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IVAN VIDAV

Math. Subj. Class. (1980) 10 B

Clanek govori o kongruentnih Stevilih, poroda o Tunnellovi re$itvi problema
kongruentnih Stevil, na koncu pa obravnava povezavo z elipti¢nimi krivuljami.

In this article the congruent number problem is presented, the characterization
of congruent numbers given by J. Tunnell is described, and the relation with ellip-

tic curves is discussed.

V teoriji Stevil poznamo Stevilne elementarne probleme, ki so izredno
tezki. Elementarni so zato, ker jih lahko razumemo brez posebnega znanja
1z teorije Stevil ali kaksne druge veje matematike. Med njimi je gotovo naj-
bolj znan Fermatov problem, ki Ze stoletja kljubuje naporom matematikov,
da bi ga re$ili. Prav v zadnjem ¢asu pa je bil pri njegovem resevanju dose-
zen znaten napredek. Nadaljnji tak problem, ki sicer izvira iz geometrije, je
problem kongruentnih Stevil. Tega je v zadnjem casu »skoraj« resil J. Tunnell
[3]. Za kaj gre?

Naravna sStevila a, b, ¢ sestavljajo pitagorejsko trojico, ¢e je med njimi
zveza a® + b* = c¢2, Tedaj sta a in b kateti, ¢ pa hipotenuza pravwkomeﬁa tri-
kotnika. Pioscma pravokotnega U‘ﬂmémka s katetama a i b je enaka p -

= 1 ab. V vsaki pﬁagﬁrqsh trojici je ena od katet a, b sodo Stevilo. Zato je

loscma takega trikotnika vsdeg celo Stevilo; npr.: trikotnik s stranicami 3,

4, 5 ima plosCinc p = 6@ Obstajajo pa pravokotni trikotniki, ki imajo za plo-
sCino celo stevilo, Ceprav njihove stranice niso cela, temvec le racionalna Ste-

A%

vila. Zgled za to je trikotnik
3 20 11 o
0—==, b=2"", ¢c=_ (1)
2 3 6

Njegova plosCina p = 5.

Namvno Stewm 1, h je 1 i@gsma kakgﬂeg% prmokomega tr ﬂmmzka Z mcm»

Sﬁca n=>55inn-==~0 kangruemm %@mh Morda pa so sploh vsa naravna Swvﬂa
kongruentna? Ne, niso. Ze 1 = 1 ni kongruentno stevilo. Ni namrec pravokot-
nega trikotnika z racionalnimi stranicami in s plosc¢ino p = 1. Sploh je naj-
manjse kongruentno Stevilo 5; Stevila 2, 3 in 4 niso. Zato je umestno vpra-
Sanje, katera naravna stevila so kongruentna.
Kongruentna Stevila so poznali Ze stari Grki. Sistemati¢no pa so ta pro-
blem studirali Arabci. L. Fibonacci je poznal trikotnik (1) s plosc¢ino 5. Fermat
je ugotovil, da 1 ni kongruentno stevilo. Dokaz za to je v tesni zvezi z doka-
zom, da enacba x* + v* = z2 nima netrivialne reSitve v celih stevilih (Ferma-
m‘m Udmev za cetrte potence). Euler je odkril, da je 7 kongruentno Stevilo.
Pravokotni trikotnik s stranicami |

74 35 337
I e b = —, L =
5 1 60

ima namrec¢ ploscino p = 7.

Obzornik mat. fiz.

33 (1986) 1,2 1



Pri obravnavanju kongruentnih Stevil se smemo omejiti na naravna Ste-
vila, ki so brez kvadratnih faktorjev. Denimo namrec, da je Stevilo n deljivo
s kvadratom 72, tedaj n = ny r2, k"er sta n; in r naravni stevili. Ce je ny; kon-
gruentno Stevilo, obstaja pravokotm trikotnik z racionalnimi stranicami a,
b, ¢ in s plos¢ino p = ny. Trikotnik s stranicami ar, br, cr je podoben trikot-
mku s stranicami a, b, ¢, njegova ploscma pa je n; r?2 = n. Torej je hkrati z n,
tudi n kongruentno stevﬂo. Narobe je prav tako res: ¢e je n kongruentno ste-
vilo, velja isto za Stevilo n/r2 = ny. O tem se lahko vsak bravec brez tezave
sam preprica. Zato je dovolj, da obravnavamo naravna stevila, ki so brez kva-
dratnih faktorjev.

Naj bo n kongruentno $tevilo in a, b, ¢ racionalne stranice pravokotnega
trikotnika s ploS€ino p = n. Zaznamujmo z v najmanjs$i skupni imenovalec
ulomkov a, b, c. Potem lahko piSemo a = x/r, b = y/r, ¢ = z/r, kjer so x, vy, 2
naravna Stevila. Ker je trikotnik a, b, ¢ pravokoten, velja zveza x2 4 y2 = z2.
Torej so stevila x, vy, z pitagorejska trojica. PlosCina pripadajocega trikotnika
je r2-krat vecCja od plosScine trikotnika s stranicami a, b, ¢, tedaj p = nr2.
Tako smo ugotovili: Ce je n kongruentno Stevilo, obstaja pravokotni trikotnik
s celimi stranicami in s plosCino n 72, kjer je r naravno Stevilo. Tudi narobe je
res: Ce obstaja taka pitagorejska trojica x, y, z, da je plosc¢ina pripadajocCega
trikotnika » r2, je n kongruentno Stevilo. Zato bi bilo npr. n = 1 kongruentno
stevilo natanko tedaj, ¢e bi obstajal pravokotni trikotnik, katerega stranice
bi bila cela Stevila, njegova plosCina pa kvadrat naravnega Stevila. Dokaz, da
takega trikotnika ni, najde bravec v knjigi [1] na str. 83.

Kako dobimo kongruentna Stevila? Napravimo tabelo pitagorejskih trikot-
nikov a, b, ¢. Pri tem je dovolj, Ce so v tabeli le primitivni pitagorejski trikot-
niki, tj. tisti, pri katerih so si stranice a, b, ¢ paroma med seboj tuja Stevila.
Vsako primitivno pitagorejsko trojico pa dobimo po obrazcu

a=2uv, b=uz—v2 c=uz-+ v2 (2)

Tu sta u in v poljubni med seboj tuji naravni Stevili, od katerih je eno sodo,
drugo liho. Da bo b pozitiven, vzamemo u > v (glej [1], str. 61). Ko smo sesta-
vili tabelo pitagorejskih trikotnikov, izracunamo njihove ploscine. Ce je plo-
SCina p deljiva s kaksnim kvadratnim faktorjem r2, delimo p z »2. Po tej poti
dobimo sCasoma vsako kongruentno stevilo, Ce le gremo v zaporedju pitago-
rejskih trikotnikov dovolj daleC. Za zgled vzemimo pitagorejski trojici 12, 5,
13 in &, 15, 17. Ploscina prvega trikotnika p = 30 nima kvadratnega faktorja.
Pri drugem je plos¢ina p = 60 deljiva s 4 = 22, Po delitvi dobimo 15. Tako
smo nasli kongruentni Stevili 15 in 30. Ker je vseh pitagorejskih trojic ne-
skoncno mnogo, seveda ne moremo z gotovostjo trditi, da Stevilo » ni kon-
gruentno, ¢e nismo Se naleteli nanj, pa Ceprav smo sli v zaporedju pitagorej-
skih trikotnikov zelo daleC; npr.: 41 je kongruentno Stevilo, in sicer prvo, ki
da po delitvi z 8 ostanek 1. Pravokotni trikotnik s stranicami a = 40/3, b =
= 123/20, ¢ = 881/60 ima plosCino 41. V pripadajocem pitagorejskem trikot-
niku so stranice ze kar velike: 800, 369, 881; dobimo jih iz obrazca (2) pri
u = 25, v = 16. Vendar bi to trojico vseeno kaj kmalu nasli. Obstajajo pa raz-
meroma majhna kongruentna Stevila n, pri katerih ima tudi najmanjsi pri-
padajoci pitagorejski trikotnik izredno velike stranice. Zgled za to je 157, ki
je kongruentno Stevilo. Najpreprostejsi pravokotni trikotnik s plos¢ino 157
in racionalnimi stranicami pa je

2



6 803 298 487 826 435 051 217 540

411 340 519 227 716 149 383 203
411 340 519 227 716 149 383 203

21 666 555 693 714 761 309 610
224 403 517 704 336 969 924 557 513

T8 912 332 268 928 859 588 025 535 178

a____

090 674 863 160 948 472 041
967 163 570 016 480 830

- Stevilo, ki je v Stevcu
mka ¢. 1 O Z 4 1. S p metodo gotovo ne bi brez
racunalnika nikoli odkmh da je ES? Stevilo.

Pripomba. Ta trikotnik je nasel D. Zagier. Pisec teh vrstic ne ve, s kaksno
metodo. Ur mo, da je Stevila pravilno prepisal. Preizkusa ni napravil,
zvem s kﬁnruemm 11 émvﬂﬁ sta zato dva problema:

I. Najti kriterij, katerim lahko za dano stevilo ugotovimo, ali je ko
oruentno a h ne.

II. Dobiti metodo, s katero najdemo pravokotni trikotnik z racionalnimi
stranicami in pioéémo n, ée ?e , da je " kongruemno Stevilo.

g@ ogo j (A) potreben za to, da je n kongru@nmo Sfievﬂo Ali je ma
zadosten? ! a m vmsanw da}e unneﬂ tale odgovor

Km omemena d@mneva ni d@kazana Tunneﬁova reSitev problema kon-
gruemmh Stevil se m popolnoma zadovoljiva.

Preizkusimo zdaj Tunnellov kriterij na Stevilu n = 3. V vsaki celoStevilski

resitvi enacbe
2x% + y2 + 822 = 3 (3)

mora octno @om z = 0. nacba 2x2 + y2 = 3 pa ima tele resitve: x = + 1, v =
= 4 1. Torej so Stiri celoStevilske resitve enacbe (3): (1, 1, 0), (1, ME 0),
(—1,1, 0 in (—1, — 1, 0). Prav m 0 pa mora biti z =0 v vsaki celoétevﬂski
resitvi enacbe 2x2% + y2 + 3222 = 3. Od tod sledi, da imata obe enacbi iste
resitve, torej obe Stiri resitve. * ni izpolnjen in 3 ni kongruentno ste-
vilo.

