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Math. Subj. Class. (1985) : 26 B 20

Dokaz posplošenega Stokesovega izreka za diferencialne forme je preveden v

popolna in dovolj enostavna dokaza klasičnega Stokesovega in Gaussovega izreka.

Pred samim dokazom so strogo definirani gladke krivulje in ploskve v 3-razsežnem

prostoru ter krivuljni in ploskovni integrali.

THE THEOREMS OF STOKES AND GAUSS I

The proof of the generalized Stokes' theorem for differential forms is translated

into complete and fairly simple proofs. of the classical Stokes' and Gauss' theorems.

Ihese proofs are preceded by a rigorous introduction to smooth curves and sur-

faces in 3-space and to curve and surface integrals.

Uvod

izreka, imenovana v naslovu!, pravita naslednje. Če je F vektorsko polje,

N orientirana kompaktna ploskev (z enotsko normalo vy) in M kompaktno

prostorsko območje (z navzven obrnjeno enotsko normalo y na robu M), je

(EF. dr — ( (rotF).vdbP, [F.vdP — ((divE)dV
N N OM M

Ta izreka sta na programu v drugem letu skoraj vseh dvoletnih tečajev

matematike na univerzi. Sam sem se kot predavatelj prvič srečal z njima

v študijskem letu 1986/87, ko sem študentom matematike na ljubljanski uni-

verzi predaval predmet Analiza Il. Pregledal sem precej učbenikov, naših in

tujih, pa nikjer nisem našel dokaza, ki bi mi res ugajal. Elementarni dokazi

(v učbenikih) so praviloma nepopolni, omejijo se samo na nekatere, posebno

lepe ploskve in prostorska območja. Pa še ena stvar me je motila: pomanj-

kljive definicije. Vsaj v naših učbenikih [5], [1], [4] bralec nikjer zares ne izve,

kaj so gladke krivulje, gladke ploskve in »prostorska območja«. Seveda potem

tudi definiciji krivuljnega in ploskovnega integrala ne moreta biti popolni.

In na osnovi nejasnih pojmov gotovo ni mogoče napraviti strogih dokazov.

Te besede niso mišljene kot očitek. Jasno mi je, da so naši učbeniki na-

menjeni predvsem študentom naravoslovja in tehnike, pri njih pa si preda-

vatelj ali pisec učbenika kratkomalo ne more privoščiti, da bi povsod izde-

lal vse podrobnosti; deloma zato, ker je obseg omejen, ponekod pa tudi za-

radi težavnosti oziroma zapletenosti snovi. Zdi pa se mi, da je bila tudi pri

vzgoji matematikov pri nas geometrija preveč zanemarjena; vsekakor geome-

trični pojmi še zdaleč niso bili obravnavani s tolikšno strogostjo kot drugi

deli matematike. Sam sem se odločil, da bom tudi pri obravnavi krivulj in

ploskev obdržal primeren nivo in da bom izdelal popolna dokaza Stokesovega

in Gaussovega izreka. V tem članku bom pokazal, kako sem to napravil.

Naj takoj povem, da se ne mislim postavljati s kako posebno originalno-

stjo. Že dolgo ni nikakršne dileme več glede tega, kaj je »pravi« matematični

jezik za formulacijo in dokazovanje naših izrekov: to je jezik diferencialnih

'Namesto Gaussov izrek bi bilo bolj prav reči izrek Gaussa-Ostrogradskega ali

izrek Ostrogradskega-Gaussa. Uporablja se tudi ime izrek o divergenci. Zaradi

kraikosti in enostavnosti bomo ostali pri Gaussu.

Ohzarnik mat fiz 36 (19R00 1 |



form, ki ga je iznašel Elie Cartan pred 80 leti. Lahko rečemo, da je eden od

malih čudežev matematike, kako zelo je ta (kasneje ustvarjeni) jezik prila-

gojen (starejši) vektorski analizi. Npr. oba naša izreka in še tretji integralski

izrek vektorske analize, namreč, da za poljubno orientirano gladko krivuljo

K z začetno točko a in končno točko b in za poljubno zvezno diferenciabilno

funkcijo f, definirano vzdolž K, velja

(0.1) (grad). dr — f (b)—f (a)
K

(in seveda Greenova formula, ki jo imamo lahko za poseben primer Stokeso-

vega izreka), so posebni primeri t.i. posplošenega Stokesovega izreka

(0.2) jo < [f do
doM M

(za diferencialno formo « poljubne stopnje n na kompaktni orientirani mno:

goterosti M dimenzije m). Ta izrek imenujejo tudi osnovni izrek infinitezi-

malnega računa, ker je posplošitev enako imenovanega klasičnega izreka

b

(If (Odx—< f(b)—f(a (primerjaj (0.1)).
a

Če se sploh ne oziramo na siceršnji pomen diferencialnih form, sta že

dejstvi, da imajo v tem jeziku razni pomembni klasični izreki enotno formu-

lacijo (in sicer tako preprosto, kot je formula (0.2)) in da je dokaz formule

(0.2), kot se izkaže, pravzaprav trivialnost, dovolj močna argumenta za željo,

naj bi bil seznanjen z diferencialnimi formami vsakdo, ki poučuje vektorsko

analizo; kdor tega pogoja ne izpolnjuje, je podoben človeku, ki uči o reše-

vanju sistemov linearnih enačb, pa ni še nikoli slišal za vektorske prostore

in matrike. (Če se je zaradi teh mojih besed kdo sklenil poboljšati, mu svetu-

jem, da preštudira 4. in 5. poglavje — približno 60 strani bolj majhnega

formata — iz Spivakove knjižice [3]).

Seveda pa tisto, kar sem napisal v prejšnjem odstavku, ne pomeni avto-

matično, da je treba tudi študente 2. letnika učiti diferencialne forme. Jaz

sam jih nisem. Zato sem dokaz formule (0.2) »prevedel« iz jezika diferen-

cialnih form v jezik vektorskih polj (to je treba napraviti za vsako od di-

menzij 2 in 3 posebej) in tako dobil zadovoljiva dokaza za Stokesov in

Gaussov izrek. Prevajanje ni čisto brez težav. Zato sem tudi napisal tale čla-

nek: morda bo ta dokaz koristil še komu. Za predavanja nematematikom ta

pot verjetno ne pride v poštev, ker je predolga. Tam bo najbrž še nadalje

najboljše izpuščati definicije in podajati delne in približne dokaze. Toda

morda bo ta članek kaj koristil predavateljem samim.

Kot bo bralec videl, sta dokaza glavnih izrekov sama v resnici dovolj

kratka in tudi dokaj naravna; ogromno večino prostora zavzema priprava,

ki sestoji večidel iz definicij. Pripomniti je treba, da je ta priprava dovolj

važna Že sama na sebi, saj gre za razčiščevanje zelo osnovnih geometričnih

pojmov, in da je ne zahteva samo »moj« dokaz glavnih izrekov, temveč vsak

popoln dokaz: kot že rečeno, brez jasnih idej ni mogoče napraviti jasnega

dokaza.

Čeprav se zavedam, da je članek predolg, se nisem mogel odločiti, da bi

ga bistveno skrajšal. Tudi recenzent je predlagal kvečjemu še dodatna pojas-

nila. Da ne bi ta članek sam zasedel večine ene številke Obzornika, sem ga
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razdelil na dva dela. Marsikdo bo lahko prebral samo drugi del; tam bosta

namreč dokazana Stokesov in Gaussov izrek. Gotovo so pa tudi taki potenci-

alni bralci, ki jim razlaga iz prvega dela ne bo odveč.

1. Diferenciranje v evklidskih prostorih

Za definicije in izreke iz tega razdelka računam, da so bralcu že znani.

Navajam jih, da mu osvežim spomin in da se izognem nesporazumom glede

oznak in imen.

Kot je v navadi, bomo za vsako naravno število m označili z R" vektorski

prostor vseh n-teric realnih števil. Ukvarjali se bomo le s primeri n — 1, 2, 3

(in namesto R! bomo pisali seveda kar R). Uporabljali bomo še tele oznake

(spet predvsem za n — 2, 3):

Morda ni odveč opozoriti, da R", ni isto kot (R,)" (ki je množica vseh n-teric

nenegativnih števil).

Elemente prostorov R" bomo imenovali točke ali vektorje, kakor nam bo

bolj ustrezalo, in jih označevali z debelo tiskanimi črkami. Skalarni produkt

vektorjev a in b iz R" bomo označili a.b ali (pri bolj kompliciranih izrazih)

z <a,b), njun vektorski produkt z a X b, mešani produkt (a X b) .e —

— a.(b X ce) vektorjeva, b, c pa z <a,b,c). Za urejeno trojico (a, b,c) vektor-

jev iz R" bomo rekli, da je pozitivno orientirana, če je ča,b,c) >O0, in da je

negativno orientirana, če je /a,b,c>< 0.

Naj bo O odprta množica v R" in f preslikava iz O v R" (spet nas bodo

zanimali le primeri, ko sta m in n izmed števil 1, 2, 3). Potem je f n-te-

rica (fi,...f,) funkcij f;:0—R (i— 1,...,n), tj. n-terica realnih funkcij m

spremenljivk, definiranih na 0. Če so vse te funkcije v poljubni točki iz O

parcialno odvedljive na vse spremenljivke in če so vsi ti (prvi) parcialni od-

vodi zvezni na 0, pravimo, da so funkcije f,,...,f, in preslikava f zvezno

diferenciabilne na O ali da so gladke razreda C!i. Razrede Cž, C%,... pa defini-

ramo induktivno takole: za k >l1 sestoji C" iz tistih funkcij razreda C!,

katerih (prvi) parcialni odvodi so v CK—! (torej iz k-krat zvezno diferenciabil-

nih funkcij in preslikav). Končno, f pripada razredu Ce", če je v C< za vsak k.

Če je preslikava f (kot zgoraj) zvezno diferenciabilna, ima v vsaki točki

re O Jacobijevo matriko £f(r) (element te matrike na mestu (z, j) je parci-

alni odvod o0of;/0x;, izračunan v točki r); 4f je tedaj zvezna preslikava iz O

v prostor R":" matrik velikosti n X m. Znano je tole verižno pravilo:

1.1. Trditev. Če je 2 odprta množica v R" in 9) odprta množica v R" in

če stat: D—0' in g: O' — RP? preslikavi razreda CK (1 < k < ce»), je tudi kom-

pozitum gof: O —> RP preslikava razreda CK in za vsak re? je (got) (r) —

— Zg(E£(r)) ZE (x).

Naj bosta zdaj 2 in 2' odprti množici v istem prostoru R". Preslikava

a: 0—> 9' je difeomorfizem razreda CK (ali kratko CK-difeomorfizem), če je

bijektivna in če sta a in inverzna preslikava ari: 9' — O k-krat zvezno dife-

renciabilni (seveda je tedaj tudi a—! C'-difeomorfizem). Ker je pojem dife-

omorfizma bralcem najbrž manj domač kot drugi pojmi tega razdelka, še
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nekaj besed o njem. Če je n — 1 in je O interval, je CK-difeomorfizem isto

kot strogo monotona, k-krat zvezno odvedljiva funkcija. Pri nm — 3 si dife-

omorfizem nazorno predstavljamo takole. »Prostorsko telo« 0) (mislimo, si da

je narejeno iz testa) preoblikujemo — s stiskanjem, raztezanjem, zvijanjem,

upogibanjem itd. — v »telo« 0'; če pri tej deformaciji ničesar ne pretrgamo,

če vsaka gladka krivulja iz 0 preide spet v gladko krivuljo v 0' in če ima

povratna deformacija enaki lastnosti, potem je preslikava a iz O v O', ki

vsaki točki iz O pridruži iz te točke z gnetenjem dobljeno točko v 9', dife-

omorfizem. Podobna nazorna predstava velja za n — 2. |

1.2. Lema. Če jea: 0—> .O9' difeomorfizem med odprtima množicama 0),9' c

c R", je za vsak reR" Jacobijeva matrika fa(r) obrnljiva in ( fa(r))-! —

— Faz' (alr)).

Dokaz. Po verižnem pravilu je £ar! (a(r)) £a(r) — Y(arloa)(r) — FZI(Gr)—I

(: — identična preslikava). Podobno vidimo, da je tudi falr) Za! (a(r)) — I.

Znano je, da ta lema dopušča »lokalni« obrat (ki ga je pa veliko teže

dokazati):

1.3. Izrek o inverzni funkciji. Če je O odprta množica v R', er: 0 —> R'

preslikava razreda CK in r e O] taka točka, da je Jacobijeva matrika fal(r)

neizrojena, potem a preslika neko odprto okolico točke rv O Ck-difeomorfno

na neko odprto okolico točke a(r) v R".

Naj bo zdaj 0 odprta množica v R?. Med preslikavami, definiranimi na

O, nas bodo najbolj zanimala vektorska polja, tj. (zvezne) preslikave F: O — R5.

Če je polje F zvezno diferenciabilno, lahko izračunamo iz njega novo vektor-

sko polje rot F:0 — R? in skalarno polje (tj. zvezno realno funkcijo)

div F:,2—> R takole: če je F — (A, 5,C) (komponente A, B in C polja F so

tedaj zvezno diferenciabilne realne funkcije na 9), je

(14) rotF —(C/—B;, A'—C,, B, —A,/), divF—A,4B,/ 4C/

(s črticami in indeksi x, y, z smo označili seveda parcialne odvode na x, y, z).

Bralec se bo zlahka prepričal, da velja:

1.5. Lema. (1) rot F je tisto (edino) vektorsko polje na O, za katero je

( £F(r) — ZF(r)1)h — (rot F) (r) X h (s T smo označili transponiranje, vektor

h pa si je tu treba misliti kot stolpec komponent tega vektorja).

(2) div F — Sled £F.

Formuli za rotor in divergenco iz te leme sta več kot le nerodna izražava

formul (1.4). Uporabimo ju lahko kot definicijo rotorja in divergence, ki ni

odvisna od koordinatnega sistema. Kajti, čeprav je matrika £F (r) odvisna

od koordinatnega sistema, je linearna preslikava DF(r): R? —> R?, definirana

s h> £F(r)h, neodvisna; preslikava DF (r), imenovana odvod ali diferencial

preslikave F v točki r, se navadno tudi definira tako, da je že po definiciji

neodvisna od izbire koordinat — glej npr. [2]. Mi pa bomo formuli iz 1.5 upo-

rabili v dokazu Stokesovega in Gaussovega izreka.

2. Gladke krivulje in ploskve

Nazorno — in seveda nenatančno — bi lahko opisali gladko krivuljo v rav-

nini takole: to je taka množica v R?, da je vsak njen dovolj majhen kos ne-

kakšna upognjena daljica. Tisto »upogibanje« mora biti dovolj gladko, recimo
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tako, da lahko obenem »deformiramo« neko okolico daljice v neko okolico iz-

branega kosa krivulje. Gladko »deformacijo« odprte množice smo imenovali

difeomorfizem. Zato se precizna definicija gladke krivulje glasi takole. Množica

K c RE? je gladka krivulja, če za vsako njeno točko r lahko najdemo odprto

okolico U te točke v R?, še drugo odprto množico U' c R?, ki seka prvo koor-

dinatno os R x 40), in difeomorfizem a: U — U', ki presek U NA K preslika na

U' NA (R x (0b (glej sliko 1). Pravzaprav smo se malo prenaglili, ko smo rekli

»za vsako točko«. Kajti če je r krajišče krivulje K, je malo drugače: tedaj

zahtevamo, da se dajo izbrati U, U' in a tako, da U' vsebuje izhodišče in da

a preslika r v 02in UN K na Wni(R, x 410) (glej sliko 2).

