ga sili, da niha s frekvenco stojeCega valovanja v cevi, nihanje je-
zicka z drugimi frekvencami pa zamre. Mo¢ pihanja se rabi le Se za nihanje
jeziCka s pravo frekvenco in ojacuje nihanje zracnega stolpca. S pihanjem
v ustnik lahko torej zaradi povratne zveze med nihanjem jezi¢ka in nihanjem
zracnega stolpca v cevi vzdrzujemo stojeCe valovanje s konstantno amplitudo.
Dovedena moc¢ se izseva kot zvok na odprtem koncu klarineta.

Votlini, v kateri lahko nastane stojeCe valovanje, navadno pravimo reso-
nator. Klarinet je torej sestavljen iz zvoCnega resonatorja in ustnika, ki oja
cuje nihanje v resonatorju. Podobno je sestavljen tudi laser iz optiCnega
resonatorja in ojacCevalnika za svetlobo. Najprej se lotimo opticnih resona-
torjev.

Zaprti resonatorji in gostota nihanj. Rekli smo, da so resonatorji votline,
v katerih lahko nastane stojeCe valovanje. Pogosto jih uporabljamo v mikro-
valovni tehniki pri valovnih dolZinah nekaj centimetrov. Mikrovalovni reso-
natorji so obi¢ajno pravokotne ali valjaste votline s prevodnimi stenami.
ki z majhnimi izgubami odbijajo mikrovalove. Votlina ima — kot pri piscalih
— velikostno stopnjo valovne dolzine in je v njej le nekaj vozelnih ploskev.

Pri svetlobi je drugacCe. Votlina z velikostjo enega mikrometra je pre-
majhna, da bi vanjo lahko spravili uporaben opticni ojaCevalnik. Obicajno
je potrebnih vsaj nekaj centimetrov. V tako velikem resonatorju pa ima
vsako svetlobno stojeCe valovanje veliko Stevilo vozelnih ploskev. Zato se
frekvence valovanj s podobnim Stevilom vozelnih ploskev le malo razlikujejo.
Poskusimo presteti, koliko je stojeCih valovanj, to je lastnih nihanj elektro-
magnetnega polja v resonatorju, v danem frekvencnem intervalu.

Zaradi enostavnosti vzemimo, da je resonator kocka z robom L. Vsako
lastno nihanje oznacimo s Stevilom vozelnih ploskev v smereh treh pravo-
kotnih robov. Ti trije podatki doloCajo tudi komponente valovnega vektorjz:

k = (na/L, ma/L, | n/L) in (1)
k2 = m2/L2(n? + m? + [2) (2)

n—1, m—1in [ —1 so Stevila vozelnih ploskev v treh pravokotnih smereh.
Frekvenco doloc¢a velikost valovnega vektorja: y = ¢ k/(27). Valovni vektorji
lastnih nihanj sestavljajo kubi¢no mreZzo, v kateri na vsako nihanje odpade
kocka s prostornino V = (n/L)3. Stevilo vseh lastnih nihanj z velikostjo va-
lovnega vektorja med k in k + d k je enako prostornini osmine krogelne lu-
pine med k in k + d k, deljene s (n/L)3, ¢e je le kK mnogo vecji od 1/L. Upo-
Stevajmo Se, da obstajata dve polarizaciji, pa dobimo Stevilo lastnih nihanj

v intervalu d k AN = (V/n2) k2 d k (3)
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Krivinska radija in razdalja med zrcaloma Ze dolocajo obliko stojeCega va-
lovanja. Ker so krivinski radiji veliki, ne veljajo prej$nji priblizki, navadno
pa lahko vzamemo, da je preCni polmer snopa po vsem resonatorju skoraj
enak in ‘je tem vecCji, ¢im bolj ravni sta zrcali (Sl. 2).

Za delovanje laserja so zelo pomembne energijske izgube v resonatorju.
Te izvirajo deloma od nezaZelene absorpcije in sipanja na zrcalih in v reso-
natorju, deloma pa od tega, ker je eno od zrcal namenoma delno prepustno.
Laser, ki bi imel obe zrcali povsem neprepustni, bi bil nekoristen. Vse izgube
lahko opiSemo s karakteristicnim ¢asom ?,, v katerem pade energija stojeCega
valovanja na 1/e zaletne vrednosti, ¢e mu ne dovajamo energije. Za energijo
stojeCega valovanja, ki ga vzbudimo, nato pa pustimo, da prosto zamre
velja

dWjdt = —W/t, (6)

Ce zanemarimo druge izgube, lahko d¢as dusSenja izrazimo z odbojnostjo r
izhodnega zrcala. Pri enem preletu valovanj ez resonator in nazaj uide
(1 — r) W energije; ¢as obhoda je 2L/c. Delez izgub na enoto C¢asa, torej 1/t
je zato ¢(1 —7r)/2L. Za r = 095 in L = 25cm je t, = 3.10—2s. DusSenje doloca
tudi spektralno Sirino lastnega nihanja resonatorja. V navedenem primeru
je ta 30 MHz.

Povzemimo. V odprtih opti¢nih resonatorjih z rahlo ukrivljenima zrcaloma
dobimo omejeno, skoraj ravno stojecCe valovanje, ki ga lahko obravnavamo
kot sinusno. Njegovo frekvenco je doloCata dolZzina resonatorja in Stevilo
vozelnih ploskev vzdolz osi. Eno zrcalo je delno prepustno, kar doloca du-
Senje. Divergenca izhodnega curka nastane zaradi uklona in je tem manjS3a,
¢im veclji je premer curka v resonatorju.

3.