Vzemimo zdaj n = 7. Spet mora biti z=0 v vsaki ceﬁostevﬂski reSitvi
enacCbe 2x2 + y2 + 822 = 7. Toda enacba 2x% + y2 = 7 nima nobene celostevil-
ske reSitve. Stevilo resitev enacbe 2x% + y2 + 8z2% = 1 JE@ potemtakem enako
ni¢. Isto velja za enacbo 2x? + y2 + 32z2 = 7, ki tudi ne premore nobene re-
Sitve v celih Stevilih. Ker je 0 enako 2.0, je pogoj (A) izpolnjen. Res je 7 kon-
gruentno Stevilo, kar je vedel ze Euler.

Bravec naj sam poisCe vse ceioétevﬂske reSitve enacbe 2x2 + y2 + 872 = 41
in enacbe 2x2 + y2 + 3272 = 41. Brez mzave bo ugotovil, da ima prva 32 reSitev,

druga pa 16, to je polovico manj. 41 je kongruentno Stevilo.




Doslej je bilo n liho Stevilo. Ce je n sodo, je n/2 liho Stevilo, saj n nima
kvadratnega faktorja, torej ni deljivo s 4. V tem primeru moramo pogoj (A)
zamenjati z

(A*) Stevilo resitev enacbe 4x2 4 y2 + 822 = n/2 v celih S$tevilih (x, y, z)
je dvakrat vecje od Stevila takih reSitev enacbe 4x2 + y2 + 3272 = n/2.

Zgled. Pri n = 10 ima enacCba 4x2 + y2 + 8z2 = 5 Stiri reSitve, namrec X =
=+ 1, y= + 1, 7= 0. Iste resitve pa ima enacba 4x2 + y2 + 3272 — 5. Zato
10 ni kongruentno Stevilo.

Dokaz Tunnellovega izreka je izredno zamotan in zahteven, saj je potrebno
poznanje Stevilnih podrocij sodobne matematike, ne samo iz teorije Stevil,
temveC tudi iz teorije elipticnih krivulj, modulskih form itd. N. Koblitz je
v navdusenju nad Tunnellovo reSitvijo napisal ce¢lo knjigo [2] in jo motiviral
s tem problemom. Toda Ceprav ima knjiga okoli 250 strani, v njej ni celot-
nega dokaza Tunnellovega izreka.

V izreku je omenjena Birch-Swinnerton-Dyerjeva domneva. Kaj pravi ta
domneva, se ne da povedati s preprostimi besedami. Gre za tole: V nasled-
njem razdelku bomo spoznali, da je problem kongruentnih $tevil tesno po-
vezan z enacbo

mexi"wn?x (En)

1 je kongruentno Stevilo natanko tedaj, kadar ima ta enacba neskoncéno resi-
tev v racionalnih stevilih x in y. Enacba (E,) pomeni neko kubi¢no krivuljo
v ravnini (xy). Zaradi povezave z elipticnimi funkcijami jo imenujemo tudi
elipticna krivulja. Oglejmo si splosnejso kubi¢no krivuljo

y? — x8— Ax— B (E)

Krivulja (E) je nesingularna, ¢e ima polinom na desni x3 — Ax — B same med
seboj razlicne nicle. Nesingularna krivulja (E) se imenuje elipti¢na krivulja.
Kadar nas zanimajo racionalne toCke na krivulji (E), tj. toCke z racionalnima
koordinatama x in y, po navadi vzamemo, da sta koeficienta A in B celi Stevili.

Vsaki elipticni krivulji E s celima (oziroma racionalnima) koeficientoma
A in B se da prirediti na precej zapleten nacin tako imenovana Hasse-Weilova
funkcija L(E, s). Ta funkcija je prvotno definirana za vsa kompleksna Stevila
s, ki imajo realno komponento Re s vec¢jo od 3/2. Na polravnini Re s > 3/2 je
L(E, s) holomorfna funkcija. Domnevajo, da se da L(E,s) analiticno nadalje-
vati na vso ravnino s, tako da je povsod regularna, torej cela funkcija. Za
krivulje E, je ta domneva dokazana. Ce se da L(E,s) analiti¢no nadaljevati
na vso ravnino, je regularna v tocki s = 1. Sibka Birch-Swinnerton-Dyerjeva
domneva pravi, da ima elipticna krivulja E neskoncCno racionalnih tock na-
tanko tedaj, ko je toc¢ka s = 1 nicCla funkcije L(E, s), tedaj L(E, 1) = 0. Doslej
te domneve v celoti ni se nihCe dokazal, pa tudi protiprimera nihce ni nasel.
Vendar sta pred kratkim B. H. Gross in D. Zagier dosegla v tej smeri dolocen
napredek. Uspelo jima je dokazati tole: Naj bo n tako naravno Stevilo, da
dobimo pri delitvi z 8 enega od ostankov 5, 6 ali 7. Potem je na krivulji E,
neskoncno racionalnih tocCk, C¢e je s = 1 enostavna nicla funkcije L(E,, s). Nji-
hov dokaz vsebuje tudi metodo, kako najdemo v tem primeru racionalne
tocke na krivulji E,. Ker doloCa vsaka netrivialna racionalna toCka na E,
pravokotni trikotnik z racionalnimi stranicami in plosc¢ino n — to bomo videli
v naslednjem razdelku — je v tem primeru resSena tudi naloga II.
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7Ze Grki in Arabci so formulirali problem kongruentnih Stevil v tejle ekwvi-
valentni obliki: Pri danem 7 je treba poiskati tako racionalno Stevilo u, da sta
razlika u? —wn in vsota u2? + n kvadrata racionalnih Stevil. Velja namrec

DOKAZ. Naj bo n kongruentno Smwio in a, b, ¢ racionalne stranice pra-
trikotnika s ploscino »n. Potem je a2 + b2 =c¢2% in ab = 2n. Za x
mimo Stevilo x = ¢2 4

X—Mn=1(2—2ab) =1 (a—D>D)? x = 1 (¢c? + 2ab) = 1 (a + b)?

Res so Stevila x, x—mn in x + n kvadrati racionalnih Stevil ¢/2, (a — b)/2 in

(a + b)/Z

kvadrati 1 stevil, npr.
a=w-+7v, b=

l a SO Vs3a tg“g & E@yﬂa (4}
A = “2? X—mn=v2in X +n=w? Kjer so u, v, we Q.
Ww—v in ¢ = 2u. Potem je az + b w2 4 292 — 4x — 4 Torej so
racionalna stevila a, b, ¢ Sﬁcmﬂice pravokotnega trikotnika. Njegova ploscina
je enaka % ab = §(w?— ‘Vz} Zato je v tem primeru »n kongruentno S$te-
. Izrek 1 je v Cdou

Ce so stevila (4) kvadmﬁ racionalnih stevil #, v, w, je njihov produkt
x(x2 — n?) kvadrat racionalnega Stevila uvw. PiSimo x = ©2, y = uvw, pa vi-

dimo, da zadoscCata x in y enacbi

Y2 = X3 — 12 x (5)

ki smo jo navedli Ze v prejsnjem razdelku. Ce je n kﬂngruenmo Stevilo, 1ma
enacba (5) racionalno resitev x = u2?, y = uvw, pri cemer y ==

Smo ze omenili, je (5) enacba @hp'ﬁgne krwmje ki smo jo imeno-
i E.. jo. Desna stran v (5) j@ pozmvna ¢e lezi x na intervalu
l ali na (1, o00). Zato sestoji krivulja iz dveh vej. Ena veja, namrec tista,
” d —n in 0, je sklenjena, druga se razteza v neskoncnost. Krivulja je
imetricna glede na os (x) (sl.1). Zanimajo nas racionalne toCke na tej kri-
vulji, tj. to¢ke z racionalnima koordinatama x in y. Trivialne racionalne tocCke
so tele: (0, 0), (1, 0) in (—#, 0). Pri vseh je ordinata y = 0.
H@U‘iviahﬂ racionalni tocki (x, y) na krivulji E,, to je taki tocki, pri
katen je vy = Oﬁ pripada racionalen pravokotni trikotnik s plosc¢ino »n. Posta-

21x X2 — n2 X2 -+ n?
a— |2 b L, e (6)

y y] V|

Stevila a, b, ¢, so pozitivna in racionalna. Ker je med nijmi zveza a2z + b2 =
-—= ¢2, so stranice pravokotnega trikotnika. In ker je zaradi enacbe (5) plosCina
tega trikotnika p = 2 ab = n(x® — n2 x)/y? = n, je n kongruentno Stevilo. Tako
smo dokazali



TRDITEV 2. n je kongruentno Stevilo natanko tedaj, ko lezi na elipti¢ni
krivulji E, kaksna netrivialna racionalna tocka.

Naj bo (x4, vs) = Ty netrivialna racionalna toCka na krivulji E,, tedaj
yo 3 0. Postavimo v T, tangento na E,. Tangenta seCe E, Se v eni toCki T{ =
= (x4, ¥1), ki ima tudi racionalni koordinati x;, v; (Sl. 1). To ugotovimo takole:
Smerni koeficient tangente je y’; dobimo ga z odvajanjem enacbe (5), tedaj
iz enacbe 2yy’ = 3x2—mn2. Od tod se vidi, da je smerni koeficient y, v ra-
cionalni toCki T, racionalno Stevilo (3x,2 — n2)/2y,. Enacba tangente v T, se
glasi

Yy — Yo = Yo' (X — Xo) (7)
in ima racionalne koeficiente. Eliminirajmo zdaj v iz (5) in (7)
Yo? + 2y0y0’ (x — Xp) + o2 (x — Xp)* = 23 —n? x (8)

To je kubitna enacba za x. Ce uposStevamo zvezo yy? = xy® — n2 x;, takoj vi-
dimo, da ima (8) dvojni koren x = x3. Njen tretji koren, oznaCimo ga z x, je
abscisa toCke T4, kjer tangenta drugic¢ sece krivuljo E,. Kratek racun nam da

(x* + n2)?
- 4 y 02

x; je racionalno $tevilo, ker sta x; in y, racionalna. Ordinata y;, ki jo dobimo
iz enacbe (7), ¢e vstavimo vanjo x = x;, je prav tako racionalno Stevilo. Torej
je Ty racionalna toc¢ka na E,. Desna stran v (9) je kvadrat racionalnega ste-
vila, ki ni enako 0. Od tod sklepamo, da je tudi y; =% 0. Ce bi namrec bilo

(9)

X1

o) .