Bodimo še malo bolj natančni in iz R? se preselimo v R?; bolj kot ravnin-

ske krivulje nas bodo namreč zanimale prostorske.

2.1.1. Definicija. Množica K c RS je gladka krivulja razreda CK, če za vsako

točko r e K obstajajo taka odprta okolica U c BR? točke r, taka odprta mno-

žica U' c R' in tak Ck-difeomorfizem a: U — U', da je izpolnjen eden od

pogojev:

(a) alU NK) — VW N(R x (0:0)

(b) alU AK) — UWnN(R, x (02h in a(r) — 08

V primeru (a) je r notranja točka krivulje K, v primeru (b) pa krajišče ali

robna točka.

Povezana gladka krivulja, ki leži na premici, je isto kot interval na tej

premici.



Podobno kot gladko krivuljo definiramo giadko ploskev: to je taka mno-

žica točk v prostoru, da je vsak njen dovolj majhen del tak kot malo upog-

njena ali zvita ploščica. Natančneje:

2.1.2. Definicija. Množica N c R? je gladka ploskev razreda Ck, če za vsako

točko r ce N obstajajo taka odprta okolica U c R? točke r, taka odprta mno-

žica U' c RS in tak CE-difeomorfizem a: U —>U', da je izpolnjen eden od po-

gojev:

(a) a(UNN) < UN (R: X (0)

(b) sUNN—<Wn (Rž, x 100 in a(rjeR X (40?)

V primeru (a) je r notranja točka, v primeru (b) pa robna točka ploskve N.

Množica vseh notranjih točk je notranjost ploskve N, intN, množica vseh

robnih točk pa rob ploskve N, dN.

Povezani ploskvi, ki leži v kaki ravnini, bomo rekli tudi (ravninsko) polje.

Očitna je podobnost med zgornjima definicijama. Precej jasno je tudi,

kako definirati gladkim krivuljam in ploskvam analogne večrazsežne objekte

v prostorih višjih dimenzij. Ti objekti se imenujejo gladke mnogoterosti.

Mi se s splošnimi mnogoterostmi ne bomo ukvarjali in bomo le še posebej

definirali gladke 3-razsežne mnogoterosti v RS (a prav to izogibanje splošnim

mnogoterostim nas bo prisililo v pogosto in že kar nadležno ponavljanje in

tako prepričljivo utemeljilo smiselnost obravnavanja splošnih mnogoterosti).

2.1.3. Definicija. Množica M c R? je gladka 3-razsežna mnogoterost razreda

Ck, če za vsako točko re M obstajajo taka odprta okolica U c R3 točke r,

taka odprta množica U' c RS in tak C'-difeomorfizem ce: U —>U', da je iz-

polnjen eden od pogojev:

(a) alU NAM) —< U (tj. Uc M

(b) alU NM) < WARS, in a(rjeR? X (0)

V primeru (a) je r notranja točka, v primeru (b) pa robna točka mnogo-

terosti M. Množica vseh notranjih točk je notranjost mnogoterosti M, intM,

množica vseh robnih točk pa rob mnogoterosti M, OM.

Povezani 3-razsežni mnogoterosti v Rš rečemo tudi (prostorsko) območje.

Iz izreka 1.3 o inverzni funkciji se da izvesti, da (pri vseh treh definicijah).

nobena točka ni obenem notranja in robna.

Če pri definiciji 2.1.2 točka r c N ustreza pogoju (b), potem očitno vse

točke iz a-!(R X (0:4) ležijo v ON, preostale točke iz UN N pa v intN.

Čisto podobno je pri definiciji 2.1.3. Od tod pa takoj sledi:

2.2. Trditev. Rob gladke ploskve je gladka krivulja brez krajišč. Rob gladke

3-razsežne mnogoterosti je gladka ploskev brez roba. (V obeh primerih rob

pripada istemu diferenciabilnostnemu razredu C% kot prvotna mnogoterost.)

Po naših definicijah ravninski mnogokotniki niso gladke ploskve in pro-

storski poliedri niso gladka območja. Če želimo vključiti te in še druge

»mestoma oglate« objekte, moramo definiciji 2.1.2 in 2.1.3 nekoliko razširiti,

kot sledi.

Vsak kvadrant ravnine R? je omejen z dvema poltrakoma. Družino kvadran-

tov v R? bomo imenovali dopustno, če vsak njen član seka unijo vseh drugih

članov v uniji svojih mejnih poltrakov. Nedopusten je torej samo par kvad-

rantov, ki se sekata samo v izhodišču, in zato obstajajo natanko 4 paroma ne-

skladne množice, ki so unije (nepraznih) dopustnih družin kvadrantov: kvad-

rant, polravnina, komplement odprtega kvadranta in vsa ravnina.
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Vsak oktant prostora R? je omejen s tremi ravninskimi kvadranti. Družino

oktantov v Rš bomo imenovali dopustno, če vsak njen član seka unijo vseh

drugih članov v uniji svojih mejnih kvadrantov. Bralec se lahko sam prepri-

ča, da je natanko 10 paroma neskladnih množic v R?, ki so unije (nepraznih)

dopustnih družin oktanov. Med njimi sta seveda tudi ves prostor R? in pol-

prostor Rš,

2.3.2. Definicija. Množica N c R? je gladka ploskev razreda CE z (more bit-
nimi) vogali, če za vsako točko re N obstajajo taka odprta okolica U c R
točke r, taka odprta množica U' c R%? in tak C'-difeomorfizem a:U-—> U',

da je a(U A N) presek množice U' z unijo kake dopustne družine kvadrantov

ravnine R2 X 40).

2.3.3. Definicija. Množica M c R? je gladka 3-razsežna mnogoterost razreda

Ck, če za vsako točko r ec M obstajajo taka odprta okolica U c R? točke r,

taka odprta množica U' c R% in tak C'"-difeomorfizem a: U—>U', da je

a(U O M) presek množice U' z unijo kake dopustne družine oktantov pro-

stora MR,

Točke (2- ali 3-razsežne) mnogoterosti z vogali, za katere difeomorfizma a

ni mogoče izbrati tako, da bi bil izpolnjen pogoj (a) iz 2.1.2 oziroma 2.1.3,

štejemo seveda med robne. Trditev 2.2 za mnogoterosti z vogali ne velja

več, lahko pa bi rekli, da so njihovi robovi »kosoma gladki«.

Morda ni odveč posebej opozoriti na tri stvari:

1. Naše krivulje, ploskve in 3-razsežne mnogoterosti niso nujno povezane,

tj. lahko sestojijo iz več ločenih kosov.

2. »Krivulja s samopreseki« (npr. krivulja v obliki številke 8) po naši

definiciji ni gladka krivulja. Podobno »proskve s samopreseki« niso gladke

ploskve. Tudi stožec z enačbo x? -- yž — z? ni gladka ploskev.

3. Če je E odprta množica v R? in je f: £ — R funkcija razreda CK, je graf

1x, y, f (x, 9)) e R3| (x,y) e E) te funkcije gladka ploskev razreda CK: pri oz-

nakah iz definicije 2.1.2 naj bo U— VU':<— E X R, difeomorfizem a pa defini-

rajmo s formulo a(x,y,z): — (x, y, z —f (x, Y)) (nverz je preslikava (x, y, z)

> (x, $, z f(x, y)). Če je E polje z nepraznim robom, ni dosti drugače. Po-

dobno je graf k-krat zvezno odvedljive funkcije R—> R? gladka krivulja raz-

reda Ck,

Znan je pojem parametrizacije krivulje ali ploskve. Za nas bodo predvsem

važne posebno lepe parametrizacije, ki jim bomo rekli regularne.

2.4.1. Definicija. Regularna parametrizacija gladke krivulje K c R% razreda

CK je taka preslikava (? kakega intervala Jc R<RX (0?) c Rs na krivuljo

K, da jo je mogoče razširiti do C"-difeomorfizma kake odprte okolice daljice

J v R' na kako odprto okolico krivulje K.

2.4.2. Definicija. Regularna parametrizacija gladke ploskve N c R? razreda

CK je taka preslikava B kakega polja E c Rit< R?X (0) c RS na ploskev N,

da jo je mogoče razširiti do CKX-difeomorfizma kake odprte okolice polja

E v Rš na kako odprto okolico ploskve N. (Če želimo, lahko pri N in E dovo-

limo vogale.)

V naslednjih dveh trditvah je ena smer (potrebnost pogojev) dokaj nepo-

sredna posledica definicij in leme 1.2, druga smer (zadostnost pogojev) se

da pa s precej več truda izpeljati iz izreka 1.3 o inverzni funkciji. Kasneje

se bomo sklicevali le na lažja, očitna dela obeh trditev, zato bomo dokaza

izpustili.



2.5.1. Trditev. Naj bo J c R interval. Preslikava B:J —> R3 je regularna pa-

rametrizacija kake gladke krivulje razreda CK natanko tedaj, ko izpolnjuje

pogoje: B je k-krat zvezno diferenciabilna, B' (x) % 0% za vsak xeJ in B pre-

slika J homeomorfno na B(J).

2.5.2. Trditev. Naj bo E c R? ravninsko polje. Preslikava B: E —> RS je re-

gularna parametrizacija kake gladke ploskve razreda CK natanko tedaj, ko

izpolnjuje pogoje: 6 je k-krat zvezno diferenciabilna, 6, (s) X B,/(s) -% 03 za

vsako točko se E in B preslika E homeomorfno na B(E).

Gladko krivuljo ali ploskev bomo imenovali elementarno, če ima kako re-

gularno parametrizacijo. Za zgled navedimo, da krožnica ni elementarna kri-

vulja (ker pač ni homeomorfna nobenemu intervalu). Običajna »polarna«

parametrizacija krožnice postane regularna, če iz krožnice odstranimo (vsaj)

eno točko. Podobno 2-razsežna sfera ni elementarna ploskev, dobimo pa ele-

mentarno ploskev, če iz nje odstranimo en meridian skupaj s poloma (para-

metrizacija s polarnima koordinatama), ali tudi, če odstranimo eno samo

točko (stereografska projekcija).

Iz definicije 2.1.1 sledi, da je vsaka gladka krivulja unija elementarnih,

v tej krivulji odprtih podmnožic, in podobno velja za ploskve (preslikava e—!

iz definicije je regularna parametrizacija). Pravzaprav so elementarne (pod)

krivulje in (pod)ploskve, ki jih dobimo iz definicij 2.1.1 in 2.1.2 še malce »bolj

elementarne« kot splošne elementarne krivulje in ploskve. Domenimo se, da

bomo za ploskev N rekli, da je čisto elementarna, če ima kako regularno pa-

rametrizacijo 6: E — N, pri kateri je E povezana, v ravnini R? ali polravnini

R:, odprta množica. (Po definiciji je množica V odprta v množici X c R?,

če je V —UN X za kako odprto množico U c RS).

3. Orientacija

3.1. Definicija. Naj bo X c R? gladka mnogoterost (dimenzije 1, 2 ali 3)

in r e intX. Vektor v c R? je tangenten vektor za X v točki r, če ob-

stajata tako število > 0 in taka odvedljiva funkcija y: (—«,:) — R?, da je

y((—e,2)) c X, y(0) — r in y'(0) — v. Tangentne vektorje v robni točki r c 0X

definiramo popolnoma enako, le da zahtevo y((—:,:)) c X zamenjamo s šib-

kejšo: y((—«:,0]) c X ali y([0,:)) c X; pri tem pravimo, da je v obrnjen nav-

zven, če je y((—e,0) c X, in da je v obrnjen navznoter, če je y([0,x)) c X.

Ni težko pokazati, da so v robni točki r c 0X tangentni vektorji na X, ki

so obrnjeni obenem navznoter in navzven, natanko tisti, ki so tangentni za 0X.

3.2. Trditev. Množica T,X vseh tangentnih vektorjev mnogoterosti X v toč-

kt r je linearen podprostor v R5 iste dimenzije kot X.

Dokaz bomo izpustili.

Če je X krivulja, je torej T,X premica (imenovana tangenta krivulje X

v točki r), če je X ploskev, je 7,X ravnina (tangentna ravnina), če je X pro-

storsko območje, pa je T,X — Rs.

Označimo z S? enotsko sfero v R?, tj. množico vseh v c R3, ki imajo (vj — 1.

3.3.1. Definicija. Lokalna orientacija gladke krivulje K c RS v točki r c K

je podana z enotskim vektorjem na tangenti krivulje K v točki r (torej z izbi-

ro ene od dveh točk iz S? N T,K. Globalna orientacija (ali kratko orientacija)

krivulje K je podana z zvezno izbiro lokalnih orientacij v vseh točkah iz K,

torej z zvezno preslikavo £: K —> S? (imenovano tangentna Gaussova preslikava
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za K), ki vsako točko r ec K preslika v S? [| 7,K. Par (K, £) imenujemo ori-

entirana krivulja.

3.3.2. Definicija. Lokalna orientacija gladke ploskve N c R$ v točki r c N

je podana z enotskim vektorjem na normali ploskve N v točki r (tj. na orto-

gonalnem komplementu (7,N)! ravnine T,N). Globalna orientacija (ali kratko

orientacija) ploskve N je podana z zvezno izbiro lokalnih orientacij v vseh

točkah iz N, torej z zvezno preslikavo y: N —> S? imenovano normalna Gaus-

sova preslikava za N), ki vsako točko r e N preslika v eno od dveh točk iz

S? NA (7,N)L. Par (N, y) imenujemo orientirana ploskev.

Da se pokazati, da ima vsaka gladka krivulja kako orientacijo; natančneje,

vsaka povezana krivulja ima natanko dve orientaciji (in krivulja, ki ima mn

komponent, ima natanko 2" orientacij). Pri ploskvah pa ni tako: obstajajo

ploskve, ki nimajo nobene orientacije (najpreprostejša je Mobiusov trak).

Ploskev imenujemo orientabilno, če ima kako orientacijo, sicer pa je neori-

entabilna. Glede števila orientacij orientabilne ploskve pa velja isto kot za

krivulje.

Vsaka »krivulja« Kc R<RX (0%) c RS ima odlikovano orientacijo: po-

dana je s konstantno tangentno Gaussovo preslikavo K —> fi — (1,0,0);. Tudi

vsaka ploskev N c Ri< R' X (0) c R% ima odlikovano orientacijo, podano

s konstantno normalno Gaussovo preslikavo N —>(k — (0,0,1)). Druge kri-

vulje in (orientabilne) ploskve pa nimajo odlikovanih orientacij.

Naj bo J interval v R in 6: J —> RS? regularna parametrizacija (elementarne)

gladke krivulje K. Označimo z a: K —> J obrat preslikave (. Vzemimo po-

ljuben re K. Funkcija y(x) : — Fla(r) - x) ustreza pogojem iz definicije 3.1

(za X:— K), torej je z (0) — f' (a(r)) — : t(r) tangenten vektor krivulje K

v točki r. Po trditvi 2.5.1 je t(r) <— 0%. Ker je po zgornjem dogovoru i »pozi-

tivno« orientirani enotski tangentni vektor za J v točki a(r) in ker preslikava

B — natančneje, njen odvod Df(4a(r)) — preslika ta vektor v £p(a(r)) i —

— P'(a(r)) — t(r), je smiselna definicija:

3.4.1. Definicija. Z (8 inducirana orientacija v K je (pri zgornjih oznakah)

podana s tangentno Gaussovo preslikavo rr t(r)/t(r),. Če je krivulja K že

vnaprej orientirana, bomo rekli, da ( ohranja orientacijo, če se z 6 inducirana

orientacija ujema z naprej izbrano.