Absorpcija in stimulirana emisija. Najti moramo Se nacin, kako svetlchn
ojacevati. Navajeni smo, da moc¢ svetlobnega curka pri potovanju skozi snov
slabi. Da bomo pojav razlozili in nasli moznost za njegovo nasprotje, to je
ojaCevanje, vzemimo zelo preprost model snovi: plin atomov, ki imajo po enr
elektron, z dvema energijskima stanjema. Razliki energij obeh stanj ustreza
frekvenca y = E/h. Plin naj bo v votlini, v kateri je vzbujeno tudi svetlobno
stojeCe valovanje s frekvenco ¢ in gostoto energije w. Med atomi in svetlobo
lahko pride do treh vrst dogodkov: absorpcije in spontanega in stimuliranega
sevanja. Pri prvem atom iz osnovnega stanja preide v vzbujeno in se zmanjsa
energija sevanja za /& y. Pri spontanem sevanju atom iz vzbujenega stanja
preide v osnovno in se povecCa energija kateregakoli lastnega nihanja v votlim
na frekvencnem intervalu, ki ustreza nedoloCenosti energije atomskega pre-
hoda. Videli smo, da je stevilo mogocih nihanj zelo veliko, zato je tudi ver-
jetnost, da se bo pri spontanem sevanju povecala energija vnaprej doloce-
nega nihanja, majhna. Pri stimuliranem sevanju preide atom iz vzbujenega
stanja v osnovno pod vplivom nihanja v votlini; pri tem se energija lastnega
nihanja poveca za h y.

Zaradi sodelovanja med atomi in svetlobo se spreminja Stevilo vzbujenih
atomov in energija valovanja v votlini. Naj bo N; stevilo atomov v osnovnem
stanju, Ny Stevilo vzbujenih atomov in A verjetnost za spontano sevanje
v enoti Casa. Absorpcija je odvisna od gostote energije w, od lastnosti atoma
in od spektralne Sirine. Pricakujemo, da bo pri dani frekvenci na obmocju
prehoda verjetnost tem manjsa, ¢im vecja bo spektralna Sirina A y. Verjet-

Opti¢no ojacevanije
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Sl. 3 Ponazoritev spontanega in stimuliranega sevanja in absorpcije in wrjﬁmagt
za prehod na Casovno enoto. Pri spontanem sevanju ima svetloba poljubno smer in
frekvenco v pasu, ki ustreza nedololenosti energije prehoda. Pri stin uhmnem
sevanju sta smer in frekvenca izsevane svetlobe enaki kot pri svetlobi, ki je prehod
sprozila
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Primerjajmo to z izrazom (10), pa vidimo, da morata biti koeficienta B, in
Bi; enaka in velja zveza

A=hypB/AvV —hyp(») B (14)

Einsteinove koeficiente povezuje gostota nihanj, kar da tudi podroben kvant-
nomehanski racun.

Absorpcija, ojacevanje in opticno c¢rpanje. Vrnimo se k enemu samemu
lastnemu nihanju v votlini. Uvedimo namesto energije nihanja W Stevilo fo-
tonov n = W/h y. Tedaj lahko enacbi (7) in (8) z upoStevanjem zveze (14) pre-
pisemo takole:

dN'Z/dfmm(Bh’V/VA’V) n(Ngle)wANg (15)

d n/d [ = (B h v/V A 7)) ((n -+ 1) ng-wn Nl)w n,/tc (16)

Enica v oklepaju podaja prispevek spontane emisije. Iz enacCbe (16) lahko
preberemo znameniti rezultat, ki ga da resnejsi racun v kvantni elektrodi-
namiki: verjetnost za to, da gre energija prehoda atoma iz viSjega v niZje
stanje v natanko doloCeno lastno nihanje, je sorazmerna s Stevilom fotonov,
povecanim za ena. Pri tem ni treba lociti stimuliranega in spontanega sevanja;
0 spontanem sevanju govorimo pac tedaj, kadar na zacetku ni elektromagne-
ga valovanja.

Ce je energija v izbranem lastnem nihanju znatna, je n > 1. Zato bomo
v nadaljnji obravnavi izpustili enico v oklepaju. Tako se enacba (16) poeno-

stavi:
dn/dt = (Bhv/VAv)n(Ng—--Nl)w—n/l‘ (17)

Imejmo v zafetnem trenutku vzbujeno stojeCe valovanje. V blizini toplotnega
ravnovesja je Ny << Ni; v votlini prevladuje absorpcija in energija sevanja sc
manjsa. Ce pa vzpostavimo stanje, v katerem je Nz > N, prevlada stimulirano
sevanje. Prvi Clen na desni strani enacbe (17) je pozitiven in je pri dovoli
veliki razliki N; — N, veclji od drugega clena, ki opisuje izgube v votlini.
Energija izbranega stojeCega valovanja za¢ne narascati. Tako smo dobili laser.

Nacini ¢rpanja. Kako je mogoce doseCi obrnjeno zasedenost, to je No > N,
ki je pogoj za optiCno ojaCevanje? Obrnjena zasedenost ni ravnovesna in je
za njeno vzdrZevanje treba dovajati energijo. To je mogocCe storitl na mnogo
nacinov.

V plinu najpogosteje vzdrZzujemo obrnjeno zasedenost s crpanjem z elek-
tricnim tokom. Prosti elektroni, ki so poglavitni nosilci toka v plinu, se za-
letavajo v atome ali ione. Del elektronov ima dovolj veliko energijo, da pri
trkih atomi lahko preidejo v vzbujena stanja in se iz njih s sevanjem ali trki
vraCajo v niZja. Zato plinska cev seva znacilno svetlobo. V stanjih, iz katerih
so spontani prehodi manj verjetni, se atomi zadrzujejo dlje, zato lahko pride
med njimi in niZjimi stanji do obrnjene zasedenosti. Ni treba, da je nizje
stanje osnovno; celo ugodneje je, ¢e ni. Tedaj se namre¢ tudi samo spontano
prazni in Ce je verjetnost za to veCja kot za spontano praznjenje visjega sta-
nja, je obrnjeno zasedenost prav lahko doseci. V mnogih plinih pri vzbujanju
s tokom nastane obrnjena zasedenost med ve¢ pari stanj in dobimo ojace-
vanje svetlobe in lasersko delovanje pri vec frekvencah. He-Ne laser lahko na
primer poleg znane rdece svetlobe sveti v infrardeCem obmocju pri dveh va-
lovnih dolZinah, v vidnem pa Se zeleno.