SI. 1. Krivulja 4v2 = x* —n2x (pr1 n= 1)



bi bil ‘ | X1 =n ali x; = —n. Toda S§tevilo n ni kvadrat. Zato T4
(Tu smo 1zvzeli n = 1, ki ni kongruentno

ni trivialna racionalna toc¢ka na E,,.

stevilo.)

V T, lahko spet postavimo tangento na E, in poﬁééem@ drugo presecisce
tangente s krivuljo. Tako pridemo do racionalne tocke Ts, ki ni trivialna. Ce
nadaljujemo, dobimo zaporedje racionalnih mck T 0; Ty, T 2, ... All so vse te
toCke med sebm razlicne ah pa je lahko T, = T, pri j = k? Odgovor se glasi:
Vse tocke T, so med seboj i razli¢ne. To ugotommo takole:

Koordinati xj, y, sta racionalni Stevili. PiSimo x; = s/z, y¢ = z‘/w kjer so
s, t, z, w cela stevila, z >0, w > 0, ulomka s/z in #/w pa naj bosta okrajsana.
Ker lezi tocka (x4, yy) na krivulji E,, imamo

} &

S$S—MnzSs-+nz
Z < Z

Vo2 = X3 — 12 Xy =

Ker je tudi #/w okraj-

Vsi ulomki na desni so okrajsani. Vstavimo yy = /w. |
San ulomek, mora biti 2 =s(s—mnz)(s +nz) in w2 = z3. Zadnja enakost
pove, da je z kvadrat naravnega stevﬂa npr Z = r% In od md . Tore]
sta xj in y, oblike xy = /12, yy = . Abscisa x4 je potem

kvadrat ulomk

(10)

na levi okrajsali,

kohkor se da. Ker sta si s in r m}a {x@ — 5’/?*”2 }@ okm}san ulomek), faktor 7
v imenovalcu 2r ¢ pri krajsanju ostane in je zato ry deljiv z r. Ce je r sodo
Stevilo,.tudi faktorja 2 ne moremo krajsati, saj je tedaj s lih. Zato je v tem
primeru r; deljiv z 2r in potemtakem ry > 2r. Isto velja tudi tedaj, ko je r
lih. Zaradi enostavnosti dokazimo to le za liho Stevilo n. Ce je s sod, je Ste-
vec na levi v (10), namre¢ s2 + n2r4, lih in faktor 2 v imenovalcu se ne da
krajsati. Tako je spet r; = 2r. Ce pa je s lih, je vsota s% 4+ n?r* soda, toda
ni deljiva s 4, saj sta s? in n2 r4 kot kvadrata lihih Stevil oblike 8m + 1 in
8n + 1. Vsota sz 4+ mn2vt = 8(m +n) + 2 tedaj ni deljiva s 4. Ker je 1 =
= S(s—mnr2)(s +mnr?) in sta Swnﬂ ter s + n 2 sodi Stevili, je tudi ¢ sod.
Ker ostane po krajsanju z 2 v imenovalcu desnega ulomka (10) vsaj sSe en
faktor 2, je tudi zdaj ry = 2r.

Tako smo ugomwh da je x4 v okrajsani obliki kvadrat ulomka uy/ry, kjer
je r; = 2v. Zato je x; = u?/ry® = s/r2 = x,.

Ce ima tocka 7T, koordinati x;, y;, je seveda abscisa x; prav tako kvadrat
racionalnega Stevila, npr. x;, = (u/r;)?, kjer je ulomek u;/r;, okrajsan. Pri tem
velja r, > 2r;,_4. Imenovalci v, z indeksom k strogo narascajo. To pomeni,

[ —

da so vse abscise x;, med seboj razli¢ne in isto velja za toCke T;. Tako smo
dok azah

Absmsa X4 mcke T, je kvadrat (ul/mﬂ Iz obrazca (9) dobimo

2 247w — 172)2 2 L D17 1 — 172)2
g X Wt 2n % — ) (11)
4y° 4y¢?




Torej so xy, x; —mn, x; + n kvadrati racionalnih Stevil. Iz dokaza izreka 1 je
razvidno, da je x; = (c1/2)?, kjer je c{ = 2uy/¥; hipotenuza pravokotnega tri-
kotnika z racionalnimi stranicami in plosc¢ino n. Prav tako so seveda x,
x,—mn, x5 + i kvadrati racionalnih Stevil, saj dobimo x,—mn 1In x; +n 1z
obrazcev (11), ¢e na desni zamenjamo x; z X, In vy Z y,4. Zato je tudi
c. = 2u,/r;, hipotenuza pravokotnega trikotnika z racionalnimi stranicami in
plos¢ino n. Vse hipotenuze ¢;, k =1,2, ... so med seboj razlicne. Tako
smo dokazali

TRDITEV 3a. Ce je n kongruentno Stevilo, obstaja neskon¢éno razliénih
pravokotnih trikotnikov z racionainimi stranicami in ploscino . |

Za zgled vzemimo n = 0, ki je ploscCina trikotnika s stranicami 3, 4, 5. Na
pripadajoci elipti¢ni krivulji y? — x3 — 36x lezi racionalna toCka T, s koordi-
natama x, = 25/4, v, = 35/8. Po obrazcu (9) dobimo x; = 12012/1402. Torej je
prav tako ¢ = 1201/70 hipotenuza pravokotnega trikotnika s ploscino 6. Ka-
teti pa sta a = 120/7, b = 7/10.
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Obravnavana knjiga je i1zSla kot tretja publikacija novega matemati¢nega raz-
1iskovalnega instituta, povezanega s kalifornijsko univerzo v Berkeleyu. Vsebuje
referate s kongresa, ki je obravnaval dosezke na novem podroCju matematicne
fizike. Gre za a,[me Liejeve algebre, t.1. Kac-Moodyjeve algebre in njihovo pove-
zavo z nekaterimi operatorji v kvantni teoriji polja. Podana je tudi zveza z Rie-
mann-Hilbertovim problemom, ki sprasuje o tem, kako lahko doloCeno funkcijo
iz enotske kroznice v matrike izrazimo kot produkt funkcije, analiticne v notra-
njosti enotskega kroga, in funkciie, analiti¢cne zunaj tega kroga. Obstaja tudi zveza
z Yang-Millsovo teorijo renormalizacije in drugimi fizikalnimi problemi. Med av-
torii najdemo tudi Mirka Primca z zagrebske univerze.

Teorija je vec¢inoma delo fizikov. Gre za prav tezko 1n eksoti¢cno matematiko,
tako konc¢no kot neskonCno dimenzionalne Liejeve algebre, analiticne opelatorske
funkcije itd. Tudi matematiki bodo verjetno na tem podrocju nasli mnogo spod-
bude za nadaljnje delo. Res pa ]t da je matematiku MNOgZo teze videti povezavo
med teorijo in konkretnim fizikalnim p1 roblemom (ki ,m ]c., poO prejsnjem prese-
netljivo veliko) in zakaj enkrat ta teorija je uporabna, drugiC pa ne.

Podpisani je v Berkelevu nekaj ¢asa hodil na seminar z naslovom Gauge theo-
ries pod vodstvormn I.M. Singerja. Snov seminarja je bila v tesni zvezi s snovjo
te knjige in je bila prav zanimiva tudi z matemati¢nega staliSc¢a. Vendar je sca-
soma prislo do zanimivega pcjava. Matematikov med poslusalci je bilo zmeraj
manj, preostali fiziki pa so bili zmeraj bolj aktivni. Zato domnevam, da bo tudi
obravnavana knjiga pri nas zanimiva predvsem za flizike.

Peter Legisd
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Math. Subj. Class. (1980) 62 H 25

V c¢lanku sta podani osnovna motivacija in preprosta intultivna pot do stati-
sticnih metod glavnih komponent in faktorske analize.

The statistical methods of Principal Components and Factor Analysis are
explained in a simple intuitive way and the motivation of these methods 1s given.

naj od branja teh vrstic odvrnemo tiste, ki o faktorski analizi ze kaj vedo,
ta Clanci¢ jim namre¢ ni namenjen. Pisec te umetnine si je na vse kriplje
-- da b1 jo mogel doumeti vsakdo, ki JE@ kdaj koncal katerokoli smer
in mku dobil prw_ vtis o tej zanimivi, pomembni, a dokaj tezavni

malo«)

Oglejmo si najprej s posebnega zornega kota enega dobro znanih pojmov
klasi¢ne fizike; ¢e Zelimo biti zelo natancni, bi lahko raje rekli, mehanike.
Gre za vmrajénusmi moment. Imejmo sistem mas m; v tockah s krajevnimi
‘imﬁ]h  Za [ = E 2, ..., N. Sistem naj bo togo povezan in naj krozi okrog
fiksne osi. Oznadcim vekmw kotne hitrosti, to je vektor, katerega velikost
je ] mormonalna kmm hitrosti vrtenja sistema, smer se ujema s smerjo osi
vrtenja, usmerjen pa je tako, da kaze pot desnemu vijaku, ki ga vrtimo tako
kot sistem. Tedaj je hitrost krozece toCke s krajevnim vektorjem r; enaka

%fg == €1} X E‘}

10, ¢ce uporabimo znano formulo za

celotno vrtilno kolicino sistema pa dobin
dvakratni vektorski produkt

N N .
M= 21 XV = 2011 X (o
] jo

Pri tem smo z znakom X oznacili vektorski, z znakom . pa skalarni pro-
dukt. ogmforﬁmo se, da bo odslej znak a za nas avtomaticno pomenil vektor
stolpec, znak aT pa bo pomenil tmnspommm smipec tore;j vekﬁ:or wshco
V teh oznakah lal k@ skalarni produkt a.b zapisemo tudi v obliki aTh ali
pa v obliki bT a, pri Cemer razumemo, da neoznacena operacija pomem mno-
Zzenje matrik. Jasno je, da nam mnozenje vrstice s stolpcem v tem vrstnem
redu da skalar, mnoZenje stolpca z vrstico v tem vrstnem redu pa nam da
matriko reda 3 X 3. Zdaj pa prepisimo zgornjo enacbo na novi nacin?