Podobno definicijo bomo podali za ploskve. Naj bo £ < R? ravninsko po-

lje in f: E — R5 regularna parametrizacija (elementarne) gladke ploskve N.

Bodi spet a: — B—!:N — E. Izberimo re N. Funkcija y(x): — f(a(r) - xi)

ustreza pogojem iz definicije 3.1 za X:<— N), torej je y' (0) — 6, (a(r)) tan-

genten vektor ploskve N v točki r. Podobno se prepričamo, da je 8,' (a(r)) tan-

genten vektor v točki r. Zato je n(r): — 6,(a(r)) X f,'(a(r)) normalen vektor

za N v točki r. Po trditvi 2.5.2 je n(r) x 08. |

Tangentna vektorja i in j ploskve E sestavljata skupaj s k, ki je po zgor-

njem dogovoru »pozitivno« orientirani enotski normalni vektor za E£, pozi-

tivno orientiran koordinatni sistem v R5. Če i in j preslikamo s preslikavo 6,

natančneje z njenim odvodom D((a(r)), dobimo tangentna vektorja

FRla(r))i — Br(a(r)) in ZB(a(r)) j — F,/'(a(r)) ploskve N v točki r; ta dva se-

stavljata skupaj z normalnim vektorjem n(r) pozitivno orientirano trojico

v R% (ker je mešani produkt teh treh vektorjev enak /n(r)?, torej je pozitiven).

Zato je smiselna definicija:



3.4.2. Definicija. Z 6 inducirana orientacija v N je (pri zgornjih oznakah)

podana z normalno Gaussovo preslikavo ri>n(r) / |jn(r),. Če je ploskev N že

vnaprej orientirana, bomo rekli, da f ohranja orientacijo, če se z 6 inducirana

orientacija ujema z naprej izbrano.

Pravkar opisana konstrukcija kaže, da je vsaka elementarna ploskev ori-

entabilna. K zadnjima definicijama sodi še

3.4.3. Definicija. Linearen izomorfizem L: R? — MR? ohranja orientacijo,

če preslika pozitivno orientirane trojice (linearno neodvisnih) vektorjev v

pozitivno orientirane, negativno orientirane pa v negativno orientirane, tj.

če ohranja znak mešanega produkta; L obrne orientacijo, če preslika pozitivno

orientirane trojice v negativno orientirane (tj. če spremeni znak pri mešanih

produktih). Za difeomorfizem a: R —.9' (pri katerem sta O) in 0' odprti mno-

žici v R$) pa pravimo, da ohranja orientacijo, če njegov odvod Da(r) : RS —> R?

ohranja orientacijo za vsak r c R?.

3.5. Trditev. Linearni izomorfizem L: R3—> RS ohranja orientacijo natanko

tedaj, ko je det L>0, in obrne orientacijo natanko tedaj, ko je det L< 0.

Difeomorfizem a:2)—-09' torej ohranja orientacijo natanko tedaj, ko je

det £a(r) >0 za vsak red.

Dokaz. Vzemimo poljubne vektorje a, b, c c RS. Označimo z [a, b, c]

matriko, ki ima te vektorje — trojice realnih števil — za stolpce, in naj ima

[La, Lb, Le) analogen pomen. Potem je [La, Lb, Lc] matrični produkt L.[a, b, c]

in zato

(La, Lb, Lc> — det [La, Lb, Lc] — (detL) ca,b,c)

Trditev 3.5 očitno sledi.

3.6.1. Trditev. Vsaka orientirana elementarna gladka krivulja K c R3 ima

orientacijo ohranjajočo regularno parametrizacijo. Če sta Bj;:J,;,—-—>K in

Bi: J3, >—K poljubni dve orientacijo ohranjajoči regularni parametrizaciji za

K, obstaja tak difeomorfizem h: Ja—>J,, da je Ba — B,oh in h >0 povsod na

int Ja.

Dokaz. Naj bo £: K —> S? tangentna Gaussova preslikava, ki ustreza izbrani

orientaciji. Po definiciji elementarne krivulje obstaja vsaj ena regularna pa-

rametrizacija za K, recimo (:J —> K. Za vsak xeJ sta vektorja 8(6(x)) in

B()/ | P'()| — :t(x) enaka ali nasprotna. Za s — -,— označimo z J, mno-

žico vseh tistih x iz J, za katere je t(x) — s E(B(x)). Množici J, in J. sta v J

komplementarni in — ker so preslikave t, čo 8 in —čo (6 zvezne — zaprti. Ker

je interval J povezan, je torej enak J, ali J.. V prvem primeru ( ohranja

orientacijo. V drugem primeru pa zamenjamo J z intervalom J,: < (x ce R

; —xe J) in preslikavo 6 s preslikavo ,:J, — R?, definirano z (,(x): —

— B(—x); očitno je tudi 6, regularna parametrizacija za K in ker je 6,'(x) —

— —f('(—4), f, ohranja orientacijo.

Vzemimo preslikavi 6, in 63 kot v trditvi 3.6.1; naj bo B, (p — 1,2) tak

difeomorfizem neke odprte okolice intervala J, v Rš na neko odprto okolico

krivulje K, da je B, |J, — 6, (glej definicijo 2.4.1). Kompozitum H: <— B,—oB;

je potem difeomorfizem neke okolice intervala J, na neko okolico intervala J,;.

Ker njegova zožitev na J7, HJ: — 6,7192 —:h, preslika J; na J,, je h difeo-

morfizem Js; na J, (in seveda je 62 — 6,9 h). Dokazati moramo le še to, da je

h' >O0.
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Vzemimo poljubni taki točki x, e intJ, (p < 1,2), da je 6; (x) — (2 (Xa) —

— :r, in bodi x, — (x,,0,0) e R?. Ker H preslika neko okolico točke xs na

abscisni osi nazaj v abscisno os (s preslikavo %), je H, (x3) — 4 (x) i. Po drugi

strani pa je po verižnem pravilu 1.3 in lemi 12

B; (xi)! £Bs (xa) i — DB

Ker tako DB; (x;) kot DB; (xs) preslikata i v pozitiven večkratnik vektorja

E(r) (saj (6, in Ps ohranja orientacijo), je 4' (x) i — DB; (x;)-! (DB, (xs)i) po-

zitiven večkratnik vektorja i, torej je res /' (xa) > 0.

3.6.2. Trditev. Vsaka orientirana elementarna gladka ploskev N c R$ ima

orientacijo ohranjajočo regularno parametrizacijo. Če sta B;: E; >N in

B:: Ea—>N poljubni dve orientacijo ohranjajoči regularni parametrizaciji za

N, obstaja tak difeomorfizem h: Es—E;, da je fa — B;oh in det £h > 0 povsod

na int Es.

Dokaz. Označimo z č; zrcaljenje (x,y) > (—«x, y) ravnine Rž". Za poljubno

regularno parametrizacijo 6: E — N je tudi 6,: — foč,: 1(E)— N regularna

parametrizacija ploskve N in čisto podobno kot pri dokazu prejšnje trditve

dokažemo, da ena od preslikav 6, 6, ohranja orientacijo.

Naj bo y: N — S? normalna Gaussova preslikava, ki ustreza izbrani orien-

taciji v N. Vzemimo preslikavi 6,,(: kot v formulaciji naše trditve in defi-

nirajmo B;, B;, H in h: £a— £, podobno kot v prejšnjem dokazu. Privzeti

smemo, da difeomorfizma B; in B; ohranjata orientacijo: če B, obrne orien-

tacijo, ga zamenjamo s preslikavo (x, y, z) -> B, (x, y, —z), ki je tedaj orienta-

cijo ohranjajoč difeomorfizem in se na E,x< E£, X 410) še vedno ujema z 8,.

Potem seveda tudi H ohranja orientacijo.

Vzemimo poljubni taki točki s, c int £, < (int£,) X (0) c Rš(p— 1,2), da

je 61 (si) — Pa (s2) — :r. Ker H preslika neko okolico točke s; v ravnini R? X

x 40] nazaj v to ravnino, in sicer s preslikavo h, ima Jacobijeva matrika za H

obliko

[A h (ss)

kjer je

— ZB; (si)—! /B, (sa) k — DB; (s;)—! (DB, (s2) k)

Za p — 1,2 ležita vektorja u,: — DB, (s,)i — /B,(s,)i in v,: — DB,(s,) j —

— ZB, (s,) j v tangentni ravnini 7,N, vektor DB, (s,) k — /B, (s,) k pa na tisti

strani te ravnine, na katero kaže u, X v, (ker B, ohranja orientacijo), to pa je

tista stran, na katero kaže v(r) (ker 6,: E, — N ohranja orientacijo) zato je

c >0. Če zdaj upoštevamo, da je det £H(s,) — c(det /h(s3)) in det £IH(s-) > O0

(ker H ohranja orientacijo), že dobimo relacijo det £h (ss) > 0, ki smo jo že-

leli dokazati.

Za poslednjo definicijo tega razdelka potrebujemo tale pomožni rezultat:

3.7. Lema. Naj bo N c Rš gladka ploskev z nepraznim robom. Za vsak

re ON označimo z ylr) enotski vektor v T,N, ki je pravokoten na T,oN in

usmerjen ven iz N. Tako definirana preslikava yu: ON —> S? je zvezna.
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Dokaz. Vzemimo poljuben reco0ON. Izberimo difeomorfizem a: U —>U', ki

ustreza pogoju (b) iz definicije 2.1.2, in naj bo f: — a7! in s: — a(r). Ker je

(zožitev) 6 regularna pafametrizacija tako za N NA U kot oN NU, je 6, (s) ne-

ničeln vektor v T,O0N, 6, (s) X 6, (s) pa neničeln vektor v (T,N)L (glej 2.5.1

in 2.5.2). Če torej definiramo preslikavo 7: ON A U —> R3 s predpisom

z(v): — Br (a(v)) X [Be (a(v)) X B;y (a(v))]

; ti preslikavi sta pa obese u ujema na ON N U bodisi s 7//z) bodisi z — z//z

zvezni.

3.8. Definicija. Naj bo N c R$ gladka ploskev z nepraznim robom, orien-

tirana z normalno Gaussovo preslikavo y: N —> S2, Definirajmo :O0N —> S? kot

v lemi 3.7. Za orientacijo, ki jo v OoN določa tangentna Gaussova preslikava

E: — v X gu: ON —> S2, pravimo, da je skladna ali koherentna z izbrano orien-

tacijo v N.
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NOVE KNJIGE

Group representations, ergodic theory, operator algebras, and mathematical

physics. Proceedings of a conference in honor of George W. Mackey. Edited

by C. C. Moore. Math. Sciences Research Institute Publ. 6. Springer Verlag,

New York 1987, vii - 278 str.

Gre za zbornik desetih člankov, od katerih je bila večina predstavljena

na konferenci, ki jo je maja 1984 organiziral Math. Sciences Research In-

stitute iz Berkeleya v čast enemu najvidnejših matematikov tega stoletja —

Georgeu W. Mackeyu. Že iz naslova knjige je mogoče zaslutiti širino Mac-

keyevega znanstvenega zanimanja in vpliv, ki ga ima njegovo delo. Ker tukaj

ne moremo razčlenjevati vsebine vseh desetih člankov, naštejmo le avtorje

in prevode naslovov člankov: L. Auslander in R. Tolimieri, Funkcije nejas-

nosti in reprezentacije grup; L. Corwin, Orbite Kirillova in razcep v direkten

integral na določenih kvocientnih prostorih; E. G. Effros in J. Kaminker,

Homotopija in teorija oblik za C"-algebre; R. Howe, Majhne unitarne repre-

zentacije klasičnih grup; 1. Kaplansky, Dualni vektorski prostori; C. C. Moore,

Eksponenten razkroj korelacijskih koeficientov za geodetske tokove; G. D.

Mostow, Mreže v U(n, 1); I. E. Segal, Inducirani svežnji in nelinearne valovne

enačbe; M. Takesaki, Kompaktne abelove grupe avtomorfizmov injektivnih

pol-končnih faktorjev; R. J. Zimmer, Ergodična teorija in grupe avtomorfiz-

mov G-strukture. |

Vičina člankov je tako ali drugače povezana s teorijo reprezentacij lo-

kalno kompaktnih grup in njeno uporabo na raznih področjih: od analize

radarskih signalov do teoretične fizike. V tem pogledu je izjema morda le

prispevek Effrosa in Kaminkerja, ki obravnava K-teorijo in teorijo oblik za

direktne limite Cuntz-Kriegerjevih algeber.

Čeprav je večina izrekov v zborniku opremljena z dokazi, knjiga nikakor

ne nudi lahkega branja in bo dobrodošla predvsem tistim, ki se z obravna-

vanimi področji tudi sami aktivno ukvarjajo. Bojan Magajna

12 Obzornik mat. fiz. 36 (1989) 1



PACS a4255-c

l aserji so sestavljeni iz svetlobnega resonatorja in ojačevalnika. Stoječe valo-

vanje v odprtem resonatorju se ojačuje s stimuliranim sevanjem. Lasersko delo-

vanje nastopi, ko ojačenje krije izgube. S spreminjanjem izgub v resonatorju do-

bimo lahko močne svetlobne sunke, s sklapljanjem več nihanj pa zelo kratke

sunke. Koherentni curki, dobljeni iz nekoherentnih svetil, so mnogo velikostnih

stopenj šibkejši od laserskih.

I asers consist of light resonator and amplitier. Standing waves in an open

resonator are amplitied by stimulated emission. Laser action starts when ampli-

fication covers losses. By switching the guality of the resonator strong light
pulses can be obtained. Coupling several resonator modes gives very short pulses.

Coherent beams obtained from incoherent source are many orders of magnitucd.
weaker than laser beams.

1. Uvod

V šoli že na začetku poglavja o svetlobi povemo, da je svetloba valovanje.

Vendar so poskusi, ki naj to pokažejo, razmeroma zahtevni, kar navadno pri-

pišemo majhni valovni dolžini. Vendar je to le manj pomemben del težav.

Svetloba, s katero imamo opravka vsak dan, je namreč le nekakšen šum.

Z njim je težko izvajati interferenčne poskuse, ki naj dokažejo valovno na-

ravo svetlobe. Položaj je približno tak, kot da bi hoteli pokazati interferenco

valov na vodi v bazenu, polnem kopalcev. Za tako — neurejeno — valovanje

pravimo, da je nekoherentno. Urejeno — koherentno — valovanje, na primer

krogelno valovanje z natanko določeno valovno dolžino, ki izhaja iz neke toč-

ke v prostoru, je za interferenčne poskuse mnogo prikladnejše.

Povsem koherentno valovanje je le idealizacija. Presenetljivo je, da so jo

optiki zelo uspešno uporabljali več kot dvesto let, ne da bi imeli na voljo

svetilo, ki bi bilo vsaj približno koherentno. Zato ni čudno, da je izum kohe-

rentnega svetila — laserja — leta 1961 povzročil prevrat v optiki in fiziki

nasploh, kasneje pa tudi v tehniki. Prispevek poda osnove delovanja laser-

jev in pojasni glavne lastnosti laserske svetlobe.