V trdnih opti¢nih ojacevalnih snoveh, v katerih obicajno svetijo primesi,
pogosto Crpajo s svetlobo, katere frekvenca je vecCja od frekvence laserskega
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Laser se po enacCbah (23) in (24) zares obnaSa podobno kot klarinet. Pod
»pragom pihanja« je zvok nekoherenten in Sibak, nad pragom pa se moc
pihanja pretaka v eno samo zvocCno stojecCe valovanje.

Lastno nihanje resonatorja, ki ga ojacuje stimulirano sevanje ravno dovolj,
da pokrije izgube, ima konstantno amplitudo. Svetloba iz laserja z enim sa-
mim stojeCim valovanjem je cCisto enobarvna. No, tu se moramo nekoliko
popraviti. Videli smo, da je frekvenca stojeCega valovanja odvisna od dolZine
resonatorja. Slucajna sprememba dolZine zaradi temperaturnega raztezanja
ali tresljajev povzrocCi ustrezen premik laserske frekvence. To slucajno spre-
minjanje frekvence meri na primer v obicajnih He-Ne laserjih nekaj deset
MHz. Z znatnimi napori pri gradnji resonatorja, temperaturno stabilizacijo in
mehani¢no izolacijo je mogocCe zmanjsati kolebanje {frekvence na 10 do
100 kHz. Z aktivnhim popravljanjem resonatorja preko povratne zanke pa do-
sezemo frekvencno stabilnost nekaj Hz ali Se manj. S takim laserjem bi se
posrecili interferencni poskusi na razdalji od Zemlje do Lune.

Cetudi bi bila dolzina laserskega resonatorja popolnoma konstantna, bi
vendarle imela izsevana svetloba konc¢no spektralno Sirino. Tega je kriv maj-
hen del spontanega sevanja, ki se izseva v izbrano stojecCe valovanje in ki smo
ga v enacbi (16) zanemarili. Zaradi tega faza nihanja pocasi leze. Preprost
racun, podoben raCunu povprecnega odmika delca pri Brownovem gibanju,
da za spektralno Sirino oceno Ay = 1/nt. Ker je Stevilo fotonov v laserju
nad pragom zelo veliko, na primer 1019 je teoretiCna meja spektralne Sirine
laserja z enim vzbujenim lastnim nihanjem zelo majhna, pod mHz.

Prostorske lastnosti laserske svetlobe doloCa oblika stojeCega valovanja
v resonatorju. To je skoraj ravno, le v prec¢ni smeri je omejeno. Zato je Sir-
jenje izsevanega curka doloCeno le z neizbeznim uklonom zaradi koncnega
radija curka v resonatorju:

= A/a (25)

V majhnih He-Ne laserjih je radij curka okoli 1 mm in je zato divergenca
le nekaj desetink miliradiana.

Uklonsko divergenco je mogoCe zmanjsSati, e z leCami ali zrcali razSirimo
curek. S teleskopom ga je mogoce razsiriti na radij objektiva. NajvecCji astro-
nomski teleskopi imajo zrcala premera nekaj metrov, tako da je dosegljiva
divergenca laserskega curka okoli 10—7. Tak curek se do Lune razSiri na vsega
nekaj deset metrov in omogoca natancno merjenje razdalje med Zemljo in
Luno s casom preleta.

Primerjava laserjev in obicajnih svetil. Prispeli smo dovolj dalec, da lahko
primerjamo obiCajna nekoherentna svetila in laserje. Curek laserja se odli-
kuje po tem, da je usmerjen, kolikor dopus¢a uklon — je prostorsko kohe-
renten, in da ima izredno majhno spektralno Sirino — je casovno koherenten.
Tudi svetlobo obicajnega svetila lahko filtriramo, tako da dobimo koherentern
curek, vendar pri tem izgubimo del svetlobnega toka. Poskusimo oceniti, ko-
likSna je lahko moc¢ takega koherentnega curka.

NajsvetlejSa nekoherentna svetila so Zivosrebrne svetilke. Dosezejo svet-
lost* B do okoli 100 W/cm? v spektralni ¢rti pri 250 nm, ki je zaradi visokega
tlaka zZivosrebrnih par razSirjena na Sirino okoli 10 nm. Ce Zelimo dobiti us-
merjen curek, moramo v razdalji L od svetilke postaviti zaslonko s polme-
rom a (Sl. 5). Naj bo polmer svetilke R. Za zaslonko se curek razsSiri deloma

* Svetlost je svetlobni tok na enoto ploskve svetila in na prostorski kot.
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v sunkih. Zeleli bi, da je energija sunkov ¢im vecja, sunek pa kratek in lepo
oblikovan. Kako to dosezemo?

Vzemimo, da uporabljamo bliskavko, ki daje nekaj mikrosekund dolge
bliske. Na zaCetku obrnjena zasedenost narasCa, ko pa preseze prag, laser
posveti in se zaradi stimulirane emisije obrnjena zasedenost zopet zmanjsa.
Ce traja Crpalni blisk dovolj dolgo, se to lahko nekajkrat ponovi. Namesto
enega mocnega sunka dobimo veC majhnih, navadno v nepravilnem zapo-
redju. |

Tezavo lahko odpravimo s tem, da preprecimo lasersko delovanje, dokler
se dovolj energije Crpalnega bliska ne pretoCi v zasedenost laserskega stanja.
Prezgodnje delovanje laserja lahko prepreCimo s tem, da na zacetku pove-
camo izgube resonatorja, v trenutku, ko je obrnjena zasedenost dovolj ve-
lika, pa izgube zmanjsamo. Ker je trenutna obrnjena zasenenost visoko nad
pragom, je ojacCenje veliko, svetlobni sunek hitro naraste in s stimulirano
emisijo pomete skoraj vso energijo, shranjeno v zasedenosti viSjega laser-
skega stanja.