t Fizikom bi bil najbrz tu bolj vsSe¢ »brezkoordinatni« zapis z diadnim pro-
dukmm Ta, pnwg vektorjema a in b operator (a;b), definiran s predpisom

Obzornik mat. fiz. 33 (1986) 1/2 -9
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Pri tem smo z I oznadili identi¢no matriko reda 3 X 3, bralca pa opozar-
jamo, da je produkt stolpca z vrstico r; r;T tudi matrika reda 3 X 3. Matriki

N
Ji = > mx;Tr;) I —r; 7T
i=1

pravimo fizikalni vztrajnostni moment danega sistema tocCkastih mas. Ta mo-
ment nam posreduje preprosto linearno zvezo med vektorjem kotne hitrosti
In vektorjem vrtilne koliCine, ¢e oba gledamo kot stolpca

F&wa

Do geometrijskega vzivajnostnega momenta J, pa pridemo, Ce fizikalnega
delimo s celotno maso sistema

N
m = > m;
i=1
Vpeljimo oznake p; = m;/m, za i = 1,2, ..., N, pa dobimo od tod nepo-

sredno izrazen geometrijski vztrajnostni moment

N
J, = 2 pil(riTr) I —r1; 1T}
i=1
Mimogrede povejmo, kar je bralcu gotovo ze znano, pa tudi izpelje lahko
kaj hitro iz zgornjih enacb, da sta oba vztrajnostna momenta simetricni ma-
triki, torej velja J;,T = J; in J,T = J,.
Ker je

N
> pi=1
i=1

nam sistem krajevnih vektorjev r; s pripadajoCimi koli¢inami p;, za 1 = 1, 2,
..., N (te koli¢ine so, mimogrede bodi povedano, brez enote), doloca neko
diskretno verjetnostno porazdelitev. Vpeljimo matriko drugih zacetnih mo-
mentov te porazdelitve

| N
M= ExrT) =>p;rrT
i=1
(tu smo z E oznacili matemati¢no upanje po zgornjli diskretni verjetnostni po-
razdelitvi). Za nas bo v nadaljnjem razmisljanju matrika drugih momentov
celo pomembnejSa od vztrajnostnega momenta. Kaj hitro pa se lahko tudi
prepricamo, da iz matrike M lahko dobimo tudi matriko J,. Naj bo namrec s
sled matrike M, to je vsota njenih diagonalnih elementov

3 N N
S = Sled (A/I) — 2 m]‘j — 2 pi(x’é'? -+ y-g,z -+ Z«-jg) — 2 pi(riT ri)

j=1 i=1 i=1
zdaj pa Ze lahko zapiSemo vztrajnostni moment na popolnoma »verjetnostni«
nacin

]Q = S I _— M
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a all verjetnost v zgorn }5
primeru bi morali pac¢ v f@r
lomestiti vse vsote DO [ —

za vmra}nostnl in za drugi zacCetni moi
N s trojnimi integrali po prostoru.

Zastavimo si tole vprasanje: V kateri smeri naj se sistem masnih tock iz
prvega razdelka vrti, da bo imel pri konstantni velikosti kotne hitrosti naj-
veqo ali pa najmanjso kineti¢no en@rguo"? Pri tem fiksirajmo izhodiscCe in
dopuscCajmo razlicne osi wtema skozi to 1 tocko.
men Cno energijo sistema dobim D
klasi¢ne fizike znane formu

pri pogoju konstantne velikosti k
remo tako, da je konstanta enaka 1.
omejitveni pogoj kar

wlow=1

Problem pa raje formulirajmo sSe nekoliko splosneje. Naj bo

poljubna simetri¢na matrika reda n X n. Neznanke X, xp, ..., X, razvrstimo
it 0 tako, da bo funkcija

v stolpec n-terko x. jith zelim

Naloge se lotimo z znano Lagrangevo metodo. Vpeljimo novo neznanko 4,
ki ji pravimo Lagrangev koeficient ali Lagrangev multiplikator. Z njo pomno-
Zimo »vez« xTx— 1 = 0 in jo priStejemo k dani funkciji ali odstejemo od nje.

Iscemo ekstreme tako dobljene funkcije

F(xi,%, ..., X, ) =xTAXx— 1(xTx—1)

Ko izenaCimo parcialni odvod funkcije F na spremenljivko x; z nic,




zai1=1,2, ..., n, te skalarne enacbe pa po krajsanju z 2 zdruzimo v vektor-
sko enacbo

Ax — ix (D

Ker mora vektor x ustrezati pogoju xTx = 1, mora biti nenicCeln, nenicel-
nim vektorjem x, Ki ustrezajo pogoju (1), pa pravimo lastni vektorji matrike
A. Stevilom /, pri katerih ima (1) nenicCelno resSitev x, pravimo lastne vred-
nosti matrike A. Tako smo spoznali, da moramo kandidate za ekstrem funk-
cije f iskati med lastnimi vektorji matrike A.

S tem pa se vsaj na videz dokoncni resSitvi problema Se nismo kaj prida
priblizali. Da bi lahko problem resili, bomo morali uporabiti nekoliko globlje
rezultate linearne algebre. Prikli¢imo si v spomin, da ima vsaka simetri¢na
matrika A reda n X n n realnih lastnih vrednosti, ¢e le vsako Stejemo toliko-
krat, kolikor znaSa njena algebrai¢na kratnost (karkoli Ze to pomeni). Ozna-
¢imo te lastne vrednosti z 44, g, ..., 4, In se domenimo, da so Ze urejene po
vrsti torej] 1= 2 > ... = 1, Poleg tega vemo, da lahko k wvsaki lastni vred-
nosti 4; najdemo po en lastni vektor y; za 1 =1, 2, ..., n in to tako, da so
vektorji y; drug na drugega pravokotni, njihova dolzina pa je enaka 1. Vse
te ugotovtive zapisimo Se simboli¢no

| 1,1 =7
Ty, — )b 2
Ay, = 1iY; (3)
Zaradi pogoja (2) morajo biti vektorji vy, Vs, ..., ¥, linearno neodvisni, kot

se lahko hitro prepricamo. Ce namrecC enacbo
i Y1 + .. Un Yn = 0

pomnozimo skalarno z vektorjem x;, dobimo od tod ¢; = 0 za vsak 1 =1, 2,
..., n. Ker je teh vektorjev natanko n, morajo tvoriti bazo celega n-razseznega
vektorskega prostora wm-terk. Razviyjmo zdaj poljuben stolpec n-terk x po tej
bazi

X = a1 VY1 + oo T an ¥y
Zaradi (3) je tedaj
AX=ai1y1+ .. +anln¥a
od tod zaradi (2)
XTAX = a2+ ... + a2,
zaradi (2) pa tudi velja
S | XTX = g2+ ... + a2

Ce torej velja xTx = 1, mora biti xTAx<L 1, in xTAx > 4,. Ker pa je po
drugi strani |
‘ yn,.T A Yn == y'zz,T Zn Vi = ;iﬁ,«
in

ViT Ay, =T iy =4

se reSitev naSega problema glasi: Funkcija f doseze maksimum /; v smeri y;
iIn minimum 2, v smeri y,. Vseh n »stacionarnih smeri« je paroma pravo-
kotnih. |
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Kaj nam ta o problemu z zacetka razdelka? V trirazseznem
»0bmaynem« vekmrskgm pmstoru obsmjam tri med seboj pravokotne smeri
Va, Ki ﬁ m pravimo gZ avne 05@ vztraj nostnega momenta. V (vsaj) eni
od ?@@h d@Seze 1 velikosti kotne hitrosti svoj

m, #- razsgzne mo vektorjem vy, 3 -
: osi simetri¢ne matrike so vsde ] pa~

1 moment f s 1Z prvega mzdka m@ giavne 053 Ce so
I matrike M v treh glavnih smereh, potem 1ima m
tnka J \Y% E;SU.h @r@ ias‘m@ vrednosti is 4+ 13, 13 + Ay In 11 + s

f[@m S€ bO‘

preprical.

o

o masa (ali verjetnost, Ce Ze hocete)

Po kvadru s stranicami a, b in ¢ naj b
enakomerno zvezno razmazana. Izhodisce koordinatnega sistema postavin
v teZisce kvadra, osi pa naj bodo vzporedne s stranicami, kakor kaze slika.

Nato 1zracunamo Se
1

Mg = E(xy) =




Zaradi simetrije mora biti matrika drugih momentov enaka

—_ —
Z 0 0
12
e
M — 0 — 0 | 4)
12 (
0 0 —
Sled te matrike je
. az + bz + c2
12
torej je vztrajnostni moment
—p , _
ML I
12
= o £
12
2 . pe
0 0 az -+
Imeli smo »sreCo«. Glavne osi obeh matrik se ujemajo s koordinatnimi

osmi. In sicer je

le — [1 O O]
yoT' = [0 1 U]
| 2 p2 2
Lastne vrednosti matrike (4) so enake ? , — In -C--—-, lastne vrednosti matrike
b2 4 c2 g2 4 2 az -+ b2 1212 12
J, pa : 1n ,
12 12 12

Po vseh teh pripravah je kon¢no dozorel Cas, ko si lahko zastavimo glavno
vprasanje. Kako ugotoviti, ali je neka masna oziroma verjetnostna porazde-
litev zares razmazana v vse smeri, ali pa se morda drzi pribliZzno na neki
ravninl ali celo na neki premici? Odgovor na to vprasanje bomo prebrali iz
matrike drugih momentov. Najprej ga bomo seveda poiskali na nasem pre-
prostem zgledu.

Denimo, da je nas kvader v resnici zelo tanka plosCa. Da bi to Se posebej
poudarili, vpeljimo za tretjo stranico novo oznako ¢ = §, kjer naj bo Stevilo ¢
zelo majhno v primerjavi s Steviloma a in b. Matrika drugih momentov ima

. . : 62 . . » . . a2
tedaj tretjo lastno vrednost 5 zelo majhno v primerjavi s prvima dvema B
b2 . | RV | » -
in-l-i-. Vsa masa je skoncentrirana priblizno v ravnini (x, y).