2. Optični resonatorji

Koherenten izvor zvoka — piščal. Osnovne zamisli na poti do laserjev si

oglejmo na bolj domačem zgledu zvoka in koherentnih zvočil, to je nekaterih

glasbil. Izvir zvoka z določeno frekvenco in s tem valovno dolžino je harmon-

sko nihalo, ki sinusno niha. Vsako nihalo, ki ga vzbudimo, nato pa prepu-

stimo samemu sebi, se prej ali slej ustavi zaradi trenja in upora in zaradi

neizogibnega sevanja zvoka. Da bo nihanje enakomerno, moramo dovajati

energijo, s katero ravno pokrijemo izgube. Kako to dosežemo, je eno po-

membnih vprašanj v zgodovini tehnike. Že dolgo znan primer je ura na ni-

halo, ki ji energijo dovaja napeta vzmet in padajoča utež. Še starejši in za

razpravljanje o laserjih poučnejši zgledi so nekatera glasbila, predvsem pi-

hala in godala.

Podobnost med laserji in glasbili najlepše vidimo pri klarinetu. To glasbilo

razdelimo na dve bistveni enoti: cev, v kateri lahko nastane stoječe zvočno

valovanje, in ustnik, v katerega s pihanjem dovajamo energijo in s tem

vzdržujemo nedušeno nihanje.

(ihsormilz mat fiz 828 (1080) 1 13



Frekvenco stoječega valovanja — nihanja zračnega stolpca v piščali —

določa dolžina cevi (od prve tonske luknjice) in število vozelnih ploskev

v cevi. Na krajišču cevi pri ustniku je cev zaprta, zato imamo tam hrbet

tlaka.

Ustnik je polobel zaključek cevi, ki ga skoraj povsem zapira ploščat,

prožen jeziček. Ko glasbenik piha v ustnik, se jeziček trese in oddaja zvok.

Če ustnik ni nataknjen na cev, je ta zvok nekakšen šum. Tresenje jezička

je le približno periodično in vsebuje mnogo frekvenc.

Ko ustnik nataknemo na cev in pihamo vanj, začne tresenje jezička vzbu-

jati stoječa valovanja v cevi, katerih frekvence vsebuje tresenje jezička. Do-

kler je vzbujanje šibko, se ne zgodi nič posebnega. Ko pa amplituda tlaka

v cevi dovolj naraste, nastopi nov pojav. Nihanje tlaka povratno deluje na

ustnik in ga sili, da niha s frekvenco stoječega valovanja v cevi, nihanje je-

zička z drugimi frekvencami pa zamre. Moč pihanja se rabi le še za nihanje

jezička s pravo frekvenco in ojačuje nihanje zračnega stolpca. S pihanjem

v ustnik lahko torej zaradi povratne zveze med nihanjem jezička in nihanjem

zračnega stolpca v cevi vzdržujemo stoječe valovanje s konstantno amplitudo.

Dovedena moč se izseva kot zvok na odprtem koncu klarineta.

Votlini, v kateri lahko nastane stoječe valovanje, navadno pravimo reso-

nator. Klarinet je torej sestavljen iz zvočnega resonatorja in ustnika, ki oja.

čuje nihanje v resonatorju. Podobno je sestavljen tudi laser iz optičnega

resonatorja in ojačevalnika za svetlobo. Najprej se lotimo optičnih resona-

torjev.

Zaprti resonatorji in gostota nihanj. Rekli smo, da so resonatorji votline,

v katerih lahko nastane stoječe valovanje. Pogosto jih uporabljamo v mikro-

valovni tehniki pri valovnih dolžinah nekaj centimetrov. Mikrovalovni reso-

natorji so običajno pravokotne ali valjaste votline s prevodnimi stenami.

ki z majhnimi izgubami odbijajo mikrovalove. Votlina ima — kot pri piščalih

— velikostno stopnjo valovne dolžine in je v njej le nekaj vozelnih ploskev.

Pri svetlobi je drugače. Votlina z velikostjo enega mikrometra je pre-

majhna, da bi vanjo lahko spravili uporaben optični ojačevalnik. Običajno

je potrebnih vsaj nekaj centimetrov. V tako velikem resonatorju pa ima

vsako svetlobno stoječe valovanje veliko število vozelnih ploskev. Zato se

frekvence valovanj s podobnim številom vozelnih ploskev le malo razlikujejo.

Poskusimo prešteti, koliko je stoječih valovanj, to je lastnih nihanj elektro-

magnetnega polja v resonatorju, v danem frekvenčnem intervalu.

Zaradi enostavnosti vzemimo, da je resonator kocka z robom ZL. Vsako

lastno nihanje označimo s številom vozelnih ploskev v smereh treh pravo-

kotnih robov. Ti trije podatki določajo tudi komponente valovnega vektorja:

k — (n a/L, m n/L, la/L) in (1)

k? — zn2/LA(n? -- m? -- B2) (2)

n —1, m—1 in I—l so števila vozelnih ploskev v treh pravokotnih smereh.

Frekvenco določa velikost valovnega vektorja: v — c k/(27). Valovni vektorji

lastnih nihanj sestavljajo kubično mrežo, v kateri na vsako nihanje odpade

kocka s prostornino V < (7/L)3. Število vseh lastnih nihanj z velikostjo va-

lovnega vektorja med k in k -- d k je enako prostornini osmine krogelne lu-

pine med k in k - dk, deljene s (7/L)3, če je le k mnogo večji od 1/L. Upo-

števajmo še, da obstajata dve polarizaciji, pa dobimo število lastnih nihanj

v intervalu d k dN — (V/m2) kad k (3)
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Z zvezo med valovnim vektorjem in frekvenco dobimo naposled število ni-

hanj na frekvenčnem pasu d v

dN<—oep(x)dv — 8ša V/cš vy? dv (4)

Funkciji e (v), pravimo gostota nihanj. Če je prostornina V <— 1 cm? in ustreza

frekvenčni pas širini spektralne črte, ki jo sevajo atomi, to je na primer

10 GHz, sledi za d N okoli 109%, Da bomo dobili koherenten izvir, pa moramo

ojačevati le eno nihanje resonatorja. Pri vidni svetlobi zato zaprti resonatorji

niso uporabni.

Odprti optični resonatorji. V zaprtih resonatorjih dobimo tolikšno število

stoječih valovanj, ker imajo ta lahko poljubno smer. Če odstranimo stranske

ploskve resonatorja, tako da ostaneta le dve vzporedni zrcali, so mogoča le še

stoječa valovanja, ki so pravokotna na zrcali. Razdalja Z med zrcaloma mora

biti enaka večkratniku polovice valovne dolžine, tako da so mogoče frekvence

v — ne/PL (5)

n je celo število, ki je navadno precej veliko, na primer 10%, Frekvenčni raz-

mik med sosednjima nihanjema c/2L je iste velikostne stopnje kot širina

črte atomskih prehodov in je zato mogoče ojačevati posamezno lastno nihanje

takega odprtega resonatorja.

Kako je z obliko valovanja med zrcaloma? Ti imata končen polmer a.

Zamislimo si, da neomejeno ravno valovanje pada na zaslonko s polmerom

ao. Za zaslonko se bo valovanje zaradi uklona širilo. Divergenca bo v veliki

oddaljenosti približno %/a, (Sl. 1). Valovna ploskev ne bo več ravna, temveč bo

ukrivljena s krivinskim radijem, približno enakim oddaljenosti od zaslonke.

V razdalji od zaslonke a,?/4 postanejo meje curka ravne. Po teh ocenah ugo-

tovimo tudi polmer curka as v najožjem delu, ki mu recimo grlo, če na da-

nem mestu poznamo polmer a in krivinski radij valovne ploskve R. Velja

9 — a/R — j/as, tako da je a, — R /a.

Vrnimo se k resonatorjem. Če naj imamo med zrcaloma stoječe valovanje,

mora biti valovna ploskev po odboju taka kot pred njim. To pomeni, da mora

imeti na zrcalu enako ukrivljenost kot zrcalo samo. Videli pa smo, da so va-

lovne ploskve valovanja, ki je v prečni smeri omejeno, razen v grlu, ukriv-

ljene. Zato so tudi zrcala laserskih resonatorjev običajno nekoliko ukrivljena.

Paboou spoges ge" Load

li €, amzih a eDa NURII oe

L

Sl.| Curek ravnega valovanja, ki ga Sl. 2 Oblika stoječega valovanja v reso-

prepusti zaslonka, se širi zaradi uklona natorju. Eno zrcalo je delno prepustno

— odbojnost z < 1, da del svetlobe lah-

ko izhaja
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Krivinska radija in razdalja med zrcaloma že določajo obliko stoječega va-

lovanja. Ker so krivinski radiji veliki, ne veljajo prejšnji približki, navadno

pa lahko vzamemo, da je prečni polmer snopa po vsem resonatorju skora]

enak in je tem večji, čim bolj ravni sta zrcali (Sl. 2).

Za delovanje laserja so zelo pomembne energijske izgube v resonatorju.

Te izvirajo deloma od nezaželene absorpcije in sipanja na zrcalih in v reso-

natorju, deloma pa od tega, ker je eno od zrcal namenoma delno prepustno.

Laser, ki bi imel obe zrcali povsem neprepustni, bi bil nekoristen. Vse izgube

lahko opišemo s karakterističnim časom ft,, v katerem pade energija stoječega

valovanja na l/e začetne vrednosti, če mu ne dovajamo enersije. Za energijo

stoječega valovanja, ki ga vzbudimo, nato pa pustimo, da prosto zamre

velja

d Wldt < —W/t, (6)

Če zanemarimo druge izgube, lahko čas dušenja izrazimo z odbojnostjo r

izhodnega zrcala. Pri enem preletu valovanj čez resonator in nazaj uide

(1 — 7) W energije; čas obhoda je 2L/c. Delež izgub na enoto časa, torej l/f,,

je zato c(1 —r)/2L. Za r — 095 in L — 25cm je t, — 3.10—8s. Dušenje določa

tudi spektralno širino lastnega nihanja resonatorja. V navedenem primeru

je ta 30 MHz.

Povzemimo. V odprtih optičnih resonatorjih z rahlo ukrivljenima zrcaloma

dobimo omejeno, skoraj ravno stoječe valovanje, ki ga lahko obravnavamo

kot sinusno. Njegovo frekvenco je določata dolžina resonatorja in število

vozelnih ploskev vzdolž osi. Eno zrcalo je delno prepustno, kar določa du-

šenje. Divergenca izhodnega curka nastane zaradi uklona in je tem manjša,

čim večji je premer curka v resonatorju.

3. Optično ojačevanje

Absorpcija in stimulirana emisija. Najti moramo še način, kako svetloho

Oojačevati. Navajeni smo, da moč svetlobnega curka pri potovanju skozi snov

slabi. Da bomo pojav razložili in našli možnost za njegovo nasprotje, to je

ojačevanje, vzemimo zelo preprost model snovi: plin atomov, ki imajo po en

elektron, z dvema energijskima stanjema. Razliki energij obeh stanj ustreza

frekvenca v — E/h. Plin naj bo v votlini, v kateri je vzbujeno tudi svetlobno

stoječe valovanje s frekvenco v in gostoto energije w. Med atomi in svetlobo

lahko pride do treh vrst dogodkov: absorpcije in spontanega in stimuliranega

sevanja. Pri prvem atom iz osnovnega stanja preide v vzbujeno in se zmanjša

energija sevanja za 4y. Pri spontanem sevanju atom iz vzbujenega stanja

preide v osnovno in se poveča energija kateregakoli lastnega nihanja v votlini

na frekvenčnem intervalu, ki ustreza nedoločenosti energije atomskega pre-

hoda. Videli smo, da je število mogočih nihanj zelo veliko, zato je tudi ver-

jetnost, da se bo pri spontanem sevanju povečala energija vnaprej določe-

nega nihanja, majhna. Pri stimuliranem sevanju preide atom iz vzbujenega

stanja v osnovno pod vplivom nihanja v votlini; pri tem se energija lastnega

nihanja poveča za Z v.

Zaradi sodelovanja med atomi in svetlobo se spreminja število vzbujenih

atomov in energija valovanja v votlini. Naj bo N; število atomov v osnovnem

stanju, N, število vzbujenih atomov in A verjetnost za spontano sevanje

v enoti časa. Absorpcija je odvisna od gostote energije w, od lastnosti atoma

in od spektralne širine. Pričakujemo, da bo pri dani frekvenci na območju

prehoda verjetnost tem manjša, čim večja bo spektralna širina 4vy. Verjet-
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nost za absorpcijo na enoto časa torej lahko zapišemo kot (B;3/4 v) w. Po-

dobno je verjetnost za stimulirano sevanje (Ba31/4 v) w. S tem lahko zapišemo

spremembo zasedenosti vzbujenega stanja, ki mora biti zaradi konstantnega

števila vseh atomov N, nasprotno enaka spremembi zasedenosti osnovnega

stanja:

d Najd t < —dN;/d t < —A Ns— Ba w N3/4v - ByawN;/A v (7)

Energija svetlobe se spremeni za razliko med številom stimuliranih prehodov

in absorpcij ter zaradi spontanih prehodov. Od vseh spontanih prehodov gre

le delež 1/p v izbrano lastno nihanje, če je p število vseh nihanj v votlini

na pasu energij s širino atomskega prehoda. Videli smo, da je tipično p okoli

10%, Svetloba tudi uhaja iz votline ali se absorbira na stenah, tako da imamo

d W/d it <— (Ba, w Na/4 v — Byaw N;/A v - A N3/p) hv — W/t, (8)

Koeficienti A, B,> in B,, opisujejo sklopitev med atomi in elektromagnetnim

sevanjem; vpeljal jih je Einstein. Enačbi (7) in (8) sta osnova za obravnavo

optičnega ojačevanja.

Sl. 3 Ponazoritev spontanega in stimuliranega sevanja in absorpcije in verjetnost

za prehod na časovno enoto. Pri spontanem sevanju ima svetloba poljubno smer in

frekvenco v pasu, ki ustreza nedoločenosti energije prehoda. Pri stimuliranem

sevanju sta smer in frekvenca izsevane svetlobe enaki kot pri svetlobi, ki je prehod

sprožila

Zveza med Einsteinovimi koeficienti. Napravimo najprej korak vstran in

pokažimo, da so Einsteinovi koeficienti med seboj povezani. Namesto da je

v votlini vzbujeno le eno lastno nihanje, naj bodo valovanje in atomi v toplot-

nem ravnovesju. Tedaj mora veljati za zasedenosti N, in N;

Za povprečno energijo posameznega nihanja v votlini da Bose-Einsteinova

statistika

W — h v/(exp(h v/k D) —U (10)

V enačbi (7) moramo upoštevati možnost absorpcije in stimulirane emisije

zaradi vseh nihanj na frekvenčnem pasu atomskega prehoda. Teh je p, tako

da imamo

V termičnem ravnovesju je d Na/dt — 0 in sledi

W < VAA v/p Bya(Na/N; — Bx/B;) 12)

Upoštevajmo še enačbo (9):

W — V A/p Bya(exp(h v/k T) — Bz/Bya (13)



Primerjajmo to z izrazom (10), pa vidimo, da morata biti koeficienta B., in

B,, enaka in velja zveza

A — hv pB/AvV —hve(v) B (14)

Einsteinove koeficiente povezuje gostota nihanj, kar da tudi podroben kvant-

nomehanski račun.

Absorpcija, ojačevanje in optično črpanje. Vrnimo se k enemu samemu

lastnemu nihanju v votlini. Uvedimo namesto energije nihanja W število fo-

tonov n — W/h v. Tedaj lahko enačbi (7) in (8) z upoštevanjem zveze (14) pre-

pišemo takole:

d Nald t < —(Bhv»[/V Ax») n(Na—N)—AN, (15)

dn/jdt <(Bhy/V Av ((n - 0) Na—nN,)— n/t, (16)

Enica v oklepaju podaja prispevek spontane emisije. Iz enačbe (16) lahko

preberemo znameniti rezultat, ki ga da resnejši račun v kvantni elektrodi-

namiki: verjetnost za to, da gre energija prehoda atoma iz višjega v nižje

stanje v natanko določeno lastno nihanje, je sorazmerna s številom fotonov,

povečanim za ena. Pri tem ni treba ločiti stimuliranega in spontanega sevanja;

O spontanem sevanju govorimo pač tedaj, kadar na začetku ni elektromagne-

ga valovanja.