Izgube resonatorja je mogoce spreminjati na mnogo nacinov. Dobro deluje
ze vrtenje enega od zrcal. Dokler ni zrcalo v pravem poloZaju, so izgube
velike, ko pa je zrcalo pravokotno na os resonatorja, lahko nastane stojece
valovanje z majhnimi izgubami in laserski sunek. Crpanje je treba uskladiti
z vrtenjem zrcala. Uporabljajo tudi elektroopticne in akustoopti¢ne modu-
latorje. Ti delujejo kot svetlobni zaklopi, ki jih je moc elektri¢no odpirati.

Laserske sunke tudi uspesno ojacujejo. Kot ojacCevalnik sluzi enaka snov
kot v samem laserju, le da ni v resonatorju. Zato je v njej mogoce doseci
veliko obrnjeno zasedenost. Vpadna svetloba se s stimulirano emisijo oja-
cuje. Pri tem ohranja koherentnost in se velik del energije, nakopicene v obr-
njeni zasedenosti ojacevalnika, pretoci v svetlobo. NajmocnejSe sunke, o ka-
terih smo govorili, dosezejo tako, da sunek iz osnovnega laserja razdelijo na
10 verig ojaCevalnikov, od katerih je vsaka dolga 180 m. Premer zadnjih
ojaCevalnih stopenj je 0,5 m, da ne nastanejo poskodbe opti¢nih elementov
zaradi prevelike gostote svetlobnega toka.

Oglejmo si Se presenetljiv pojav, ki je posledica koherentnosti laserske
svetlobe. Doslej smo podrobneje obravnavali le laser, v katerem je vzbujeno
eno samo stojeCe valovanje. Vendar to ni najbolj obicajno. Frekvenci dveh
sosednjih nihanj resonatorja se razlikujeta za v = ¢/2L. Pri 30 cm dolgem
resonatorju He-Ne laserja je to 500 MHz, okoli trikrat manj od Dopplerjeve
Sirine laserskega prehoda. Zato lahko laser hkrati sveti pri vecC frekvencah,
odvisno od dolZzine resonatorja in frekvencne Sirine ojacevalne snovi. Faze
nihanj se predvsem zaradi mehani¢nih motenj resonatorja slucajno spremi-
njajo, zato se v kakem trenutku posamezna nihanja sestejejo konstruktivno,
malo kasneje pa destruktivno in ¢asovna odvisnost izhoda takega laserja je
dokaj neurejena. Izsevana svetloba ni veC popolnoma enobarvna, ostaja pa
usmerjena. VecCina laserjev je takih. Da imamo le eno stojeCe valovanje, mo-
ramo navadno zagotoviti z dodatnimi opticnimi elementi v resonatorju.

DrugacCe pa je, Ce so faze nihanj konstantne. Privzemimo, da imajo vsa
nihanja na ojaCevalnem intervalu, naj jih bo N, enako amplitudo. Elektri¢na
poljska jakost je tedaj vsota prispevkov vseh resonatorskih nihanj

N/2 |
E@t)= 2 A exp(i(Z:;z(fp-O, +mdy) it + (p)) —
m=-—N/2

= Aexp(i2r vot + @) Z exp(lrim § v ¥) (28)
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MAREK I,, Zzitny K., Matrix analysis for applied sciences, Vols. 1, 2, Teubner
Verlag, Leipzig 1983, 1986 (Teubner Texte zur Mathematik ; 60, 84).

Uporabnost matrik v matematiki in drugih znanostih je nesporna in ze
dolgo znana. S sodobnim nekoordinatnim oziroma operatorskim pristopom,
ko na matrike gledamo kot na predstavitev operatorjev, delujoCih na koncno-
razseznih prostorih, se je njihov pomen Se povecal. Operatorski pristop za-
hteva sicer nekaj veC analize, zlasti funkcijske teorije, zato pa lahko kasneje
pri Studiju lastnosti matrik uporabljamo bogato spektralno teorijo opera-
torjev.

Kot pravita v uvodu oba avtorja, je bil njun namen vzpostaviti most
med linearno algebro (pojmovano kot klasi¢no teorijo matrik) in funkcio-
nalno analizo (pojmovano kot Studij operatorjev na normiranih prostorih).
Kolikor lahko presodim, jima je to tudi odlicno uspelo, ko sta v dveh re-
lativno tankih knjizicah (196 in 152 strani) o matri¢ni analizi s poudarkom
na uporabi zajela skoraj vsa standardna poglavja matri¢ne teorije in tudi
nekatere njene moderne dosezke.

Prvi del je bolj pripravljalne narave. V njem zvemo osnovne pojme
o linearnih prostorih ter operatorjih, o normiranih prostorih, zveznih ope-
ratorjih in funkcionalih na njih, dokazana sta izrek o odprti preslikavi in
Hahn-Banachov izrek, uveden Hilbertov prostor z vsemi svojimi lastnostmi
in Sele na koncu spoznamo spektralne lastnosti operatorjev na normiranih
prostorih vkljuéno z Rieszovim funkcijskim racunom in Lagrange-Sylvestrovo
formulo. Drugi del predstavlja jedro razprave. Obravnava operatorje z ra-
cionalno resolvento, spektralni izrek za normalne operatorje, eksistenco kva-
dratnega korena, vprasanje stabilnosti operatorjev in s tem v zvezi uporabo
pri sistemih diferencialnih enacCb, Jordansko predstavitev operatorjev na
konCnorazseznih prostorih, variacijski princip ter Drazinov in Moore-Pen-
roseov posplosSeni inverz. Kot vidimo, zajema precej Sirok spekter vprasSanj,
pogreSamo pa npr. Perron-Frobeniusovo teorijo s posploSitvami in uporabo
v verjetnostnem racunu.