Kaj pa, ¢e je nas kvader tanka palica? V tem primeru je b = ¢ = ¢, kjer
je Stevilo § zelo majhno v primerjavi s Stevilom a. Druga in tretja lastna
62

vrednost matrike M drugih momentov sta teda;] enaki-l—é-, torej sta zelo majh-
' . az . . .
ni v primerjavi s prvo lastno vrednostJoE. Vsa masa je skoncentrirana pri-

blizno ob osi x.
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Tudi v veCrazseznem primeru si bomo drznili obdrzati to intuitivno pred-
Masi«, to je verjetnosti, ki je na neki nacin mzerejena poO n-razsez-
rosmr , bomo priredili matriko drugih momentov. Tej bomo pomkah
gﬁavne OSl. Ce bodo lastne vrednosti v prvih r pamma pmvekmm
fmw@no vedje od lastnih vrednosti v preostalih mereh
bomo rekli, da je verjetnost skoncentrirana priblizno v r-razseznem
storu, - n na prvih r glavnih osi. |
Opozorimo naj Se na eno dejstvo, ki smo ga doslej privzemali skoraj m
Ce. V zgledu iz tega razdelka smo i1zhodisCe koordinatnega sistema postavili
avtomaticno v tezisCe. Kadar imamo opravka z verjetnostno porazdelitvijo na-
mesto z masno, ima vlogo tezisCa tocCka ma@emaﬁén@ga upanja verjetnostne
porazdelitve. Na zgledu iz tega razdelka pokazimo, |
zabriSe obnaSanje mase iz matrike drugih
mce \Y kaksne n@mne mbmne tocko.
mo 1zhodisCe v tocko

rT = [ka, kb, kc]

Po kratkem racunu dobimo novo

kjer je k primerno mbrarm realno stevilo.
matriko drugih momento

k2 b ¢

12)
1

[ J2 -+

, tako da je k2 mnogo vecje od > ima

os pribliZzno v smeri vektorja r; z zelo veliko lastno vrednostjo, ki je blizu
Stevilu k2(a® + b? + c?). Drugi dve glavni osi sta priblizno pravokotni na
smer ry in lastni vrednosti v teh dveh smereh sta zelo majhni v primerjavi
s prvo lastno vrednostjo. Naj imamo opravka s kocko, tanko plosCo ali tanko
palico, videti je, kot da bi bila vsa masa skoncentrirana skoraj na premici.
Do tega ucinka je prislo, ker smo se s tocko zelo oddaljili od mase, zato
matrika drugih momentov »vidi« celotno maso kot priblizno tocko v daljavi.

Premaknimo zdaj izhodiscCe Se na en nacin. Ce ga prenesemo v tocko

Ce je k zelo velik VI, eno glavno

postane n
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Ta matrika 1ima lastne vrednosti

. as ) bg‘J{“bC-l"C-’z ‘ szbC+L3
A = ’ /2 = , L9 ==
v glavnih smereh
i 1 | 1 1
- 1" 0" O ’ yET == Or —y T 1 ydT -— 0; — 9 p—
| | /20 )2, [ VZ )z

Ce bi imeli v tem primeru opravka s tanko plosc¢o in bi bilo Stevilo ¢ = ¢
mnogo manjse od stevil ¢ in b, tega iz matrike M» ne bi mogli ugotoviti, saj
nobena od njenih treh lastnih vrednosti ne bi postala bistveno manjsa od
preostalih dveh.

Bodita nam ta dva zgleda dovolj za zakljucek: Ce hoCemo iz lastnih vred-
nosti in glavnih osi matrike drugih momentov sklepati na porazdelitev mase
oziroma verjetnosti, naj bo ta matrika izracunana glede na toCko tezisca te
mase oziroma glede na toCko matematicnega upanja verjetnostne porazde-
litve.

4. In zdaj je na vrsti statistika

Pogosto imamo opravka z veliko kolicino podatkov. Merimo jih v »toc¢kahc,
k1 jim pravimo statisticne enote. Tako so statistiCne enote lahko ljudje, pre-
bivalci kakega kraja, pokrajine ali drzave, lahko so podjetja, gospodarske
panoge, posamezna geografska obmocCja v kaki drzavi, lahko pa tudi cele
drzave ali skupine drzav; vCasih so statistiCne enote lahko tudi dogodki, na
primer nesrece, telefonski klici na centrali, splavitve novih ladij in Se mar-
sikaj. Realnim vrednostim, ki jith imamo podane za posamezne statistiCne
enote, pravimo Statisticne spremenljivke. Nekateri slovenski avtorji uporab-
ljajo v priblizno istem pomenu pojem Statisticni znaki. Za vrednosti spre-
menljivk zahtevamo, da so bile izmerjene na vseh statistiCcnih enotah na isti
nacin. Kot tipicen primer takih podatkov si zamislimo nabor N statisti¢nih
enot, ki jih zaradi lazjega razpoznavanja ostevilcimo z zaporednimi Stevili
od 1 do N. Na vsaki od teh enot izmerimo po » statisticnih Spremenljivk ki
jih prav tako oznacCimo z zaporednimi Stevilkami od 1 do n.2 Navadno zahte-
vamo, da je vsak od n podatkov izmerjen na vseh N statisticnih enotah. Ce
bi na kateri od enot ne imeli izmerjenih vseh podatkov, bi jo morali Zal za-
vrec¢i. Oznacimo z X;; vrednost, ki jo ima i-ta spremenljivka na j-ti statisti¢ni
enoti, zai1=1,2, ...,n,j=1,2, ..., N. Vse podatke pospravimo v matriko?

n1 X NP e e e X e

Kako si bomo to goro podatkov »geometrijsko« predstavljali? Zamislili
s1 bomo, da je vsaka od N statistiCnih enot toCka. Ker imamo za vsako po n
realnih podatkov, si jo bomo »narisali« kot to¢ko v n-razseznem realnem vek-
torskem prostoru. Pri tem nam bo j-ti stolpec matrike X

e

2 V statistiki se pogosto uporablja N za velikost populacije, n za Stevilo enot

in m za Stevilo spremenljivk.
3 Opozorimo naj, da statistiki radi z X oznacijo matriko, ki je tej transponirana.
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pomenil pravokotne koordinate j-te tocke v prostoru R»”, za j =1, 2, ..., N.
Vsaki tocki pripiSimo Se njeno »maso«, to je verjetnost. Ce so vse statistiCne
enote med seboj enakovredne, bomo seveda vsem toc¢kam pripisali isto ver-
jetnost. In ker mora biti celotna verjetnost enaka 1, bo imela vsaka od tocCk

verjetnost I Vektor matemati¢nega upanja tega sistema tock lahko sedaj

izracunamo takole

Ce oznacimo z e vektor stolpec, sestavljen iz N enic, lahko to formulo za-
piSemo krajSe v matri¢ni obliki

Iz vektorja matematiénega upanja lahko hitro dobimo matematicno upa-
nje v katerikoli smeri prostora. Naj bo y e iR? poljuben enotni vektor, to po-
meni, da je yTy = 1. 1z danih statisti¢nih spremenljivk lahko tvorimo novo
spremenljivko, ki ima na j-ti statisticni enoti vrednost

Y, “*2}’3

Ce zvrstimo podatke v vrstico YT =[Y, Yy ... Y], lahko to, novo stati-
stiCno spremenljivko zapisemo
YT — yT' X

Matematicno upanje te spremenljivke je Stevilo

_ 1 1 |
Y = —(yTX)e = —yT(X e) =
N d N

- Premaknimo zdaj izhodisCe koordinatnega sistema v tezisCe. Matrika vred-
nosti spremenljivk se spremeni v

Matriki drugih momentov v tako premaknjenem koordinatnem sistemu
pravimo matrika centralnih drugih momentov in jo oznac¢imo z D.
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XXme}mX I——.-l—eeT) [ — —eeT} XT
N N ; N

|

N
1 1
- .....;.[..X Im_l..-eeTw—meeT+w_eeTeeT)XT

N N N
1 1 ! _
_ Im__eeT)XT X XT—XXr
N N N

Matriki D recemo tudi variancno-kovariancna wmatrika ali disperzijska
matrika ali na kratko disperzija. Besedi varianca in disperzija uporabljamo
v ozjem pomenu tudi kot sinonima za diagonalne elemente matrike D, izven-
diagonalnim pa pravimo kovariance.

Izberimo si spet smer y v n-razseznem realnem prostoru in ji priredimo
statisticno spremenljivko YT = yT X. Njeno matemati¢no upanje smo Ze iz-

rac¢unali in dobili Y = yT X. Disperzija te spremenljivke pa je po defIHICIJl
enaka matematicnemu upanju kvadratov odstopanj te spremenljivke od nje-
nega povprecja, torej je

< 1 = 1 _ =
N (Y, —Y)2 = (Y—Ye)T(Y—Ye) —
(N N

(XTy--—--NweeTXTy) = -N—YTXXTy =yTDy

Disperzija D, v smeri y se torej zelo preprosto izraza z matriko D, saj je
kar enaka yT Dy. Spomnimo se zdaj ugotovitev iz drugega razdelka, pa bomo
kaj preprosto znali odgovoriti na naslednje vprasanje: V katero izmed smeri
so tocke najbolj razprSene, tocneje, v kateri smeri je disperzija najvecja?

PoisCimo lastne vektorje in lastne vrednosti simetri¢ne matrike D. Ker
je za vsako smer y Stevilo yT Dy vsota nekih kvadratov realnih Stevil, mora
biti to Stevilo nenegativno, torej je matrika D po definiciji pozitivho semi-
definitna. Iz linearne algebre pa vemo, da je simetricna matrika pozitivno
semidefinitna natanko takrat, kadar ima vse lastne vrednosti nenegativne.
Vse lastne vrednosti matrike D so torej nenegativne, najveC¢ja med njimi,
A1, pa je enaka maksimalni mozni disperziji, ki je dosezena v »glavni« smerl
yi. V tej smeri so torej nase toCke najbolj razprsene.