Če je energija v izbranem lastnem nihanju znatna, je n 3» 1. Zato bomo

v nadaljnji obravnavi izpustili enico v oklepaju. Tako se enačba (16) poeno-

stavi:

dn/dt — (Bhy/V 4vy) n(Na—N)— n/t, (17)

Imejmo v začetnem trenutku vzbujeno stoječe valovanje. V bližini toplotnega

ravnovesja je Na < N,; v votlini prevladuje absorpcija in energija sevanja se

manjša. Če pa vzpostavimo stanje, v katerem je N; > N,, prevlada stimulirano

sevanje. Prvi člen na desni strani enačbe (17) je pozitiven in je pri dovoli

veliki razliki Na —N, večji od drugega člena, ki opisuje izgube v votlini.

Energija izbranega stoječega valovanja začne naraščati. Tako smo dobili laser.

Načini črpanja. Kako je mogoče doseči obrnjeno zasedenost, to je Na>N,,

ki je pogoj za optično ojačevanje? Obrnjena zasedenost ni ravnovesna in je

za njeno vzdrževanje treba dovajati energijo. To je mogoče storiti na mnogo

načinov.

V plinu najpogosteje vzdržujemo obrnjeno zasedenost s črpanjem z elek-

tričnim tokom. Prosti elektroni, ki so poglavitni nosilci toka v plinu, se za-

letavajo v atome ali ione. Del elektronov ima dovolj veliko energijo, da pri

trkih atomi lahko preidejo v vzbujena stanja in se iz njih s sevanjem ali trki

vračajo v nižja. Zato plinska cev seva značilno svetlobo. V stanjih, iz katerih

so spontani prehodi manj verjetni, se atomi zadržujejo dlje, zato lahko pride

med njimi in nižjimi stanji do obrnjene zasedenosti. Ni treba, da je nižje

stanje osnovno; celo ugodneje je, če ni. Tedaj se namreč tudi samo spontano

prazni in če je verjetnost za to večja kot za spontano praznjenje višjega sta-

nja, je obrnjeno zasedenost prav lahko doseči. V mnogih plinih pri vzbujanju

s tokom nastane obrnjena zasedenost med več pari stanj in dobimo ojače-

vanje svetlobe in lasersko delovanje pri več frekvencah. He-Ne laser lahko na

primer poleg znane rdeče svetlobe sveti v infrardečem območju pri dveh va-

lovnih dolžinah, v vidnem pa še zeleno.

V trdnih optičnih ojačevalnih snoveh, v katerih običajno svetijo primesi,

pogosto črpajo s svetlobo, katere frekvenca je večja od frekvence laserskega
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prehoda. Z absorpcijo se atomi vzbujajo v višja stanja in z njih lahko zase-

dejo nižje lasersko stanje. Črpalno svetlobo dobimo na primer z močno kse-

nonsko lučjo, podobno onim, ki jih uporabljajo fotografi. Črpanje je nepre-

kinjeno ali sunkovno, odvisno od zahtev in izbrane ojačevalne snovi.

Črpanje lahko v preprostem matematičnem modelu opišemo s tem, da

na desni strani enačbe (15) dodamo člen z obliko RN,. V njem R podaja

- jakost črpanja iz spodnjega v zgornje stanje. Tako imamo

Vpeljemo novo spremenljivko D — N,—N, in upoštevamo N,; - Nas <— N,, pa

lahko enačbo (18) zapišemo prikladneje:

dDjdt—- 2KnD—(D—D9/T (19)

Pri tem je K— Bhy»/V 4», VT<A4-Rin D,< N4(R—A)/(R - A).

T meri čas približevanja stacionarnemu stanju, D, pa stacionarno vrednost

obrnjene zasedenosti, če ni svetlobe in s tem stimuliranih prehodov. D, je

tudi mera za jakost črpanja.

Zapišimo z novimi znamenji še enačbo (17):

dn/jdt —- KnD—nit, (20)

Enačbi (19) in (20) sta osnova za obravnavo laserja.

4, Laser

Stacionarno delovanje. Resonator, v katerem je vzbujeno stoječe valova-

nje, ki ga ojačuje stimulirano sevanje plina atomov z obrnjeno zasedenostjo,

že deluje kot laser. Rekli smo, da izberemo iz velikega števila vseh lastnih

nihanj v resonatorju eno ali le nekaj stanj s tem, da uporabimo odprti reso-

nator. Za začetek zanemarimo možnost, da se ojačuje več kot eno stoječe

valovanje. Tedaj za opis zadoščata enačbi (19) in (20). Zanima nas stacionarno,

to je od časa neodvisno delovanje laserja. Tedaj je dD/dt — 0 in dn/dt— 0

in imamo

2KnD4(OD—DJ)/T<0 (21) K nD—1/t, <0 (22)

Ena rešitev je očitno n — 0 in D <— D,. (Ta rešitev ni čisto prava. Če je n< 1,

ne smemo zanemariti spontanega sevanja.) Za laser v tem stanju pravimo,

da je pod pragom. V resonatorju ni svetlobe,. črpanje, ki je skrito v D,, pa

ravno pokriva zmanjševanje D zaradi spontanih prehodov. Svetloba teh gre

v poljubno smer in je nekoherentna.

Druga rešitev enačb (21) in (22) je

n —t,D/2T—1UW2KT — t(Do—D,)/2T (23)

D—<DY2KTn4-1|)< WKi,.<D, (24)

Število fotonov mora biti pozitivno, tako da je ta rešitev dobra za Do > D,.

Ustreza stacionarnemu delovanju laserja. Če je jakost črpanja nad pragom,

gre vsako nadaljnje povečanje moči črpanja v določeno stoječe valovanje

v resonatorju. Zato moč laserja nad pragom narašča linearno z močjo črpanja

(SI. 4). Zanimivo je tudi, da se nad pragom stopnja obrnjene zasedenosti

v stacionarnem stanju ne povečuje, ampak ostaja na vrednosti pri pragu D,.
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Laser se po enačbah (23) in (24) zares obnaša podobno kot klarinet. Pod

»pragom pihanja« je zvok nekoherenten in šibak, nad pragom pa se moč

pihanja pretaka v eno samo zvočno stoječe valovanje.

Lastno nihanje resonatorja, ki ga ojačuje stimulirano sevanje ravno dovolj,

da pokrije izgube, ima konstantno amplitudo. Svetloba iz laserja z enim sa-

mim stoječim valovanjem je čisto enobarvna. No, tu se moramo nekoliko

popraviti. Videli smo, da je frekvenca stoječega valovanja odvisna od dolžine

resonatorja. Slučajna sprememba dolžine zaradi temperaturnega raztezanja

ali tresljajev povzroči ustrezen premik laserske frekvence. To slučajno spre-

minjanje frekvence meri na primer v običajnih He-Ne laserjih nekaj deset

MHz. Z znatnimi napori pri gradnji resonatorja, temperaturno stabilizacijo in

mehanično izolacijo je mogoče zmanjšati kolebanje frekvence na 10 do

100 kHz. Z aktivnim popravljanjem resonatorja preko povratne zanke pa do-

sežemo frekvenčno stabilnost nekaj Hz ali še manj. S takim laserjem bi se

posrečili interferenčni poskusi na razdalji od Zemlje do Lune.

Četudi bi bila dolžina laserskega resonatorja popolnoma konstantna, bi

vendarle imela izsevana svetloba končno spektralno širino. Tega je kriv maj-

hen del spontanega sevanja, ki se izseva v izbrano stoječe valovanje in ki smo

ga v enačbi (16) zanemarili. Zaradi tega faza nihanja počasi leze. Preprost

račun, podoben računu povprečnega odmika delca pri Brownovem gibanju,

da za spektralno širino oceno Av; — l/nft,. Ker je število fotonov v laserju

nad pragom zelo veliko, na primer 100, je teoretična meja spektralne širine

laserja z enim vzbujenim lastnim nihanjem zelo majhna, pod mHz.

Prostorske lastnosti laserske svetlobe določa oblika stoječega valovanja

v resonatorju. To je skoraj ravno, le v prečni smeri je omejeno. Zato je šir-

jenje izsevanega curka določeno le z neizbežnim uklonom zaradi končnega

radija curka v resonatorju:

%.— A/a (25)

V majhnih He-Ne laserjih je radij curka okoli 1 mm in je zato divergenca

le nekaj desetink miliradiana.

Uklonsko divergenco je mogoče zmanjšati, če z lečami ali zrcali razširimo

curek. S teleskopom ga je mogoče razširiti na radij objektiva. Največji astro-

nomski teleskopi imajo zrcala premera nekaj metrov, tako da je dosegljiva

divergenca laserskega curka okoli 10—?. Tak curek se do Lune razširi na vsega

nekaj deset metrov in omogoča natančno merjenje razdalje med Zemljo in

Luno s časom preleta.

Primerjava laserjev in običajnih svetil. Prispeli smo dovolj daleč, da lahko

primerjamo običajna nekoherentna svetila in laserje. Curek laserja se odli-

kuje po tem, da je usmerjen, kolikor dopušča uklon — je prostorsko kohe-

renten, in da ima izredno majhno spektralno širino — je časovno koherenten.

Tudi svetlobo običajnega svetila lahko filtriramo, tako da dobimo koherenteri

curek, vendar pri tem izgubimo del svetlobnega toka. Poskusimo oceniti, ko-

likšna je lahko moč takega koherentnega curka.

Najsvetlejša nekoherentna svetila so živosrebrne svetilke. Dosežejo svet-

lost" B do okoli 100 W/cm? v spektralni črti pri 250 nm, ki je zaradi visokega

tlaka živosrebrnih par razširjena na širino okoli 10 nm. Če želimo dobiti us-

merjen curek, moramo v razdalji L od svetilke postaviti zaslonko s polme-

rom a (Sl. 5). Naj bo polmer svetilke R. Za zaslonko se curek razširi deloma

« Svetlost je svetlobni tok na enoto ploskve svetila in na prostorski kot.
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zaradi tega, ker gredo geometrijski žarki iz različnih delov svetila skozi za-

slonko pod različnimi koti, deloma pa zaradi uklona na zaslonki. Uklonski

divergenci se približamo, če se oboje izenači. Tedaj velja:

R/L — $, <— lja (26)

Radij zaslonke mora biti torej a — L37/R. Moč curka za zaslonko bo

P—-BSAO0/a—BaR? naša R'— z B) — 105 W (27)

Iz nekoherentnega svetila s polno močjo nekaj sto wattov smo dobili curek,

ki je prostorsko koherenten, a ima le še mikrowatt moči. Majhni He-Ne laserji

so tisočkrat močnejši.

Sl.4 Odvisnost energije nihanja v la- Sl. 5 Koherenten curek lahko dobimo iz
serju (podana s številom fotonov n) nekoherentnega svetila z zaslonko, ki je

od jakosti črpanja D, tolikšna, da je uklonska divergenca več-

ja od geometrijske

Nismo še upoštevali, da ima svetloba živosrebrne svetilke tudi precej večjo

spektralno širino od laserja. Zožimo jo lahko z interferenčnim filtrom. Re-

lativna širina črte šolskega He-Ne laserja je okoli 10—', živosrebrne svetilke

pa le okoli 10—?, tako da nam v curku iz živosrebrne svetilke po filtriranju

na širino laserja ostane le še 10—!0 W, Majhen šolski He-Ne laser torej pre-

kaša najmočnejše nekoherentno svetilo za sedem ali celo več velikostnih

stopenj. V kratkih sunkih pa laserji dosegajo moči gigawaitov in več, tako

da je ustrezno razmerje 20 velikostnih stopenj.

Velika efektivna svetlost na ozkem spektralnem pasu je odločilna lastnost

svetil za raziskave v optiki in spektroskopiji. Zato ni čudno, da so ta po-

dročja fizike po izumu laserja silno napredovala. Mogli bi skoraj reči, da

smo šele z laserjem dobili pravi izvir, običajna svetila pa oddajajo le svetlobni

šum. Koherentnost, predvsem prostorska usmerjenost, je tudi odločilna za

uporabo laserjev v industriji in celo v domačih napravah. Omogoča zelo na-

tančna merjenja dolžin, prenašanje informacij po optičnih vlaknih na velike

razdalje, zbiranje v piko z velikostjo valovne dolžine. To je potrebno za laser-

ske gramofone in za velike obdelovalne stroje.

Napravimo š e nekaj ocen. Najmočnejši laserski sistem, ki ga uporablja-

mo za raziskave kontrolirane fuzije, da sunke z energijo čez 100 kJ, ki trajajo

okoli 1 ns. Če jih zberemo v piko z velikostjo 10,,m, dobimo gostoto svetlob-

nega toka 104 W/mž?, Amplituda električnega polja je tedaj čez 10% V/m. To

je okoli stokrat več, kot je jakost električnega polja v vodikovem atomu.

Sunkovni laserji. Mnogi laserji delujejo v sunkih. Včasih zahteva to na-

rava črpanja, včasih pa lahko glede na potrebe isti laser deluje zvezno ali
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v sunkih. Želeli bi, da je energija sunkov čim večja, sunek pa kratek in lepo

oblikovan. Kako to dosežemo?

Vzemimo, da uporabljamo bliskavko, ki daje nekaj mikrosekund dolge

bliske. Na začetku obrnjena zasedenost narašča, ko pa preseže prag, laser

posveti in se zaradi stimulirane emisije obrnjena zasedenost zopet zmanjša.

Če traja črpalni blisk dovolj dolgo, se to lahko nekajkrat ponovi. Namesto

enega močnega sunka dobimo več majhnih, navadno v nepravilnem zapo-

redju.

Težavo lahko odpravimo s tem, da preprečimo lasersko delovanje, dokler

se dovolj energije črpalnega bliska ne pretoči v zasedenost laserskega stanja.

Prezgodnje delovanje laserja lahko preprečimo s tem, da na začetku pove-

čamo izgube resonatorja, v trenutku, ko je obrnjena zasedenost dovolj ve-

lika, pa izgube zmanjšamo. Ker je trenutna obrnjena zasenenost visoko nad

pragom, je ojačenje veliko, svetlobni sunek hitro naraste in s stimulirano

emisijo pomete skoraj vso energijo, shranjeno v zasedenosti višjega laser-

skega stanja.

Izgube resonatorja je mogoče spreminjati na mnogo načinov. Dobro deluje

Že vrtenje enega od zrcal. Dokler ni zrcalo v pravem položaju, so izgube

velike, ko pa je zrcalo pravokotno na os resonatorja, lahko nastane stoječe

valovanje z majhnimi izgubami in laserski sunek. Črpanje je treba uskladiti

z vrtenjem zrcala. Uporabljajo tudi elektrooptične in akustooptične modu-

latorje. Ti delujejo kot svetlobni zaklopi, ki jih je moč električno odpirati.

Laserske sunke tudi uspešno ojačujejo. Kot ojačevalnik služi enaka snov

kot v samem laserju, le da ni v resonatorju. Zato je v njej mogoče doseči

veliko obrnjeno zasedenost. Vpadna svetloba se s stimulirano emisijo oja-

čuje. Pri tem ohranja koherentnost in se velik del energije, nakopičene v obr-

njeni zasedenosti ojačevalnika, pretoči v svetlobo. Najmočnejše sunke, o ka-

terih smo govorili, dosežejo tako, da sunek iz osnovnega laserja razdelijo na

10 verig ojačevalnikov, od katerih je vsaka dolga 180 m. Premer zadnjih

ojačevalnih stopenj je 0,5 m, da ne nastanejo poškodbe optičnih elementov

zaradi prevelike gostote svetlobnega toka.