Razlaga je ves Cas temeljita in rigorozna, vendar dokaj naravna in samo-
zadostna, to se pravi, da razen elementarnega racuna s funkcijami in matri-
kami bralec ne potrebuje posebnega predhodnega znanja (zato pa so ne-
katera poglavja posveCena splosnim metricnim in topoloSkim pojmom, zvez-
nosti in odvedljivosti, Riemannovemu integralu, poten¢nim vrstam, elemen-
tarni teoriji analiticnih funkcij in kompleksifikaciji realnega vektorskega
prostora). Odlika obeh delov je tudi mnozica primerov in nalog, posejanih
med tekstom; nekatere naloge zajemajo tudi novejSe rezultate iz zadnjih
deset, dvajset let.

Ze iz tega beznega pregleda zbranega materiala lahko sklepamo, da avtorja
svojega dela nista napisala za zaletnike. Kot sama pravita, ga namenjata
»podiplomskim Studentom in znanstvenim delavcem razlicnih usmeritev, ki
pr1 svojih raziskavah uporabljajo matemati¢ne modele«. Vseeno mislim, da
bodo kot dopolnilno branje vsaj nekatera poglavja koristila tudi nasim S$tu-
dentom matematike, zlasti pri linearni algebri, kjer jim operatorski pristop
ni in ne sme biti tuj, in pri funkcionalni analizi, pri kateri jim je vcasih
razkorak med abstraktnim in konkretnim prevelik.

Milan Hladnik
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1977 in 1978 pri poskusih v Fermilabu pri Chicagu in ob nakopicevalniku za
pozitrone in elektrone DORIS II v DESY v Hamburgu. Kvark b je podoben
kvarku s, le da ima precej Veéjo maso. Zato priCakujemo po podobnosti
z doslej edinim parom K¢ in K° $e dodatne $tiri pare nevtralnih mezonov, med

katerimi se javljajo oscilacije. Se posebej pomembna sta par B in BY, ki ga
bomo obravnavali, ter par B? in B.,’. Mezon B°® vsebuje antikvark b kot nosilca

kvantnega Stevila B = 1. Sestavljata ga obicajni kvark d, ki sestavlja tudi
proton in nevtron, in antikvark b. Mezon B?°, ki _sestoji iz antikvarka d in
kvarka b, ima kvantno stevilo B = — 1. Mezon B sestoji iz kvarka b in
antikvarka s, mezon B,® iz antikvarka b in kvarka s, a teh mezonov doslej

Se ni uspelo neposredno zaznati.

Oscilacije med B¢ in B® so prvi¢ neposredno opazovali leta 1987 razisko-
valci, ki so delali pri spektrometru ARGUS ob nakopicevalniku DORIS II
v DESY [3]. Pri poskusu so sodelovali fiziki DESY, nemskih univerz Dort-
mund in Heidelberg, univerz Lund (Svedska), Ljubljana*, Kansas (ZDA) in
South Carolina (ZDA) ter inStitutov ITEP iz Moskve in IPP iz Kanade. Pri
poskusu so dobili mezona B? in B® ob razpadu mezona Y (4S), ki ga sestavljata
kvark b in antikvark b. Njegova masa 10,6 GeV/c* je malo vecCja kot dva-
kratna masa mezona B? ali B?. Spektroskopska oznaka 4S pomeni, da imamo
opravitli s tretjim radialno vzbujenim stanjem vezanega sistema bb pri re-
lativni vrtilni koliini L = 0. (Osnovno stanje zaznamujemo z 1S.) Mezon
Y'(4S) nastane v nakopiCevalniku pri trkih pozitronov in elektronov, ko
ustreza energija enega in drugega ravno polovici mase mezona Y (4S). Pri-
blizno polovica mezonov Y'(4S) razpade v par naelektrenih mezonov B+ in B-.
Druga polovica razpade v par nevtralnih mezonov B¢ in B®:

et e~ — Y(4S) — Bo B¢

Tudi mezoni B® in BY niso obstojni. Razpadejo zaradi $ibke sile na ved
nacinov in jih zaznamo le po njihovih razpadnih produktih. Poseben pomen
pri1 opazovanju oscilacij imajo razpadi, pri katerih nastanejo leptoni — elek-
troni, pozitroni, mioni:

BO et +X B0yt + X

ali . .
BY »>e- 4+ X BY -y~ + X

X zaznamuje druge delce, ki nastanejo skupaj z leptonom. Vidimo, da znak
naboja leptona pove, ali je lepton nastal pri razpadu mezona B? ali mezona B9,

Zaradi oscilacij lahko mezon B¢ preide v mezon BY in mezon B? v mezon
B, To pomem da zaradi oscilacij priakujemo pri razpadih mezonov Y(4S)
poleg Bo B0 $e enaka mezona B0 B¢ ali B Bo. Z opazovanjem teh bi potrdili,
da obstajajo oscilacije. Enaka mezona B¢ B¢ ali Bo B? se pri razpadu me-
zonov Y'(4S) pokazeta z dvema enako naelektrenima leptonoma. Med po-
skusom, ki so ga naredili ¢lani skupine ARGUS, je nastalo skupaj 88 000
mezonov Y(4S). Med njimi je bilo treba poiskati razpade na dva enako

naelektrena leptona.

* V ljubljanski skupini sodelujejo Gabrijel Kernel in Peter Krizan z Oddelka
za fiziko Fakultete za naravoslovje in tehnologijo in Instituta J. Stefan, Bojan
Bostjan€i¢ in Ervin Krizni¢ z Instituta J. Stefan ter Mark PleSko s Fakultete Za

elektrotehniko in Instituta J. Stefan.
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akcij med antiprotonom in protonom so nasli presenetljivo veliko enako
naelektrenih mionov. V tem so videli posledico oscilacij mezonov B? in Bo
in domnevno Se izdatnejsih oscilacij mezonov B¢ in B.% Ker pa s spektro-
metrom UAl ne morejo neposredno zaznavati ne mezonov B? in B, ne njunih
antidelcev B? in By in tudi ne vedo, koliko jih nastane, ne morejo 1z tega
sklepati, ali je opazovani pojav posledica oscilacij B® in B° ali B, in B,
ali obojih.