Zdaj pa si poglejmo (1 — 1)-razsezni podprostor prostora [Rn, ki ga se-
stavljajo vektorji, pravokotni na vektor y;. V tem podprostoru je najvecja
mozna disperzija enaka drugi lastni vrednosti matrike D, to je 1. Ta disper-
zija je doseZzena v smeri druge glavne os1 y,;. Postopek nadaljujemo. Denimo,
da smo Ze dolocili maksimalne disperzije Ay =2 s = ... =2 1, v glavnih smereh
Vi, V3, ..., ¥,. V podprostoru vektorjev, ki so pravokotni na vseh teh r smeri
(ta podprostor ima razseznost n — r), je maksimalna mozna disperzija v enot-
ni smeri enaka (r + 1)-vi lastni vrednosti 1,,1 matrike D in je doseZena v
smeri glavne osi y,, ;. Seveda se nam lahko zgodi, da je pri nekem r lastna
vrednost 1,.; zanemarljivo majhna v primerjavi z lastnimi vrednostmi Ay, g,

1,. To pomeni, da je v primerjavi z disperzijami v smereh yy, y5, ..., v,
maksimalna disperzija v podprostoru, pravokotnem na te smeri, zanemar-
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ljivo majhna.

v smereh vy, v

ienljivk (deset, mm:‘a @@m veC desetin), mmememh'
seveda, na sSe veCjem Stevilu statisticnih enot (sto, morda celo tisod). V

veliki koliCini smmﬁnhwk se nam kaj lahko zgodi, da so nekatere med
boj 1 pa, d primerjavi z drugimi statisti¢no ne-
hko Se mr@} 17 tega ah onega mzloga zgodi, da o

relevantne. Lal
blizno mm 11’ ﬁor

za 1 =1, 2, T'e spremenljivke, ki jim bomo rekli glavne komponente,
so linearne kombinacije prvotnih. Ce bomo izbrali dovolj velik r, bomo vanje
prenesli vecino informacije, ki je skrita v spremenljivkah X. Stevilo » bo lah-
ko bistveno manjse od Stevila n prvotnih spremenljivk. In kako izbrati $te-
preprostejsih in najbolj razsirjenih »kuharskih receptov«

vilo v? Eden od najj
za ta primer pravi: v model vkljuci vse tiste glavne smeri, katerih lastne vred-

|

1anjse od — sled
n

mnogi statisticni preizkusi

D). Seveda obstajajo

nosti niso n
ommwv Simfﬂa 7.
emdi za anahzo poc atkov katere eno od osnovnih variant

smo tu poskusali preprosto opisati, pravimo navadno memdﬁ
p Bralca naj Se enkrat Opozomme da je bil nas pnsmp predvsem intui-
tiven. Vsaka resnejsa te bi terjala Se mnogo prelitega
crnila, da o preliti matematil

th komponent, taksno, kakrsno smo popisali v prejsnjem
o Cisto zadovoljni. Prva stvar, ki bo zbodla v oci vsakogar,
»f1ziko«, so enote, v katerih izrazamo vrednosti spremen-
Ijivk. To, kar smo v prejsnjem razdelku poceli, so bile v bistvu translacija,
rotacija in morda Se zrcaljenje prvotnega koordinatnega sistema. Koordi-
natni sistem pa in isel vrteti le, kdar so vse koordinate merjene v istih

enotah. In to se nam

razdelku, Se nism
ki ima obcutek

v statistiki le redkokdaj primeri.
Problem si poskusSajmo osvetliti ob temle preprostem zgledu. StatistiCne
enote na] bodo hudje Spren’ienmvkl pa visina in teza. Ce bomo »pomotomac
merili visino v milimetrih in tezo v tonah, bo seveda viSina videti milijonkrat
pomembnejsa od teze in bomo slednjo smeli brez skrbi zanemariti. Ce pa
bomo merili visino v kilometrih in tezo v gramih bo teza postala milijonkrat
pomembnejsa od visine. Tokrat bomo smeli zanﬁmarm VISIno, pa cepmv S0
podatki v biswu isti kot v prejsnjem prim

brane merske enote pripeljale v polozaj,
»sestevanje jabolk in hrusk«.

- statistiCna metoda seveda ne sme biti odvisna od izbire enot, v ka-
1h merimo posamezne spremenljivke. Da bi ta problem obsli, moramo tudi
pri tej metodi -- | star in preizkusen trik, ki mu pravimo Sz‘andardzzam
cija statisticnih Spf’emenhwk Prvi korak k standardizaciji smo v bistvu za,
napravili, ko smo premaknili koordinatno izhodisce v »tezisCe« sistema. Zd




moramo le Se ustrezno »uteziti« posamezne koordinate. V matriki D central-
nih drugih momentov ima (i, j)-ti element enoto, ki je produkt enot i-te in
j-te spremenljivke. Enota diagonalnega elementa, disperzije d;, je torej ena-
ka kvadratu enote i-te spremenljivke. Kvadratnemu korenu iz disperzije ¢g; =

= ]/3; pravimo standardna deviacija i-te spremenljivke. Enota standardne
deviacije se ujema z enoto spremenljivke. Ce kovarianco med i-to in j-to
spremenljivko delimo s standardnima deviacijama teh dveh spremenljivk,

dobimo korelacijski koeficient

d;;
Vij = ! (5)

0; Oj

ki je torej koli¢ina brez enote. O njem pa lahko povemo Se nekaj. Spomnimo
se namrec¢, kako smo izracunali kovarianco

N

k=1

zato lezi realno Stevilo r;;, definirano z enacbo (5), vselej na intervalu [— 1, 1].
Stevila r;; razvrstimo v korelacijsko matriko

LVt » -« Tan

do te pa lahko pridemo Se na en nacin. Na naSih statisticnih enotah defini-
ramo »nove« spremenljivke tako, da od vsake vrednosti te spremenljivke od-
Stejemo njeno povprecno vrednost in rezultat delimo s standardno deviacijo
te spremenljivke. Tako dobljeni spremenljivki, ki je brez enot, pravimo stan-
dardizirana statisti¢cna spremenljivka. Za razliko od matrike vrednosti prvot-
nih spremenljivk, oznac¢imo matriko vrednosti standardiziranih spremenljivk
s ¢crko Z. V matricni obliki je standardizacijo zelo preprosto zapisati. Ce ozna-
cimo s § diagonalno matriko z elementi ¢; po glavni diagonali, je

7 — S1(X —XeT) — S1X

Disperzijska matrika standardiziranih spremenljivk pa je ocitno enaka

] ] ~ ~
27T — _ S 1 X XTS1 —-S§1DS1 R
N N

torej se ujema s korelacijsko matriko prvotnih spremenljivk. Tako smo mi-
mogrede dokazali, da je tudi korelacijska matrika simetricna in pozitivno
semidefinitna, Ce so spremenljivke neodvisne, je celo strogo definitna. Za-
pomnimo pa si Se to, da so na diagonali korelacijske matrike same enice,
izvendiagonalni elementi pa po absolutni vrednosti ne presegajo stevila 1.
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merjenimi v razlic-
hrusk

Kadar bomo torej imeli opravka s spremenljivkami, ;
th enotah, bomo z metodo glavnih komponent napadli korelacijsko 1
R namesto disperzijske D. S tem je problem seStevanja jabolk in
v nasem primeru na neki nacin resen.

Dokler se ne odloCimo za opuscanje posameznih komponent, v metodi zdaj
ne vidimo vecC vecCjih lukenj. Glavne smeri vy, vo, ..., v, matrike R vpiSemo
v vrstice matrike Q

Ker so smeri m c na drugo pravokotne (glej enacbo (2)),
velja Q QT = I, zato m ' ika Q ] definicijs
ortcgonalna. Ker pa Wenw WSUCG matr ﬂge Q lastne vektorje n
biti (glej enacbo (3))

atrike R, mora

kjer smo z A oznacili diagonalno matriko z lastnimi vrednostmi 1 > 1> > ..
>}, matrike R po glavni diagonali. Ce to enacbo mnozimo z leve z matriko

0, dobimo

(6)

Zarotirane spremenljivke 1majo torej niCelne Kkorelacijske koeficiente;

temu pravimo, da so spremenljivke paroma nekoreh’mne Tudi i

menljivk lahko izraci Smm nazag Ce namreC pomnozimo enacbo
O 7 7 leve strani z m OT J

Denimo zdaj, da je prvih r lastnih vrednosti iy, is, ..., 4, matrike R
nic¢ razlicnih, vse druge pa so enake niC. Tedaj mora biti zaradi (6) zadnjih
n-r vrstic matrike Y nicCelnih. Ce oznacimo z [* diagonalno matriko reda
r X v, ki ima po diagonali kvadratne korene prvih r lastnih vrednosti matrike
R, z Y, matriko reda » X N, sestam]eno iz prvih r nenicelnih Wsmc matrike

Y in s Q, matriko reda r X n, ki jo sestavlja prvih r vrstic m , dobimo

najprej:

10 se F = L1 Y?a in A =0
Z=AF (7)

T L, pridemo do enacbe

In nato, ¢e oznacin

+ Pogosto se z L oznacuje kvadrat te matrike.
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Disperzija spremenljivk F je enaka

R L S AR T SRRy SR

N N N

kjer smo z .4, oznacili matriko reda r X r, ki ima po diagonali lastne vred-
nosti matrike R; torej je A, = L2. Tako smo ugotovili, da so tudi spremen-
ljivke F Se zmerom paroma nekorelirane, poleg tega pa so tudi standardi-
zirane. Tem spremenljivkam recimo (z nekaj poguma) faktorji. Enac¢bo (7)
smo dobili, kadar je bilo zadnjih n-r lastnih vrednosti matrike R enakih nic.
Ce pa so te lastne vrednosti le priblizno enake ni¢, bomo tej enacbi morali
dodati Se matriko razloc¢kov, ki jo oznac¢imo z E. Tako dobimo realnej$i mo-

del faktorske analize
7Z - AF + E (3)

Problem si zdaj zastavimo takole: Fiksirajmo r in iS¢imo matriko utezi
A reda m X r, matriko faktorjev F reda r X N in matriko razlockov E reda
n X N, tako da bo izpolnjena enacba (8). Na matrike A, F in E navadno po-
stavimo Se celo vrsto zahtev, kot na primer:

1. Faktorji naj bodo standardizirani in paroma nekorelirani, torej naj bo
njihova disperzijska matrika enaka identiteti

Lppr_g

i&;

2. Tudi razloCki naj bodo paroma nekorelirani, ¢e je le mogoce. To po-
meni, da mora biti njihova disperzija diagonalna matrika. Ce oznacimo z U
diagonalno matriko, ki ima po diagonali standardne deviacije razloCkov, lahko
ta pogoj zapisemo takole

[
_EET - Ue
N

3. Faktorji naj bodo nekorelirani z razlocki, torej

-}-EFTmO
N

4. Ker razlocki »merijo« odstopanje danih podatkov od faktorskega mo-
dela, si seveda zelimo, da bi bile njihove disperzije ¢im manjse.