Oglejmo si še presenetljiv pojav, ki je posledica koherentnosti laserske

svetlobe. Doslej smo podrobneje obravnavali le laser, v katerem je vzbujeno

eno samo stoječe valovanje. Vendar to ni najbolj običajno. Frekvenci dveh

sosednjih nihanj resonatorja se razlikujeta za 5v — c/2L. Pri 30 cm dolgem

resonatorju He-Ne laserja je to 500 MHz, okoli trikrat manj od Dopplerjeve

širine laserskega prehoda. Zato lahko laser hkrati sveti pri več frekvencah,

odvisno od dolžine resonatorja in frekvenčne širine ojačevalne snovi. Faze

nihanj se predvsem zaradi mehaničnih motenj resonatorja slučajno spremi-

njajo, zato se v kakem trenutku posamezna nihanja seštejejo konstruktivno,

malo kasneje pa destruktivno in časovna odvisnost izhoda takega laserja je

dokaj neurejena. Izsevana svetloba ni več popolnoma enobarvna, ostaja pa

usmerjena. Večina laserjev je takih. Da imamo le eno stoječe valovanje, mo-

ramo navadno zagotoviti z dodatnimi optičnimi elementi v resonatorju.

Drugače pa je, če so faze nihanj konstantne. Privzemimo, da imajo vsa

nihanja na ojačevalnem intervalu, naj jih bo N, enako amplitudo. Električna

poljska jakost je tedaj vsota prispevkov vseh resonatorskih nihanj

N/2

E() <— % Aexpli(2a(w t mavit g)) —
m<——N/2

— A expli(27 vo t -- p)) X exp(2znim dv t) (28)
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Geometrijsko vsoto seštejemo:

E(t) — Aexpli(2x vet -- $9)) sin(7 N 8 v t/2)/sin(z 8 v t/2) ih (29)

Gostota energijskega toka je sorazmerna s kvadratom absolutne vrednosti

jakosti:

j — je(sin(z N 8 v t/2)/sin(7 6 v t/2))? (30)

jo je gostota toka, ki bi jo dalo posamezno nihanje (Sl. 6). Gostota svetlobnega

toka je velika le v kratkih sunkih, ki se ponavljajo v času 7,, v katerem pre-

leti sunek resonator v obeh smereh. Sunki trajajo z — TN in so tem krajši,

čim večji je N, torej čim večja je frekvenčna širina ojačevalnega prehoda A y.

Ker je N približno A x/6 v, velja tudi z — 1/4 y. Velikost sunka je jo N?, to je

N-krat tolikšna kot povprečna gostota toka, če se faze spreminjajo naključno.

Pogoj, da so faze enake, je prak-

tično uresničljiv. Ena možnost je, da

v resonator vgradimo modulator, s

katerim periodično nekoliko spremi-

njamo izgube s frekvenco ravno dy.

Izgube nihanj so najmanjše, če je

njihova faza enaka. Tako danes dose-

žejo sunke, ki trajajo le okoli 0,1 ps

ali 10-43 s, To je le sto optičnih niha-

jev. Z dodatnimi prijemi dobijo še

desetkrat krajše sunke.

V opisanem načinu posamezna la-

serska nihanja svetijo konstantno in

je časovna odvisnost posledica časov-

ne inter fer čnice med nihanji, v bistvu Sl.6 Časovna odvisnost gostote svetlob-
utripanje N nihanj. Pojav je povsem nega laserja z N stoječimi valovanji z

analogen s prostorsko interferenco, enako fazo

ki jo dobimo z uklonsko mrežico.

V tem kratkem pregledu smo lahko pojasnili le osnove delovanja laserjev

in opisali nekaj zanimivosti. S tem smo ostali čisto na začetku dolge poti.

Laserji in z njimi povezana področja fizike in tehnike se danes izredno hitro

razvijajo. Vrste področij znanosti in industrijskih naprav in celo izdelkov

široke porabe si brez laserjev ni mogoče zamišljati. Brez pretiravanja smemo

reči, da sodi odkritje laserja med najpomembnejše dosežke tega stoletja.

NAVODILO AVTORJEM ZA PRIPRAVO ROKOPISA

Rokopisi morajo biti natipkani v dveh izvodih (drugi izvod je lahko kseroks

kopija) na belem papirju formata A4, z dvojnim razmikom in vsaj 2cm širokim
robom na vseh štirih straneh. Naj ne bodo daljši kot ena avtorska pola, tj. 30.000

znakov ali približno 15 strani. V tekstu morajo biti vse besede, ki naj bodo po-

stavljene kurzivno, in vsi matematični simboli podčrtani z valovito črto, besede

in simboli, ki morajo biti stavljeni polkrepko, pa podčrtani z ravno črto. Podrob-

nejša navodila so objavljena v Obzorniku mat. fiz. 21 (1974) 62—64. Pri korekturah

na krtačnih odtisih uporabljajte dogovorjene oznake (glejte Slovenski pravopis

DZS, Ljubljana 1962).

Obzornik mat. fiz. 36 (1989) 1 23



NOVE KNJIGE

MAREK |., žitny K., Matrix analysis for applied sciences, Vols. 1, 2, Teubner

Verlag, Leipzig 1983, 1986 (Teubner Texte zur Mathematik ; 60, 84).

Uporabnost matrik v matematiki in drugih znanostih je nesporna in že

dolgo znana. S sodobnim nekoordinatnim oziroma operatorskim pristopom,

ko na matrike gledamo kot na predstavitev operatorjev, delujočih na končno-

razsežnih prostorih, se je njihov pomen še povečal. Operatorski pristop za-

hteva sicer nekaj več analize, zlasti funkcijske teorije, zato pa lahko kasneje

pri študiju lastnosti matrik uporabljamo bogato spektralno teorijo opera-

torjev.

Kot pravita v uvodu oba avtorja, je bil njun namen vzpostaviti most

med linearno algebro (pojmovano kot klasično teorijo matrik) in funkcio-

nalno analizo (pojmovano kot študij operatorjev na normiranih prostorih).

Kolikor lahko presodim, jima je to tudi odlično uspelo, ko sta v dveh re-

lativno tankih knjižicah (196 in 152 strani) o matrični analizi s poudarkom

na uporabi zajela skoraj vsa standardna poglavja matrične teorije in tudi

nekatere njene moderne dosežke.

Prvi del je bolj pripravljalne narave. V njem zvemo osnovne pojme

o linearnih prostorih ter operatorjih, o normiranih prostorih, zveznih ope-

ratorjih in funkcionalih na njih, dokazana sta izrek o odprti preslikavi in

Hahn-Banachov izrek, uveden Hilbertov prostor z vsemi svojimi lastnostmi

in šele na koncu spoznamo spektralne lastnosti operatorjev na normiranih

prostorih vključno z Rieszovim funkcijskim računom in Lagrange-Sylvestrovo

formulo. Drugi del predstavlja jedro razprave. Obravnava operatorje z ra-

cionalno resolvento, spektralni izrek za normalne operatorje, eksistenco kva-

dratnega korena, vprašanje stabilnosti operatorjev in s tem v zvezi uporabo

pri sistemih diferencialnih enačb, Jordansko predstavitev operatorjev na

končnorazsežnih prostorih, variacijski princip ter Drazinov in Moore-Pen-

roseov posplošeni inverz. Kot vidimo, zajema precej širok spekter vprašanj,

pogrešamo pa npr. Perron-Frobeniusovo teorijo s posplošitvami in uporabo

v verjetnostnem računu.

Razlaga je ves čas temeljita in rigorozna, vendar dokaj naravna in samo-

zadostna, to se pravi, da razen elementarnega računa s funkcijami in matri-

kami bralec ne potrebuje posebnega predhodnega znanja (zato pa so ne-

katera poglavja posvečena splošnim metričnim in topološkim pojmom, zvez-

nosti in odvedljivosti, Riemannovemu integralu, potenčnim vrstam, elemen-

tarni teoriji analitičnih funkcij in kompleksifikaciji realnega vektorskega

prostora). Odlika obeh delov je tudi množica primerov in nalog, posejanih

med tekstom; nekatere naloge zajemajo tudi novejše rezultate iz zadnjih

deset, dvajset let.

Že iz tega bežnega pregleda zbranega materiala lahko sklepamo, da avtorja

svojega dela nista napisala za začetnike. Kot sama pravita, ga namenjata

»podiplomskim študentom in znanstvenim delavcem različnih usmeritev, ki

pri svojih raziskavah uporabljajo matematične modele«. Vseeno mislim, da

bodo kot dopolnilno branje vsaj nekatera poglavja koristila tudi našim štu-

dentom matematike, zlasti pri linearni algebri, kjer jim operatorski pristop

ni in ne sme biti tuj, in pri funkcionalni analizi, pri kateri jim je včasih

razkorak med abstraktnim in konkretnim prevelik.

Milan Hladnik
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Oscilacije nevtralnih kaonov K? in K? poznamo že nekaj časa. Leta 1987 je
mednarodna raziskovalna skupina ARGUS odkrila podobne oscilacije pri nevtralnih
mezonih B? in B?. Pojav je pomemben tudi kot preskusni kamen za standardni
model osnovnih delcev. V skupini ARGUS sodelujejo tudi ljubljanski fiziki.

DISCOVERY OF OSCILLATIONS OF NEUTRAL MESONS B' AND B?

The oscillations of neutral kaons K? and K? are known for some time.
In 1987 the international collaboration ARGUS discovered similar oscillations of
neutral mesons B? and B?, The phenomenon is important also as a possible test of
the standard model of elementary particles. In the ARGUS collaborations phy-
sicist from Ljubljana are participating.

Prehajanje delca v antidelec, tako imenovane oscilacije, so doslej opazili

le pri nevtralnih kaonih K? in KO. Te so odkrili že leta 1947, a njihovo pro-

učevanje še danes pomembno prispeva k razumevanju osnovnih delcev in

sil med njimi. Mezoni K in K? niso obstojni, razpadejo zaradi delovanja
šibke sile. Pri njihovih razpadih lahko proučujemo lastnosti šibke sile, še

posebej to, kako prekrši simetrije. Leta 1957 so odkrili, da šibki razpadi.

to so razpadi, ki jih povzroča šibka sila, ne ohranjajo simetrije proti zrca-

ljenju prostora, se pravi, da se pri njih ne ohrani parnost P [1]. Spočetka so

mislili, da se pri teh razpadih ohrani vsaj simetrija proti hkratnemu zrcalje-

nju prostora in konjugaciji naboja C, pri kateri zamenjamo delec z njegovim

antidelcem, se pravi, da se ohrani kombinirana parnost CP. Na splošno

presenečenje pa so leta 1964 odkrili, da se pri nekaterih razpadih Ko in Ko

ne ohrani niti ta [2]. Prekršitev simetrije CP ima osnovni pomen, saj se

zaradi nje antimaterija obnaša drugače kot snov. V kozmoloških modelih

pojasnjuje, zakaj obstaja naše vesolje v glavnem le iz snovi.

Pogoj, da pride do prekršitve simetrije CP, so oscilacije, pri katerih

preide K? v K?) in K? v K', Mezon K?" ima čudnost S — 1, mezon K? pa čudnost

— — 1. To kvantno število je povezano z okusom kvarka, saj izvira od

antikvarka s v mezonu K? in od kvarka s v mezonu K?%. Zato imenujemo

oscilacije tudi mešanje okusov. Standardni model osnovnih delcev v enotni

teoriji močne, elektromagnetne in šibke sile pojasni mešanje okusov in pre-

kršitev simetrije CP. Proučevanje oscilacij med delci in antidelci je pomem-

ben preskus teorije, ker je izdatnost mešanja okusov močno odvisna od

parametrov standardnega modela.

Standardni model privzame obstoj šestih kvarkov z različnimi okusi:

cu, d, s, c, b in t. Doslej so odkrili prvih pet. Kvarka t še niso neposredno

zaznali, ker ima mnogo večjo maso od preostalih, o njegovem obstoju pa

redkokdo dvomi. Najtežjemu doslej odkritemu kvarku b so priredili kvantno

število »bottom« (dno) ali »beauty« (lepota) B — — Il. Odkrili so ga v letih

« Članek Oszillationen zwischen Teilchen und Antitetlchen im System der neu-
tralen B-Mesonen B'B? entdeckt je izšel v Physikalische Blatter 43 (1987) 373.
Dr. H. Schroder in uredništvo revije sta ljubeznivo dovolila objavo prevoda.

Članek je prevedel Mark Pleško, priredil pa urednik za fiziko, ki je tudi dodal

povzetek, opombi in seznam literature.
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1977 in 1978 pri poskusih v Fermilabu pri Chicagu in ob nakopičevalniku za

pozitrone in elektrone DORIS II v DESY v Hamburgu. Kvark b je podoben

kvarku s, le da ima precej v večjo maso. Zato pričakujemo po podobnosti

z doslej edinim parom K? in K? še dodatne štiri pare nevtralnih mezonov, med

katerimi se javljajo oscilacije. Še posebej pomembna sta par B? in B9, ki ga

bomo obravnavali, ter par By in B;% Mezon B? vsebuje antikvark b kot nosilca

kvantnega števila B — 1. Sestavljata ga običajni kvark d, ki sestavlja tudi
proton in nevtron, in antikvark b. Mezon B?, ki sestoji iz antikvarka d in

kvarka b, ima kvantno število B —— 1. Mezon B,? sestoji iz kvarka b in

antikvarka s; mezon B, iz antikvarka b in kvarka s, a teh mezonov doslej

še ni uspelo neposredno zaznati.

Oscilacije med B?" in B' so prvič neposredno opazovali leta 1987 razisko-
valci, ki so delali pri spektrometru ARGUS ob nakopičevalniku DORIS II

v DESY [3]. Pri poskusu so sodelovali fiziki DESY, nemških univerz Dort-

mund in Heidelberg, univerz Lund (Švedska), Ljubljana", Kansas (ZDA) in

South Carolina (ZDA) ter inštitutov ITEP iz Moskve in IPP iz Kanade. Pri

poskusu so dobili mezona B? in B' ob razpadu mezona Y(4S), ki ga sestavljata

kvark b in antikvark b. Njegova masa 10,6 GeV/c? je malo večja kot dva-

kratna masa mezona B? ali B?. Spektroskopska oznaka 4S pomeni, da imamo

opraviti s tretjim radialno vzbujenim stanjem vezanega sistema bb pri re-

lativni vrtilni količini L — 0. (Osnovno stanje zaznamujemo z 1S.) Mezon

Y(4S) nastane v nakopičevalniku pri trkih pozitronov in elektronov, ko

ustreza energija enega in drugega ravno polovici mase mezona Y(4S). Pri-

bližno polovica mezonov Y(4S) razpade v par naelektrenih mezonov B? in B-.

Druga polovica razpade v par nevtralnih mezonov B?" in B?:

et e—€ — T(4S) — Bo B4

Tudi mezoni B?% in B? niso obstojni. Razpadejo zaradi šibke sile na več
načinov in jih zaznamo le po njihovih razpadnih produktih. Poseben pomen

pri opazovanju oscilacij imajo razpadi, pri katerih nastanejo leptoni — elek-

troni, pozitroni, mioni:

B' ->et - X B'->y' -X

ali — —

B'->e- - X B'-> v -X

X zaznamuje druge delce, ki nastanejo skupaj z leptonom. Vidimo, da znak

naboja leptona pove, ali je lepton nastal pri razpadu mezona B? ali mezona B?.