OdloCilno vpraSanje je: ali se rezultat skupine ARGUS sklada s stan-
dardnim modelom? Oscilacije mezonov B? In B? opiSemo v standardnem
modelu s tako imenovanim pravokotnim dlagramom (Sl. 2). Antikvark b
in kvark d izmenjata dva $ibka bozona W in preldeta v kvark b in anti-
kvark d. V vmesnem stanju obstajajo kvarki u, c in t in antikvarki u, c in t.
Ker je parameter mesanja sorazmeren s cetrto potenco mas teh treh kvarkov,
je moc¢no odvisen od mase kvarka t, ki je najvecja.

S poskusi ob nakopiCevalniku pozitronov in elektronov PETRA, ki je
tudi v DESY, so pokazali, da je masa kvarka t vsaj 23 GeV/c?, sicer bi ga
opazili. Po parametru meéanja ki ga je dolocdila skupina ARGUS, bi morala
biti masa kvarka t vsaj 50 GeV/c?. Potemtakem ima mezon, ki sestoji iz para
tt, kot sestoji mezon Y(4S) iz para bb, veé¢jo maso kot 100 GeV/c2. To Je
preveC, da bi ga bilo mogocCe odkriti z obstojeCimi napravami. Druga moz-
nost bi bila, da standardni model ne velja.

Skupina ARGUS je v drugi polovici leta 1988 zacCela ponovno meriti in
bo v naslednjih letih Se podrobneje raziskala oscilacije mezonov B¢ in B°.
Nepricakovano izdatni pojav opravicuje upan]e da bodo v prihodnje opazﬂl
tudi prekrsitev simetrije CP pri mezonih B¢ in BY in s tem spoznali njeno
globljo naravo.

LITERATURA

1] L. Pi¢man, Neohranitev parnosti, Obzornik mat. fiz. 4 (1956) 57.
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OBVESTILO NAROCNIKOM ]

Zaradi podraZitev papirja in tiskarskih storitev je obcni zbor
drustva sklenil povecati naroc¢nino, v kateri je za clane drustva i
upos$tevana tudi ¢lanarina, na 30.000.— din. Zaradi hude inflacije vas
prosimo, da nam znesek s priloZzeno poloznico nakazete ¢im prej.
Naroc¢nina, plac¢ana po 1. 7. 1989, bo znatno visja.

Janez Strnad in Ciril Velkovrh
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terem so zdruzeni vsi matematiki raziskovalci. 1z letnih porocil InStituta,
predvsem pa iz publikacije Preprint Series of the Department of Mathe-
matics, ki objavlja vsakoletno bero opravljenih raziskav, je lepo razvidno,
da Vidavov zaletni trud nikakor ni bil zaman.

Vedno velje zahteve po strokovnem izpopolnjevanju so vodile do orga-
nizacije podiplomskega Studija. Na matematiki obstajata dva profila takega
Studija: raziskovalni in za podrocje izobrazevanja. Skoraj samoumevno je, da
je bil profesor Vidav med prvimi pobudniki obeh smeri, da je aktivno so-
deloval pri snovanju programov in seveda tudi pri njihovi izvedbi.

Naj konc¢no zabelezimo Se eno pomembno smer razkosne Vidavove de-
javnosti. To je njegovo intenzivno in neprekinjeno delovanje v DrusStvu ma-
- tematikov, fizikov in astronomov Slovenije vse od ustanovitve Drustva leta
1949. Njegov prispevek k strokovni literaturi, za katero je DrusStvo Ze dolgo
let prakti¢no edini izdajatelj, je kratkomalo ogromen: 17 knjig in 29 stro-
kovnih Clankov. In kdo naj nasteje vsa predavanja in kopico drugih nalog,
ki jih je Se opravil v okviru Drustva v teh dolgih letih, vse v slavo in cast
matematiki. Bogato zivljenje je nemogocCe do kraja popisati, mogoce ga je
samo Zivetl.

Zoper pretirano skromnost profesorja Vidava je druzba, hvala Bogu,
nekajkrat protestirala, in sicer takole: 1952 PreSernova nagrada, 1958 dopisni
Clan SAZU, 1962 redni ¢lan SAZU, 1965 Red dela z rdeco zastavo, 1970 Ki-
driCeva nagrada, 1974 Red republike s srebrnim vencem, 1978 Red zaslug za
narod z zlato zvezdo, 1980 nagrada AVNOJ, 1985 naziv zasluzni profesor,
1988 Zagarjeva nagrada.

Drustvo matematikov, fizikov in astronomov SR Slovenije prireja ob
sodelovanju Oddelka za fiziko Fakultete za naravoslovje in tehnologijo,
Instituta J. Stefan, Instituta za matematiko, fiziko in mehaniko in Zavoda
SR Slovenije za Solstvo 10. in 11. februarja 1989 trinajsti seminar iz fizike

- i B B v S BY ke, i
4 - E e . n B

Seminar je namenjen ucCiteljem matematike in fizike na srednjih in
osnovnih Solah za strokovno izpopolnjevanje. Vabljeni so tudi drugi Clani
drustva.

Petek, 10. 2. 1989

9.00 ZacCetek seminarja
Martin CopiC, Zakaj je laserski curek ozek in enobarven

Odmor
11.30 Janez Strnad, Potrditev napovedi posebne teorije relativnosti z urami
16.15 Marko Vali¢, Uporaba laserjev
19.00 Druzabni veCer z vecerjo

Sobota, 11. 2. 1989

8.15 Martin CopicC, Zakaj je laserski curek ozek in enobarven
10.30 Janez Strnad, Oda od, balada balad, E = mc?

Vodstva sol prosimo, da prispevek za seminar 80.000.— dinarjev nakazejo
na ziro racun DMFA SRS, Ljubljana 50101-678-49168, lahko pa ga udelezenci
plaCcajo na seminarju.