Enacba (8), skupaj s stirimi zahtevami, nam da eno osnovnih variant
modela faktorske analize. Problem, kako dolociti matrike A, F in E, je iz-
redno tezak, ni vselej resljiv in kadar je resljiv, reSitev zagotovo ni enolicna.
Ce ni¢ drugega — matriko faktorjev F lahko mnozimo z leve s poljubno orto-
gonalno matriko reda r X r, matriko A pa z desne z njej transponiranc ma-
triko; vse zgornje zahteve ostanejo v tem primeru v veljavi in dobili smo
novo resitev istega problema.

Seveda je jasno, da se z reSevanjem tega problema tu ne bomo mogli
ukvarjati. Poti je preveC in so za okvir tega clanka prezahtevne. OcCitno je
namrecC, da je takSenle problem z mnogo resSitvami bogato lovisCe razisko-
valcev, ki nam ponujajo vsak svojo metodo in tudi vsak svojo resSitev pro-
blema. V praksi se v nekaterih primerih bolj obnese ta in v kaks$ni drugi
situaciji ona pot.
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Le zaradi popolnosti dodajmo kratek oris ene od dokaj zanesljivih, ite-
racijskih metod za reSevanje tega problema. Na prvem koraku iteracije na-
redimo metodo glavnih komponent. Po nekem kriteriju doloc¢imo Stevilo fak-
torjev r in ga za napm} fiksirajmo. Na osnovi dobljenih razlo¢kov popravimo
korelacijsko matriko. Na splosSnem koraku iteracije naredimo metodo glav-
nih na p@pmﬂ_gem korelacijski matriki prejsnjega koraka z na-
° gfwvﬂo  faktorjev. Ez faktorjev izraCunamo nove razlocCke m
omiaujskg matriko. Iteracijo ustavimo, kadar je maksi-
nalni i oprawk corelacijske matrike manjsi od naprej predpisanega stevila.
Q@ zahtevamo natancnost na nekaj decimalk in podatki niso prevec hudaobni,
nam ta metoda da rezultat navadno Ze v kakih desetih korakih ali Se prej.
Kljub temu je precej zahtevna, saj moramo na vsakem koraku iteracije resiti
po en problem lastnih wednosﬁ, kar niso ravno mackine solze.
mku ki si zeli o metodah faktorske analize in o drugih multivariatnih
dah statisticne obdda‘vg podatkov izvedeti kaj veC, priporocam, da si za
k ogleda knjizico [2], v kateri bo nasel podroben opis mnogih mulii-
variatnih metod, obdelanih vse do programov za racunalnik; prirocnik [9],
\Y% kaﬂmmm bo izvedel, kako uporabljati enega od boljsih racunalniskih pake-
mnoge od teh metod Ze sprogramirane; in ne nazadnje ucbenik
m bo spoznal nekatere multivariatne metode in njihovo uporabo

v @kan@mm
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| Pokrajculja in druge slovenske pravljice (Helidon) poslu-
Samo zgodbo O junaskem kovacu, v kateri 5unak vrze kamen v zrak tako
mocno, da Sele po treh dneh prileti nazaj. Kako visoko poleti kamen in ko-
likSno zacCetno hitrost mora imeti? Zracnega upora ne upostevamo in vza-
memo, da se Zemlja ne vrti in da so druga vesoljska telesa dalec.

Ali bi Zemlja dobila nov umetni satelit, ¢e bi kovacC enako moc¢no zagnal
kamen vodoravno?

Radij Zemlje je 6400 km, tezni pospesek na povrsju Zemlje pa 9,8 m/s2.

Anton Cedilnik

Na kaseti M

Obzornik mat. fiz. 33 (1986) 1,2



JANKO LUZNIK
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~ Razvoj novih merilnikov je v zadnjih dveh desetletjih omogocil tudi merjenje
1zredno Sibkih biomagnetnih polj. Sestavek opisuje moznosti, ki jih ponujajo mer-
jenja teh polj za proucevanje bioelektri¢ne aktivnosti v CloveSkem telesu.

The development of new sensors in the last twenty years has enabled also the
observation of extremly weak biomagnetic fields. In the article the possibilities of
studying the human bioelectric activity through biomagnetic field measurements
are discussed.

Uvod

Clovek se zanima za magnetne pojave Ze dolgo vrsto let. Tudi povezava
magnetizma z bioloskimi pojavi ima dolgo zgodovino. Magnetni Zelezovec so
uporabljali v zdravilske namene skoraj dva tisoC let. Uspehe, ki so jih pri tem
dosegali in si so jih pripisovali vplivu na magnetne sile v Cloveskem telesu,
lahko pojasnimo psiholosko. Tako je bil magnetizem povezan z bioloskimi
pojavi v glavnem po raznih kultih in mazacih.

Magnetna polja Cloveskega telesa i1zvirajo iz onesnazenosti nekaterih orga-
nov s feromagnetnimi snovmi ali pa jih povzrocajo biokemicni ionski tokovi,
ki spremljajo aktivnost organov. Ker so ta magnetna polja izredno Sibka, je
Sele razvoj novih merilnikov in merilnih metod omogocil opazovanje in mer-
jenje. Pravi razvoj na podrocCju biomagnetnih merjenj in studija biomagnetne
aktivnosti v Cloveskem telesu se je zacel pred dvema desetletjema. V zgodnjih
Sestdesetih letih sta Baule in McFee posnela prvi magnetokardiogram clo-
veka. V letih 1966 in 1967 so se pojavili prvi squidi (Superconducting Quan-
tum Interference Devices) [1], ki so danes najobcutljivejsi merilniki za Sibka
magnetna polja [2]. Razvo] squidov pa je omogocil izredno hiter napredek
biomagnetnih merjenj.

Izvori biomagnetnih polj

Magnetno polje spremlja elektricni tok, zato spremlja tudi vsako bioelek-
tricno aktivnost. Najmocnejse taksno polje je magnetno polje srca. Maksi-
malna amplituda meri pri odraslem cloveku okrog 30 pT. Ker je to polje za
okrog Sest velikostnih stopenj sibkejSe od zemeljskega, je razumljivo, da je
treba meritve opraviti v magnetno zascitenem prostoru. Ce merimo v obicaj-
nem okolju, pa moramo uporabiti izpopolnjeno tehniko, ki zmanjsa magnetne
motnje iz okolice. Poleg magnetnega polja srca lahko danes Ze opazujemo
polja mozganov, oci, miSic itd. Najvecji signal iz o¢i meri okrog 100 fT. Pri-
blizna spodnja meja najsSibkejsih signalov, ki jih danes lahko zaznamo, pa je
okrog 10 fT. Vsa nasteta biomagnetna polja 1zvirajo iz bioelektricne aktivnosti
v Cloveskem telesu. Biomagnetna merjenja dajo dodatne podatke in deloma
dopolnjujejo ze udomacena bioelektricna merjenja.

Mocan izvir biomagnetnih polj so feromagnetni delci, ki so zashi npr.
v pljuca ali zaradi bolezni poveCana koncentracija zeleza, npr. v jetrih. Pri
merjenju teh polj postavimo obic¢ajno cCloveka za kratek cas v konstantno
magnetno polje in opazujemo magnetizacijo, ko izklju¢imo polje. Remanentna
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gostota polja lahko doseze npr. v pljuc¢ih do 100nT. Z merjenjem teh pol]
Eahk@ zasledujemo casovno spreminjanje koncentracije feromagnetnih d
pri rudarﬁ 1 ali zeiwarﬁh ki so 1zpostavljeni prahu s fsmmagnmm ni
mesmi. Pojemanje magnetizacije je posledica gibanja delcev v zivem tkivu
in tudi QESQ@H}& organov. Zato opazovanje pojemanja deloma omogoca studij
aktivnosti in cCisCenja teh organov.

Biolosko celico deaga membrana, ki selektivno prepusca Kazhcn_@ vrste
ionov. Zato nastane med zunanjostjo in notmmosqa celice razlika ionske
koncentracije. V stacionarnem stanju opazimo med zunanjostjo in notra-
mosno razliko mﬁnuaimf ki uravnovesi razliko ionske ROHCCHH‘&QH@
pownuamv imenujemo transmembranski potencial. Elektricni drazljaj
sprementi relativno preusmost celicne membrane, to pa povzrocCi spremembo
ke koncentracije v celici in s tem tudi Spmm@mg transmem o
pmenmam Po doiocenem casu pa se vzpostavi prvoino ravnoves_ge
membe mislimo, ko govorimo o akcijskem potencialu [3], [4], k
vzmu dvig preugmosu Za naﬁrueve ione (SI.1). Natrijevi ioni zacnejo pms
notranjost celice in povzrocCijo obrat Emngmebmnskega po‘mnua}a
no depolarizacij j o. Transmembranski potencial zraste na pribliz-
mV. Temu sledi dvig prepustnosti za kalijeve ione, ki potujejo na-
vzven in vzpogfgaﬂj 0 ravnovesnl transmembranski potencial pri okrog
e % mV Temu pravimo mpdaﬁzaci_ﬁa |
Zamislimo si celico peoigmjam oblike z okroglim prerezom. Z akcﬁskim
pm@mamm SO povezam tokovi skozi membrano. Te tokove opisuje semi-
mpiricna H cin-Huxleyeva enacba

—Ug) + g(U—1U) (1)