Zaradi oscilacij lahko mezon B?% preide v mezon B? in mezon B% v mezon
B?, To pomeni, da zaradi oscilacij pričakujemo pri razpadih mezonov Y(45)

poleg B? B0 še enaka mezona B?B? ali B'B?. Z opazovanjem teh bi potrdili,

da obstajajo oscilacije. Enaka mezona B?B?% ali B?B? se pri razpadu me-

zonov YT(4S) pokažeta z dvema enako naelektrenima leptonoma. Med po-

skusom, ki so ga naredili člani skupine ARGUS, je nastalo skupaj 88000

mezonov VY(45). Med njimi je bilo treba poiskati razpade na dva enako

naelektrena leptona.

% V ljubljanski skupini sodelujejo Gabrijel Kernel in Peter Križan z Oddelka

za fiziko Fakultete za naravoslovje in tehnologijo in Instituta J. Stefan, Bojan

Boštjančič in Ervin Križnič z Instituta J. Stefan ter Mark Pleško s Fakultete za

elektrotehniko in Instituta J. Stefan.
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V celoti so rekonstruirali razpad na dva miona (Sl. 1). Pri tem je mezon

Y(4S) razpadel na dva mezona B?. Eden izmed njiju je moral biti ob razpadu

mezona Y(45) še mezon B?, preden je z oscilacijami prešel v mezon B?. (ba

mezona B?9 sta razpadla enako. Merilnik je zaznal vse delce v končnem stanju

razen obeh nevtrinov. Vendar podatki za druge delce kažejo, da sta pri raz-

padu zares nastala tudi dva nevtrina. Ta za zdaj edini popolnoma rekonstru-

irani razpad dokazuje, da obstajajo oscilacije mezonov B? in B?. Toda z enim

samim razpadom ne moremo določiti, kako izdatne so.

Da bi ugotovili, kako izdatne so oscilacije, so izbrali vse razpade mezona

Y(4S) z dvema enako naelektrenima leptonoma, ne glede na druge delce

v končnem stanju. Pri tem so še posebej pazljivo obdelali vse mogoče izvire

ozadja in jih spretno izločili ali odšteli njihov pridelek. Na koncu je preostalo

25 razpadov z dvema enako naelektrenima leptonoma, ki kažejo na obstoj

dveh enakih mezonov B%B% in BB? in s tem na obstoj oscilacij, ter 270

razpadov z nasprotno naelektrenima leptonoma. Iz tega izhaja, da je para-

meter mešanja okoli 20 odstotkov. To pomeni, da razpade po oscilacijah

petina mezonov B?" in B?, Rezultat je presenetljiv, saj so po teoriji napovedo-

vali komaj kak odstotek.

Sl. | Popolnoma rekonstruiran razpad
mezona (45) na dva mezona B?'. Oba
mezona B? razpadeta na pozitivni mion,

mezon D"-— in nevtrino. En mezon D"-

razpade takole: D,"— > z,- D?, DiI—>K,t
47, drugi pa takole: D,'— — go D- D-—

Ko my mo, > yy

O] O.

B' Wii W- Bo

u,c,U

Sl.2 Pravokotni diagram oscilacij B?% in

Ug" B, pri katerih preide mezon B? v B? in

mezon B? v B?, Antikvark b odda dva

B; —DY miv, B2 —D2 Mava bozona W, ki sta kvanta šibke sile, i

[.,: 5o ep preide v kvark b; ob tem preide kvark
be be d v antikvark d. Kvantno število B se

Ki, Karama pri tem spremeni za dve enoti (AB <— 2),

kar je mogoče le pri reakcijah, ki jih

povzroča šibka. sila

Prvi znaki, da obstajajo oscilacije nevtralnih mezonov B, so se pokazali

že prej. Nanje so naleteli proti koncu leta 1986 člani skupine UA1, ki deluje

ob trkalniku za protone in antiprotone v CERN v Ženevi. Skupina se je leta

1983 proslavila z odkritjem šibkih bozonov W in Z in njen vodja Carlo

Rubbia je zanj dobil Nobelovo nagrado. Pri poskusu nastanejo poleg drugih

delcev mezoni B? in B,? skupaj z antidelci B% in B,%. V končnem stanju re-
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akcij med antiprotonom in protonom so našli presenetljivo veliko enako

naelektrenih mionov. V tem so videli posledico oscilacij mezonov B?" in Be
in domnevno še izdatnejših oscilacij mezonov B, in B,. Ker pa s spektro-

metrom UAl ne morejo neposredno zaznavati ne mezonov B? in B, ne njunih

antidelcev B? in B,? in tudi ne vedo, koliko jih nastane, ne morejo iz tega
sklepati, ali je opazovani pojav posledica oscilacij B% in B? ali B,% in By

ali obojih.

Odločilno vprašanje je: ali se rezultat skupine ARGUS sklada s stan-

dardnim modelom? Oscilacije mezonov B?% in B?% opišemo v standardnem

modelu s tako imenovanim pravokotnim diagramom (Sl. 2). Antikvark b

in kvark d izmenjata dva šibka bozona W in preideta v kvark b jin anti-

kvark d. V vmesnem stanju obstajajo kvarki u, c in t in antikvarki u, c in t.

Ker je parameter mešanja sorazmeren s četrto potenco mas teh treh kvarkov,

je močno odvisen od mase kvarka t, ki je največja.

S poskusi ob nakopičevalniku pozitronov in elektronov PETRA, ki je

tudi v DESY, so pokazali, da je masa kvarka t vsaj 23 GeV/c?, sicer bi ga

opazili. Po parametru mešanja, ki ga je določila skupina ARGUS, bi morala

biti masa kvarka t vsaj 50 GeV/c?. Potemtakem ima mezon, ki sestoji iz para

it, kot sestoji mezon Y(4S) iz para bb, večjo maso kot 100 GeV/c?. To je

preveč, da bi ga bilo mogoče odkriti z obstoječimi napravami. Druga mož-

nost bi bila, da standardni model ne velja.

Skupina ARGUS je v drugi polovici leta 1988 začela ponovno meriti in

bo v naslednjih letih še podrobneje raziskala oscilacije mezonov B? in B?.

Nepričakovano izdatni pojav opravičuje upanje, da bodo v prihodnje opazili

tudi prekršitev simetrije CP pri mezonih B? in B% in s tem spoznali njeno

globljo naravo.

LITERATURA

[1] L. Pičman, Neohranitev parnosti, Obzornik mat. fiz. 4 (1956) 57.
[2] J. Strnad, Neinvariantnost proti obratu časa, Obzornik mat. fiz. 12 (1965) 64.

1985) ne ARGUS Collaboration, Observation of B?% B? mixing, Phys. Letters B192
) .

na ana -. ka aa

OBVESTILO NAROČNIKOM

Zaradi podražitev papirja in tiskarskih storitev je občni zbor

društva sklenil povečati naročnino, v kateri je za člane društva |

upoštevana tudi članarina, na 30.000.— din. Zaradi hude inflacije vas

prosimo, da nam znesek s priloženo položnico nakažete čim prej.

Naročnina, plačana po 1. 7. 1989, bo znatno višja. |
Janez Strnad in Ciril Velkovrh
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PROFESOF IVAN VIDAV — ČASTNI čLAN DRUŠTVA

Kakor pri večini ljudi, ki so obilneje obdarjeni z matematično intuicijo,

se je tudi pri profesorju Vidavu ta nadarjenost pokazala že v letih zorenja.

Toda pokazala se je tako silovito in nedvoumno, da je že sama od sebe

določila tudi smer njegovemu življenju — matematika. Študij na univerzi

je nemudoma potrdil pravilnost take odločitve, in to na nenavaden in bleščeč

način: komaj 23-letni Ivan Vidav je hkrati diplomiral in promoviral.

Sledijo mračna vojna in težka povojna leta, ki pretijo izničiti in raz-

vrednotiti vsako duhovno stvarilnost. S skromnimi in kratkimi bivanji v Ri-

mu in Parizu išče Vidav stike z mednarodno matematično javnostjo. Tudi

njegov vstop v to zahtevno svetovljansko matematično družbo je brž uspešno

opravljen. V pičlih petih letih 1950—1954 se ji namreč dostojno predstavi

kar z desetimi znanstvenimi deli, ki sodijo v klasično matematično analizo.

Kasnejše raziskave profesorja Vidava, njegov znanstveni opus šteje do-

zdaj 40 razprav in 10 raziskovalnih nalog, pa obravnavajo številne središčne

probleme sodobne funkcionalne analize. No, v tej zvezi je vsekakor treba

pripomniti dvoje:

Ker so bile Vidavove razprave zmeraj usmerjene v aktualne probleme,

jih je matematični svet tudi vselej sprejemal z živahno pozornostjo in odo-

bravajočim odzivom. 'To pa je seveda najzanesljivejši znak njihove kvalitete.

Poleg tega pa razodevajo njegove razprave po svoji logični strukturi tisti

posebni čar elegance, ki je v matematični literaturi sinonim za lepoto.

Seveda pa predstavlja ta vrhunska znanstvena dejavnost samo eno raz-

sežnost bogate Vidavove eksistence. Nič manjše, če ne celo še večje delo je

opravil profesor Vidav kot univerzni učitelj matematike. Najprej je, zaradi

hudega pomanjkanja promoviranih učiteljev matematike, ki je trajalo vse

tja v šestdeseta leta, sam predaval različne specialne predmete. Poleg sploš-

nega kurza iz matematične analize je tako izmenoma predaval še algebro,

diferencialne enačbe, funkcionalno analizo, teorijo analitičnih funkcij, pro-

jektivno in diferencialno geometrijo. Ni težko uganiti, da je s tem opravljal

dolga leta vsaj dvojno učno obveznost. Poleg tega je na dlani, da zmore kaj

takega le nekdo, ki je izjemno razgledan v matematiki nasploh. To pa je

v današnjem času superspecializacije zares velika redkost. Nasploh tudi

nikakor ni nujno res, da so vsi vrhunski raziskovalci tudi izvrstni predavatelji.

Pri profesorju Vidavu pa na srečo to je tako. O tem so si edini vsi njegovi

bivši in sedanji študentje.

Kot naravni naslednik profesorja Plemlja pa je moral profesor Vidav

še ves čas razreševati problem oblikovanja novih promoviranih učiteljev

matematike, problem, ki je bil posebno hud v petdesetih in šestdesetih letih

in toliko hujši, ker njegovo reševanje ni bilo odvisno le od Vidavove dobre

volje. Lotil se ga je s trdno odločnostjo in mirno preudarnostjo in v letih

1955—1961 je že bil uspešen mentor 4 doktorandom. Doslej je bil profesor

Vidav mentor 14 doktorandom.

Potemtakem je Vidavova zasluga, da se je v šestdesetih letih začelo tudi

na Slovenskem z raziskovalnim delom v matematiki. In res je bil že leta

1960 ustanovljen univerzni Inštitut za matematiko, fiziko in mehaniko, v ka-

« Pričujoče besedilo je vzeto iz sestavka prof. dr. Nika Prijatelja ob nagrajen-

čevi sedemdesetletnici.
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terem so združeni vsi matematiki raziskovalci. Iz letnih poročil Inštituta,

predvsem pa iz publikacije Preprint Series of the Department of Mathe-

matics, ki objavlja vsakoletno bero opravljenih raziskav, je lepo razvidno,

da Vidavov začetni trud nikakor ni bil zaman.

Vedno večje zahteve po strokovnem izpopolnjevanju so vodile do orga-

nizacije podiplomskega študija. Na matematiki obstajata dva profila takega

študija: raziskovalni in za področje izobraževanja. Skoraj samoumevno je, da

je bil profesor Vidav med prvimi pobudniki obeh smeri, da je aktivno so-

deloval pri snovanju programov in seveda tudi pri njihovi izvedbi.

Naj končno zabeležimo še eno pomembno smer razkošne Vidavove de-

javnosti. To je njegovo intenzivno in neprekinjeno delovanje v Društvu ma-

tematikov, fizikov in astronomov Slovenije vse od ustanovitve Društva leta

1949. Njegov prispevek k strokovni literaturi, za katero je Društvo že dolgo

let praktično edini izdajatelj, je kratkomalo ogromen: 17 knjig in 29 stro-

kovnih člankov. In kdo naj našteje vsa predavanja in kopico drugih nalog,

ki jih je še opravil v okviru Društva v teh dolgih letih, vse v slavo in čast

matematiki. Bogato življenje je nemogoče do kraja popisati, mogoče ga je

samo Živeti.

Zoper pretirano skromnost profesorja Vidava je družba, hvala Bogu,

nekajkrat protestirala, in sicer takole: 1952 Prešernova nagrada, 1958 dopisni

član SAZU, 1962 redni član SAZU, 1965 Red dela z rdečo zastavo, 1970 Ki-

dričeva nagrada, 1974 Red republike s srebrnim vencem, 1978 Red zaslug za

narod z zlato zvezdo, 1980 nagrada AVNOJ, 1985 naziv zaslužni profesor,

1988 Žagarjeva nagrada.

Društvo matematikov, fizikov in astronomov SR Slovenije prireja ob

sodelovanju Oddelka za fiziko Fakultete za naravoslovje in tehnologijo,

Instituta J. Stefan, Inštituta za matematiko, fiziko in mehaniko in Zavoda

SR Slovenije za šolstvo 10. in 11. februarja 1989 trinajsti seminar iz fizike

KVANTNA OPTIKA in POSEBNA TEORIJA

RELATIVNOSTI

Seminar je namenjen učiteljem matematike in fizike na srednjih in

osnovnih šolah za strokovno izpopolnjevanje. Vabljeni so tudi drugi člani

društva.

Petek, 10. 2. 1989

9.00 Začetek seminarja

Martin Čopič, Zakaj je laserski curek ozek in enobarven

Odmor

11.30 Janez Strnad, Potrditev napovedi posebne teorije relativnosti z urami

16.15 Marko Valič, Uporaba laserjev

19.00 Družabni večer z večerjo

Sobota, 11. 2. 1989

8.15 Martin Čopič, Zakaj je laserski curek ozek in enobarven

10.30 Janez Strnad, Oda od, balada balad, E — me?

Vodstva šol prosimo, da prispevek za seminar 80.000.— dinarjev nakažejo

na žiro račun DMFA SRS, Ljubljana 50101-678-49168, lahko pa ga udeleženci

plačajo na seminarju.

Martin Čopič in Janez Strnad
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40. JUBILEJNI

Štirideset let — je to kratko ali dolgo obdobje? Možna sta oba odgovora:

za posameznika je to praktično polovica življenja, kaj pa pomeni za dejavnost

društva? Društvo se ne stara, saj ga pomlajujejo novi, za delo zagnani člani.

Pa kljub temu okrogle obletnice tudi pri delu društva ne smemo zanemariti.

Štirideseti občni zbor je bil v enem najslikovitejših krajev v Sloveniji —

v Gozdu Martuljku. Špikova skupina je žarela v pisanih jesenskih barvah.

K dobremu počutju pa je prispevala tudi postrežba v novem hotelu Špik.