Martin Copic in Janez Strnad
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za tisk. Dusan Modic za dolgoletno delo pri druStvu kot sekretar komisije za
pedagosko dejavnost, kot predsednik in podpredsednik. TomaZz Pisanski za
delo pri Preseku kot odgovorni urednik, urednik za matematiko in rac¢unal-
nistvo, za delo pri matemati¢nih seminarjih in predavanjih. Janez Strnad
za delo predsednika drustva, predsednika komisije za tisk, za delo odgo-
vornega urednika in urednika za fiziko pri Obzorniku za matematiko in fiziko,
za delo urednika fizikalnih publikacij, za delo pri fizikalnih seminarjih.
Zvonko Trontelj za delo sekretarja komisije za uporabno fiziko, za delo pri
Preseku kot odgovorni urednik in urednik za fiziko. Ciril Velkovrh za dolgo-
letno uspesno delo urednika in sekretarja Komisije za tisk od 1973. Pavle
Zajc za dolgoletno delo sekretarja komisije za popularizacijo matematike
v osnovni Soli.

Priznanja za delo z mladimi so prejeli: Zora GomilSéek iz Naravoslovnega
srednjeSolskega centra v Novi Gorici. Pri pouku in dodatnem pouku je vzgo-
jila veliko mladih matematikov, ki so na republiskih in zveznih tekmovanjih
dosegali visoke uvrstitve. Dolga leta je sodelovala v republiski komisiji za
tekmovanja iz matematike. Darka Hvastija iz Srednje naravoslovne S$ole
v Ljubljani svoje znanje in energijo vlaga v delo z mladimi pri pouku in pri
vseh oblikah interesnih dejavnosti. Dolgo je bila c¢lanica komisije za popu-
larizacijo matematike na srednjih sSolah, veC let pa Clanica republiske ko-
misije za tekmovanja iz matematike. France Plevnik je pri pouku fizike
nesebiCno in zavzeto prenasal znanje na mladi rod. V krozkih je uvedel
cksperimentalne vaje in mnoge ucence navdusil za Studij matematike in
fizike. Kot uclitelj fizike na PedagosSki akademiji je vzgojil Stevilne rodove
ucliteljev. Nepogresljiv pa je njegov prispevek pri izvedbi osnovnoSolskih
tekmovanj iz fizike. Viktorija Tos$ ze trideset let poucuje matematiko na
Osnovni Soli Prezihov Voranc v Ljubljani. Z veliko vnemo vadi ulence ne
samo pri pouku, ampak tudi pri krozkih iz matematike. Njeni ucenci so
dosegli lepe uspehe na obcinskih in republiSkih tekmovanjih. Stanislav Zazula
kot strokovnjak na tehni¢nem podrocju Ze dolgo sodeluje s Solami. Vrsto
let poucuje fiziko na srednjih Solah in predava na viSji strojni Soli v Kopru,
ki je oddelek strojne fakultete. Bil je mentor dijakom in Studentom in orga-
nizator njihove delovne prakse v svoji delovni organizaciji, sodeluje pri

organizaciji osnovnoS$olskih tekmovanj in je aktiven ¢lan koprske podruz-
nice DMFA.

Iz porocil sekretarjev lahko razberemo, da se njithova dejavnost kljub
slabim materialnim razmeram ni zmanjsSala. Nasprotno: na pobudo profe-
sorja Ivana Vidava smo na novo organizirali raziskovalne dneve 1z matematike
in fizike za srednjesSolce. Ne vem, ali je kriva nasSa skromnost ali pa druzbena
nenaklonjenost znanju, da je naSe delo premalo znano. Tekmovanj, letnih
Sol, raziskovalnih dni se je udelezilo 13 000 ucencev, torej polovica toliko,
kot je bilo Sportnikov na olimpiadi v Seulu. KolikSno pozornost so nasemu
delu namenila sredstva javnega obveSCanja, kolikSno olimpiadi, pa vemo.
Tekmovanj za Vegovo priznanje se je udeleZilo priblizno 11000 osnovno-
Solcev, srebrno Vegovo priznanje je osvojilo 1152 udencev, zlato pa 136
ucencev. Na zveznem tekmovanju so osnovnoSolci prejeli tretjo nagrado in
pohvalo. Tekmovanja iz fizike se je udelezilo 900 osnovnoSolcev, republiskega
pa 160. Republiskega tekmovanja za srednjeSolce iz matematike, ki je bilo
v Kranju, se je udelezilo 158 srednjeSolcev. Naloge so bile tezke, saj so
bile podeljene tri prve nagrade, Stiri druge in devet tretjih. Na zveznem
tekmovanju je bil najboljSi Tomaz Slivnik, ki je dobil drugo nagrado, na
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mednarodni matematicni olimpi Avstraliji pa U‘et]?@ 106 dijakov 1. let-
nika srednjih Sol je tekmovalo v znanju iz fizike v Velenju nagboh Sa _ge bﬂa
ekipa iz Srednje tehniske sole v Celju. 159 dijakov }@ b ﬂ@ na repub -
tekmovanju iz fizike v Mariboru, osvojili so - prvi nagradi, pet d
in devet tretjih nagmd Na zveznem 1Z ﬁmk@ SO OSVOjﬂE pﬁf@
in tret jO nagmda in pet pohval, A Vilfan je mednarodni olimpiad
v Bad Ischlu dobil tretjo nagmee Letne sole 1z matematike se je u
17 osnovnosolcev, 1z fizike pa 20 pr'méok@v sredn 1 Sol. Razi
iz fizike so bili od 20. do 25. wmja 1Z maﬁemam&@ pa od 5. do @ ﬁﬂi]&
obakrat je bilo 15 srednjesSolcev. K a dejavnost drustva zgoscena
polovici leta, postajajo financne tezave Cedalje vecje. Izobrazevalna skupno
poskrbeti za sredstva za 0SNovno @jawmsi srednjih sol, Sd@

mora najpre]j
nato pridejo na vrsto drugi porabniki. Komisija za tisk je v tem letu p@%@g

35. letnika revije Obzornik za matematiko in ﬁm t@r H Eemﬂm
izdala 3 nove knﬁge H} 10 ponatisov iz svo]jih
Mariboru, K gp ru Celju so uspesno organiz H‘&E@ sw@ kovna
in tekmovanja iz ma’mmaﬂke in fizike.

V razpravi, ki je sledila porocilom, so cClani opozarjali na j
kan je uciteljev fizike, saj so iz Sredn je naravoslovne é@ﬁ@ in |
Kopru od$li v enem letu tri je ucitelji fizike. C
z zakonom uredi ucna obveznost uciteljev v
cev v oddelku b1 uciteljem tudi oﬁajsab delo. Ob
da drustvo postane kolektivni
Po razresnici staremu upravnemu odb
odbar drusStva in komisije za tisk.

Upravni odbor dnmhfa R@Sm
predsednica, Vinko inik, H
nad sekretarka komi
pmaﬂzad jo m
Jozica Okorn — ﬁzﬂm
Semrl — vodm
Qmmzk —— vad}a mzzsk@vaim dni za
ucencem. Marko Vali¢ je sekretar
sekretar komisije za uporabno matem
Bojan Mohar predsednik, Ciril \
blagajnik, odgovorni uredniki so: Janez
in fiziko, Bor: °

ﬂ@ﬂa

e Pregekmra kmmmm hfan
Vidav — Knjiznica Sigma, F emr Vencel] — Izbrana poglavja iz meh

Ivan Vidav — Izbrana poglavja iz matematike in rgunamwfcva ter Knjiz
Sigma, Janez Strnad — Izbrana poglavja iz fizike, B
tika-fizika, Amﬁn Suhadolc — Postdiplomski
kata se odgovorna urednika za ucbenike in priro¢nike ter za drobni
Predsednik Mitja Rosina se je zahvalil za zaupanje. Hkrati pa je obvestil
¢lane, da je naSe dru$tvo organizator 9. kongresa matematil izik :
astronomov Jugoslavije, septembra 1990. Organizacijski odbor (Anton I
TomaZz Pisanski, Mitja Rosina) je sestavil za Clane druStva anketo o poteku
dela kongresa. Odgovori na to anketo bodo usmerili delo organizacijskega
odbora.




KOZAK J., LOKAR
232 str. (Izbrana p@gﬁawa iz m

atematike in racunalnistva; 23)

Pred nami je obsezna zbirka nalog 1z racunalnistva. V njej najdemo zelo
sirok spekter nalog, tako po vsebini, tako tudi po tezavnosti. Vecina nalog
je s podmc*&a podatkovnih struktur in aigamtmov ceprav bi bﬂu Zzmotno
mnenje, da gre izkljucno za take naloge. Precej nalog je povsem kombinato-
ricnih; to so na primer tiste, ki prestevajo taka in drugacna dreves& naloge
s permutacijami in Youngovimi tabelami. Zbirka je razdeljena na 12 poglavij,
od podatkovnih struktur (seznam, drevo, graf, datoteka, tabela simbolov),
preko dela z besedilom in kombinatorike do algoritmov (iskanje, urejanje,
racunski problemi) in metod za razvoj algoritmov in preprostih problemov.
Skratka, gre za knjigo, ki smo jo v slovenscini pogresali ze lep cas.

Zbirka je logi¢no dopolnilo knjige J. Kozaka, Podatkovne strukture in algo-
ritmi. Na pﬂmﬁnh bo msevaieg naiog Ealke preizkuSﬂ, kako dobro je ra-
zumel Kozakovo knjigo. Zbirka pa bo dobrodosla tudi tistim, ki jim je zZe
vse jasno iz Kozakove knﬂg@ Sag Y zbwﬂ nagggm@ km‘ n@kag nmfgsn ki
jih mm ni. Za primer no Youngove tabele in primerjalne mreze, ki

dobro spoznamo po kopicah nalog. Ravno tako zasledimo veliko nalog
p@h}@%ﬁ m um}amu Ndﬁafiwe naloge %@bm@m obsezne uvode, nekatere
oe za resevanje. Zato med vrsticaml zvemo marsik ag novega
O podaikevmh S?fukmmh 11 aigontmﬁh

Morda ne bo odvel sSe nasvet resevalcem. Avtorja sta se po daljsem raz-
m%éhangu odlocila, da ﬁ&]igg ne G@Sm »semaforizirala«, tj. da ﬁh ne bosta
locila na lahke in tezke. Izkusenemu resevalcu to ne bo delalo velikih tezav,
saj bo lahko presodil, ali je naloga lahka, tezka ali pa morda »skoraj ne-
resljiva«. Tudi take naloge namreC lahko najdemo. Neizkusen reSevalec pa
bi lahko imel tezave. Zato je verjetno najbolje, da po nekajdnevnem brez-
uspesnem reSevanju naloge pogleda v ustrezno literaturo, kaj je znanega
0 tem problemu.

In kﬁmu je namenjena zbirka? Ce odstejemo studente, potem vsakemu,
ki se nekoliko resneje ukvarja z racunalnistvom.

Sandi Klavzar

Ob splosnem navdusSenju nad resevanjem nalog pri fiziki se zdi, da udi-
teljem pogosto zmanjka smiselnih tem. V ocitni stiski je ucitelj na znani
Egubhangka Soli u@encem pm pmmem vaji daﬁ naiéﬁgﬁ |

DS fimo k rog lico da prosto @@ﬁg {(yostota

Kg@ se bo kmghs@ usmwm in

zanemarimeo.
Ucitelj je oditno pricakoval, da bodo
kroglica tudi v vodi enakom
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