Društveni jubilej smo proslavljali bolj delovno kot praznično. V petek,

14. oktobra, dopoldne je bila otvoritev razstave posterjev in aparatur. Svojo

dejavnost so prikazali člani, ki delajo v inštitutih in industriji, in tisti, ki po-

učujejo v šoli. Odziv razstavljalcev je presegel pričakovanja: 11 posterjev je

govorilo o raziskovalni dejavnosti članov, 6 učiteljev je razstavljalo učila,

7 je bilo prikazov letnih šol, interesnih krožkov, tekmovanj; strokovne knjige

je razstavila Državna založba Slovenije. Tudi pri obiskovalcih je bilo veliko

zanimanje za predstavitev posterjev. Obsežno razstavo vseh publikacij je

pripravila Komisija za tisk DMFA SRS. Dušan Zadravec pa je imel zanimivo

predavanje o načrtovanju in uporabi sodobne optike.

Popoldne so se nam pridružili še kolegi, ki so bili dopoldne v službi.

Predavanje Ivana Vidava Razmišljanja o matematiki je bilo predavanje člo-

veka, ki je življenje posvetil matematiki in prav zato imajo njegove besede

svojstven čar. Ni povedal nobene formule, zakaj je matematika pomembna,

po kakšni metodi vzbudiš pri drugih zanimanje za matematiko, vendar smo

po predavanju ugotovljali, da tudi nam navdušenje za stroko obogati živ-

ljenje. Prav zato je ob takih srečanjih, kot so občni zbori, seminarji, lepo, ker

pozabimo na vsakdanje težave. Predavanje Ivana Kuščerja nam je odkrivalo

druge lepote — lepote sveta ognjenika. Ob diapozitivih, ki jih je posnel ob

ognjenikih v Italiji, smo sodoživljali njihov posebni čar.

Dnevni red vsakoletnega občnega zbora je ustaljen. Uspešno delo so občne-

mu zboru zaželeli predstavniki Skupščine občine Jesenice, oddelka za matema-

tiko in oddelka za fiziko na ljubljanski univerzi, Irištituta za matematiko, fiziko

in mehaniko, Inštituta Jožef Stefan in Zavoda SRS za šolstvo. Občni zbor se je

spomnil Ivana Molinara, ki nas je zapustil v tem letu. Bolj prisrčno kot svečano

je občni zbor imenoval za častnega člana Ivana Vidava. Predsednik Mitja

Rosina je lepo opisal njegovo odliko: ob njegovi razlagi poslušalec doživi,

da se tudi težka poglavja v matematiki dajo razumeti. Občni zbor je podelil

jubilejna priznanja za delo v zadnjih desetih letih 13 članom društva. Pri-

znanja so dobili: Andrej Čadež za dolgoletno delo urednika astronomije pri

Preseku. Bojan Golli za delo sekretarja komisije za popularizacijo fizike

v srednji šoli, za delo organizacijskega sekretarja mednarodne fizikalne olim-

piade, ki je bila 1985 prvič v Jugoslaviji in za delo urednika rubrike tekmova-

nja — naloge pri Preseku. Marjan Hribar za večletno delo urednika za fiziko

pri Preseku, za delo pri fizikalnih seminarjih. Martina Koman za delo se-

kretarke komisije za pedagoško dejavnost in za delo podpredsednice. Edvard

Kramar za delo predsednika komisije za tisk, za delo odgovornega urednika

pri Preseku ter za delo urednika rubrike tekmovanja — naloge iz matematike

pri Preseku. Gorazd Lešnjak za delo sekretarja komisije za popularizacijo

matematike v srednji šoli in za delo urednika rubrike tekmovanja— naloge

pri Preseku. Janez Markelj za vestno dolgoletno delo blagajnika Komisije
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za tisk. Dušan Modic za dolgoletno delo pri društvu kot sekretar komisije za

pedagoško dejavnost, kot predsednik in podpredsednik. Tomaž Pisanski za

delo pri Preseku kot odgovorni urednik, urednik za matematiko in računal-

ništvo, za delo pri matematičnih seminarjih in predavanjih. Janez Strnad

za delo predsednika društva, predsednika komisije za tisk, za delo odgo-

vornega urednika in urednika za fiziko pri Obzorniku za matematiko in fiziko,

za delo urednika fizikalnih publikacij, za delo pri fizikalnih seminarjih.

Zvonko Trontelj za delo sekretarja komisije za uporabno fiziko, za delo pri

Preseku kot odgovorni urednik in urednik za fiziko. Ciril Velkovrh za dolgo-

letno uspešno delo urednika in sekretarja Komisije za tisk od 1973. Pavle

Zajc za dolgoletno delo sekretarja komisije za popularizacijo matematike

v osnovni šoli.

Priznanja za delo z mladimi so prejeli: Zora Gomilšček iz Naravoslovnega

srednješolskega centra v Novi Gorici. Pri pouku in dodatnem pouku je vzgo-

jila veliko mladih matematikov, ki so na republiških in zveznih tekmovanjih

dosegali visoke uvrstitve. Dolga leta je sodelovala v republiški komisiji za

tekmovanja iz matematike. Darka Hvastija iz Srednje naravoslovne šole

v Ljubljani svoje znanje in energijo vlaga v delo z mladimi pri pouku in pri

vseh oblikah interesnih dejavnosti. Dolgo je bila članica komisije za popu-

larizacijo matematike na srednjih šolah, več let pa članica republiške ko-

misije za tekmovanja iz matematike. France Plevnik je pri pouku fizike

nesebično in zavzeto prenašal znanje na mladi rod. V krožkih je uvedel

eksperimentalne vaje in mnoge učence navdušil za študij matematike in

fizike. Kot učitelj fizike na Pedagoški akademiji je vzgojil številne rodove

učiteljev. Nepogrešljiv pa je njegov prispevek pri izvedbi osnovnošolskih

tekmovanj iz fizike. Viktorija Toš že trideset let poučuje matematiko na

Osnovni šoli Prežihov Voranc v Ljubljani. Z veliko vnemo vadi učence ne

samo pri pouku, ampak tudi pri krožkih iz matematike. Njeni učenci so

dosegli lepe uspehe na občinskih in republiških tekmovanjih. Stanislav Zazula

kot strokovnjak na tehničnem področju že dolgo sodeluje s šolami. Vrsto

let poučuje fiziko na srednjih šolah in predava na višji strojni šoli v Kopru,

ki je oddelek strojne fakultete. Bil je mentor dijakom in študentom in orga-

nizator njihove delovne prakse v svoji delovni organizaciji, sodeluje pri

organizaciji osnovnošolskih tekmovanj in je aktiven član koprske podruž-

nice DMFA.

Iz poročil sekretarjev lahko razberemo, da se njihova dejavnost kljub

slabim materialnim razmeram ni zmanjšala. Nasprotno: na pobudo profe-

sorja Ivana Vidava smo na novo organizirali raziskovalne dneve iz matematike

in fizike za srednješolce. Ne vem, ali je kriva naša skromnost ali pa družbena

nenaklonjenost znanju, da je naše delo premalo znano. Tekmovanj, letnih

šol, raziskovalnih dni se je udeležilo 13000 učencev, torej polovica toliko,

kot je bilo športnikov na olimpiadi v Seulu. Kolikšno pozornost so našemu

delu namenila sredstva javnega obveščanja, kolikšno olimpiadi, pa vemo.

Tekmovanj za Vegovo priznanje se je udeležilo približno 11000 osnovno-

šolcev, srebrno Vegovo priznanje je osvojilo 1152 učencev, zlato pa 136

učencev. Na zveznem tekmovanju so osnovnošolci prejeli tretjo nagrado in

pohvalo. Tekmovanja iz fizike se je udeležilo 900 osnovnošolcev, republiškega

pa 160. Republiškega tekmovanja za srednješolce iz matematike, ki je bilo

v Kranju, se je udeležilo 158 srednješolcev. Naloge so bile težke, saj so

bile podeljene tri prve nagrade, štiri druge in devet tretjih. Na zveznem

tekmovanju je bil najboljši Tomaž Slivnik, ki je dobil drugo nagrado, na
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mednarodni matematični olimpiadi v Avstraliji pa tretjo. 106 dijakov 1. let-

nika srednjih šol je tekmovalo v znanju iz fizike v Velenju; najboljša je bila

ekipa iz Srednje tehniške šole v Celju. 159 dijakov je bilo na republiškem

tekmovanju iz fizike v Mariboru, osvojili so dve prvi nagradi, pet drugih

in devet tretjih nagrad. Na zveznem tekmovanju iz fizike so osvojili prvo

in tretjo nagrado in pet pohval, Andrej Vilfan je na mednarodni olimpiadi

v Bad Ischlu dobil tretjo nagrado. Letne šole iz matematike se je udeležilo

17 osnovnošolcev, iz fizike pa 20 prvošolcev srednjih šol. Raziskovalni dnevi

iz fizike so bili od 20. do 25. junija, iz matematike pa od 5. do 9. julija;

obakrat je bilo 15 srednješolcev. Ker je ta dejavnost društva zgoščena v prvi

polovici leta, postajajo finančne težave čedalje večje. Izobraževalna skupnost

mora najprej poskrbeti za sredstva za osnovno dejavnost srednjih šol, šele

nato pridejo na vrsto drugi porabniki. Komisija za tisk je v tem letu poleg

35. letnika revije Obzornik za matematiko in fiziko ter 15. letnika Preseka

izdala 3 nove knjige in 10 ponatisov iz svojih rednih zbirk. Tudi podružnice

v Mariboru, Kopru in Celju so uspešno organizirale strokovna predavanja

in tekmovanja iz matematike in fizike.

V razpravi, ki je sledila poročilom, so člani opozarjali na pereče pomanj-

kanje učiteljev fizike, saj so iz Srednje naravoslovne šole in Pedagoške šole

v Kopru odšli v enem letu trije učitelji fizike. Člani so predlagali, da se

z zakonom uredi učna obveznost učiteljev v šolah. Zmanjšanje števila učen-

cev v oddelku bi učiteljem tudi olajšalo delo. Občni zbor je sprejel sklep,

da društvo postane kolektivni član Odbora za varstvo človekovih pravic.

Po razrešnici staremu upravnemu odboru je občni zbor izvolil nov upravni

odbor društva in komisije za tisk.

Upravni odbor društva: Mitja Rosina predsednik, Martina Koman pod-

predsednica, Vinko Udir tajnik, Helena Velikonja blagajničarka, Milena Str-

nad sekretarka komisije za pedagoško dejavnost. Sekretarji komisije za po-

pularizacijo matematike in fizike so: Aleksander Potočnik — matematika Oš,

Jožica Okorn — fizika OŠ, Stane Pirnat in Jože Kotnik — fizika SVIO, Darjo

Felda — matematika Sš, Iztok Kukman — fizika SŠ, Boris Kham — astro-

nomija, Peter Šemrl — vodja raziskovalnih dni za matematiko, Branko

Borštnik — vodja raziskovalnih dni za fiziko, Franc Lončar — za predavanja

učencem. Marko Valič je sekretar komisije za uporabno fiziko, manjka pa

sekretar komisije za uporabno matematiko. Upravni odbor Komisije za tisk:

Bojan Mohar predsednik, Ciril Velkovrh urednik in sekretar, Janez Markelj

blagajnik, odgovorni uredniki so: Janez Strnad — Obzornik za matematiko

in fiziko, Boris Lavrič — Presek, Edvard Kramar — Presekova knjižnica, Ivan

Vidav — Knjižnica Sigma, Peter Vencelj — Izbrana poglavja iz mehanike,

Ivan Vidav — Izbrana poglavja iz matematike in računalništva ter Knjižnice

Sigma, Janez Strnad — Izbrana poglavja iz fizike, Bojan Mohar — matema-

tika-fizika, Anton Suhadolc — Postdiplomski seminar iz matematike. Manj-

kata še odgovorna urednika za učbenike in priročnike ter za drobni tisk.

Predsednik Mitja Rosina se je zahvalil za zaupanje. Hkrati pa je obvestil

člane, da je naše društvo organizator 9. kongresa matematikov, fizikov in

astronomov Jugoslavije, septembra 1990. Organizacijski odbor (Anton Moljk,

Tomaž Pisanski, Mitja Rosina) je sestavil za člane društva anketo o poteku

dela kongresa. Odgovori na to anketo bodo usmerili delo organizacijskega

odbora.

Martina Koman



KOZAK J., LOKAR M., Naloge iz računalnišiva. DMFA SRS, Ljubljana 1988,

232 str. (izbrana poglavja iz matematike in računalništva; 23)

Pred nami je obsežna zbirka nalog iz računalništva. V njej najdemo zelo

širok spekter nalog, tako po vsebini, tako tudi po težavnosti. Večina nalog

je s področja podatkovnih struktur in algoritmov, čeprav bi bilo zmotno

mnenje, da gre izključno za take naloge. Precej nalog je povsem kombinato-

ričnih; to so na primer tiste, ki preštevajo taka in drugačna drevesa, naloge

s permutacijami in Youngovimi tabelami. Zbirka je razdeljena na 12 poglavij,

od podatkovnih struktur (seznam, drevo, graf, datoteka, tabela simbolov),

preko dela z besedilom in kombinatorike do algoritmov (iskanje, urejanje,

računski problemi) in metod za razvoj algoritmov in preprostih problemov.

skratka, gre za knjigo, ki smo jo v slovenščini pogrešali že lep čas.

Zbirka je logično dopolnilo knjige J. Kozaka, Podatkovne strukture in algo-

ritmi. Na primerih bo reševalec nalog lahko preizkusil, kako dobro je ra-

zumel Kozakovo knjigo. Zbirka pa bo dobrodošla tudi tistim, ki jim je Že

vse jasno iz Kozakove knjige, saj v zbirki najdemo kar nekaj novosti, ki

jih tam ni. Za primer navedimo Youngove tabele in primerjalne mreže, ki

jih dobro spoznamo po kopicah nalog. Ravno tako zasledimo veliko nalog

o NP-polnosti in urejanju. Nekatere naloge vsebujejo obsežne uvode, nekatere

druge pa namige za reševanje. Zato med vrsticami zvemo marsikaj novega

o podatkovnih strukturah in algoritmih.

Morda ne bo odveč še nasvet reševalcem. Avtorja sta se po daljšem raz-

mišljanju odločila, da nalog ne bosta »semaftorizirala«, tj. da jih ne bosta

ločila na lahke in težke. Izkušenemu reševalcu to ne bo delalo velikih težav,

saj bo lahko presodil, ali je naloga lahka, težka ali pa morda »skoraj ne-

rešljiva«. Tudi take naloge namreč lahko najdemo. Neizkušen reševalec pa

bi lahko imel težave. Zato je verjetno najbolje, da po nekajdnevnem brez-

uspešnem reševanju naloge pogleda v ustrezno literaturo, kaj je znanega

o tem problemu.

In komu je namenjena zbirka? Če odštejemo študente, potem vsakemu,

ki se nekoliko resneje ukvarja z računalništvom.

Sandi Klavžar

UTRINEK

Upor : vzgon

Ob splošnem navdušenju nad reševanjem nalog pri fiziki se zdi, da uči-

teljem pogosto zmanjka smiselnih tem. V očitni stiski je učitelj na znani

ljubljanski šoli učencem pri pismeni vaji dal nalogo:

Z, višine 2 m nad gladino jezera spustimo kroglico da prosto pada. Gostota

kroglice je 5,6 g/cmš, jezero je globoko 4 m. Kje se bo kroglica ustavila in

koliko časa se bo gibala po vodi? Upor snovi, po kateri se giblje kroglica,

zanemarimo.

Učitelj je očitno pričakoval, da bodo učenci računali, kot da se giblje

kroglica tudi v vodi enakomerno pospešeno s pospeškom, ki ga določata teža

in vzgon. Taka fizika zares nima veliko skupnega z izkušnjo.

Marjan Hribar
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