SI. 1. Tipic¢ni ¢asovni potek akcijskega potenciala



V enacbi je U transmembranski potencial, ¢,, kapaciteta na enoto dolzine ce-
lice, gyu, €x In g, pa ionske prevodnosti za natrijeve, kalijeve in preostale
lone na enoto dolzine. Prvi Clen opisuje kapacitivni tok, druga dva pa sta
ionska tokova natrijevih in kalijevih ionov. Zadnji Clen, ki ustreza puscanju,
vkljucCuje vse preostale i1onske tokove in je obiCajno zanemarljivo majhen.
Vsi ionski tokovi so odvisni od razlike med transmembranskim potencialom
In ravnovesnim potencialom za ustrezne ione. Prevodnosti v enacbi (1) niso
konstantne in se spreminjajo s transmembranskim potencialom. Ker so deli
celice v blizini aktiviranega podrocCja se vedno v ravnovesnem stanju, se po-
javi elektri¢ni akcijski tok med aktiviranim in neaktiviranim podroCjem ce-
lice, torej v smeri osi x celice, kot odgovor na neenak transmembranski po-
tencial. Akcijski tok depolarizira sosednje dele celice. Tako pojasnimo meha-
nizem S$irjenja vzburjenja po Zivénih in misSi¢nih celicah. ZmanjSanje akcij-
skega toka na enoto dolzine je enako membranskemu toku na enoto dolzine

()] a/ifdx — T ] m(z,/a) (2)

Pri tem je j, gostota akcijskega toka v notranjosti celice, j, pa gostota trans-
membranskega toka. Za radij celice smo vzeli a. Ce je p specificni upor notra-
njosti celice, lahko zapiSemo zvezo med gostoto akcijskega toka in spremembo
transmembranskega potenciala vzdolz celice

()U/()x = T 0 ja (3)
Z odvajanjem enacbe (3) dobimo
()QU/()xz: = = 0 ()7 (I/C)x = (2 Q/ a) 7 m 4)

Ce to vstavimo v enac¢bo (1), nastane modificirana Hodgkin-Huxleyeva tele-
orafska enacba, ki opisuje prevajanje elektricnega signala vzdolz celice

(a/'z Q) O’QU/’OWE = Cpy ()U/()t + gNa(U — UNa) un g[x(U - Uf\) =+ g?(U — U7) (5)

Ce se akcijski potencial pri potovanju vzdolz celice ne popacl In ne zmanjsa,
mora imeti resitev enacbe (35) obliko

U=ftx—vi) (6)
1n ustreza valovni enacbi
02U jox? = v—2 92U/ gx? (7)

Enacba (5) dobi tedaj obliko |
(aj2 9 v2) 02U/O12 = c,, 0U/0t + gyo(U — Uy,) + gx(U—Ug) + g(U—U)) (8)

ReSevanje te nelinearne enacbe (prevodnosti so odvisne od transmembran-
skega potenciala) je precej zapleteno, vendar je numericna obdelava pokazala
dobro ujemanje med izmerjenimi in izracunanimi podatki (Sl. 2).

Ker je veCinoma bioloSko tkivoe razmeroma dober prevodnik, se tokovi
sirijo tudi zunaj opazovane celice, po tkivu. Magnetna in elektricna polja, ki
spremljajo bioeclektri¢no aktivnost, smemo obravnavati kot kvazistaticna. Mer-
jenja so namrec¢ pokazala, da je energijski delez signalov s frekvenco nad
1000 Hz zanemarljiv. V tem primeru zapiSemo jakost elektriCcnega polja zunaj
opazovane celice kot gradient skalarnega potenciala

Em-—-——v'(p (9)
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Sl 2.

potenciala

ot
=

Krajevna odvisnost dogajanja v Zivéni ali miSicni celici pri Sirjenju akcijskega



Elektricno polje je konservativno, tokovi po tkivu pa disipativni. Disipacijo
krije razlika notranje energije zaradi neenake ionske koncentracije na obeh
straneh membran. Ta energija izvira od celicnega metabolizma.

Edini nekonservativni prispevek k celotnemu toku so torej ionski tokovi
v celicnih membranah. Celotno gostoto elektri¢cnega toka v tkivu, ki ga opi-
semo kot fizioloski prostorski prevodnik, lahko izrazimo kot

j=—o0 v @ In + Ja (10)

Ce se omejimo le na zunanjost celice, ki prenasa elektricni signal, lahko tok
v notranjosti celice j, pristejemo k transmembranskim tokovom j,, in pri
racunanju elektricnih potencialov in magnetnih polj v okolici celice uposte-
vamo vsoto teh tokov in tokov v notranjosti celice. Vse te tokove opiSemo
kot efektivni tokovni izvir. Ker obiCajno opazujemo elektricne potenciale
in magnetno polje v veliki oddaljenosti od celice v primeri z njenimi prec-
nimi razseznostmi, je dovolj, ¢e v teh racunih upostevamo le akcijski tok,
torej tok v notranjosti celice (Sl. 3). Prispevek vsote dveh nasprotnih radialnih
tokov, ki teCeta navzven in navznoter, vsebuje namrecC le oktupolne Clene in
clene visjih redov, ki z oddaljenostjo zelo hitro pojemajo.

Do sedaj smo opisali eno celico, zdaj pa moramo zajeti vse, ki sodelujejo
pri bioelektri¢ni aktivnosti. Oznacimo skupno gostoto tokov v vseh teh celi-
cah, torej vsoto tokov j,, z j°. Izraz za skupni tok v fizioloSkem prostorskem
prevodniku je potem

j=—0oV g+ jP (11)

Zaradi ohranitve naboja je skupni tok solenoidalen V j = 0. V neomejenem,
homogenem, izotropnem prostorskem prevodniku dobimo zato elektri¢ni po-
tencial kot reSitev Poissonove enacCbe

VP =gtV (12)

Za magnetno polje dobimo iz Maxwellovih enacb V X B = y,j. Ce vzamemo
rotor te enacbe, dobimo ¥V XV X B = y, V X j ali

(13)

Sl. 3. Tokovi v depolarizacijskem delu aksona in njegovi okolici ter nadomestna
shema, pri kateri smo zanemarili vpliv transmembranskih tokov



Ker je magnetno

Pri tem vodi krajevni ‘%kmf r do toCke, v kateri Qpaguwm0 elektricno in
magnetno polje, r’ pa do tocke v kateri so primarmn tokovi. Po | dmh@hzovem
izreku je vektorsko polje popolnoma definirano, e poznamo divergenco in
rotor. Nacelno sta torej V/ jp in V X j’p neodvisna, zato so tudi ustrezna elek-
tricna in magnetna polja neodvisna. Seveda velja to le za homogen, 1zotropen,
neomegen prostorski pmvodmk kar pa navadno ni niti priblizno izpolnjeno.

Clovesko telo je nehomogenoc. V preprostem priblizku ga lahko obravnavamo
kofg omejen prostorski prevodnik, sestavljen iz delov s konstantno elektricno
prevodnostjo. Ker se elektri¢na prevodnost na prehodu z enega podrocCja na
drugo spreminja, se pojavi v enacbi (14) sSe dodatni Clen

w Y o X Vg (17)

V tem pﬁbhﬂm je V ¢ razlicen od nic¢ le na mejnih ploskvah med dvema
poquema z razlicno prevodnosuo Zato lahko drugi Clen 1zrazimo Kot vsoto

V drugem clenu te enacbe nastopa elektriéni potencial, zato je umljivo, d
v tem primeru elektricni potenciali in magnetna polja niso vec popolnoma
neodvisni med seboj. Podatki iz elektricnih in magnetnih merjenj se le de-
loma dopolnjujejo in seveda deloma prekrivajo. Biomagnetna merjenja zato
ne dajo vedno popolnoma novih informacij.

Cﬂ_g bmd@kfiﬂcmh in bwmagnetmh merjenj je dobiti podatke o porazde-

em telesu. Z merjenjem magnetnih polj v oko-

lici in elekﬁcncmh p@tenmaiov na povrsini cloveskega telesa poskuSamo dolo-
Citi elektri¢ne tokove znotraj telesa. Ker po ucinku (elektri¢nih potencialih
in magnetnem polju) sklepamo o vzrokih (primarnih tokovih), imamo opraviti
z inverznim problemom. Ta problem ni vedno enolicno resljiv. Merjenje dveh
komponent magnetnega polja — tretjo dobimo i1z pogoja VV B = 0 — po vsem
prostoru v okolici telesa namrecC ne da dovolj podatkov za enolicno dolocCitev
treh komponent tokovnega vektorja v notranjosti. To je res tudi, ¢ce dodamo
magnetnim merjenjem merjenje elektricnih potencialov na povrsini Clove-
Skega telesa. Zato je treba upoStevati tudi omejitve, ki izvirajo iz fizioloskih
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in anatomskih podatkov. Ob tem se pojavi vprasanje, koliko podatkov o po-
razdelitvi primarnih tokov znotraj telesa lahko dobimo iz magnetnih in koliko
iz elektricnih merjenj. Moznosti elektri¢nih in magnetnih merjenj so omejene
s porazdelitvijo primarnih tokov. Vektorskc polje primarnih tokov lahko
vedno razstavimo na vsoto irotacionalnega in solenoidalnega polja

p=jrtir VXip=0 V.jP=0 (20)

V poenostavljenem primeru neomejenega, homogenega in izotropnega pro-
storskega prevodnika podajata ustrezni elektri¢ni potencial in magnetno polje
enacbi

p(t) = — (dm o) [V jp; d* /R B(r) = (/4 n) {V X jp d*r'/R  (21)

Okviren odgovor na prej$nje vpraSanje je preprost: Irotacionalni del porazde-
litve primarnih tokov lahko S$tudiramo z merjenji elektricnih potencialov,
solenoidalni del pa z merjenji magnetnih polj. V resnici ni Cisto tako, ker
zaradi nehomogenosti in omejenosti fizioloSkega prevodnika magnetna in elek-
iricna merjenja ne dajo popolnoma neodvisnih rezultatov. Pri doloCanju po-
razdelitve tokov si zato pomagamo z modeli, ki upoStevajo fizioloske in ana-
tomske znacilnosti CloveSkega telesa.

Porazdelitev primarnih tokov lahko podamo z vsoto ekvivalentnih tokov-
nih multipolnih momentov, ki povzroCajo enako magnetno polje v okolici
in enake elektri¢ne potenciale na povrsini telesa. Zaradi preprostosti vzemimo
homogen prostorski prevodnik V, porazdelitev primarnih tokov, ki nas za-
nima, pa naj bo od ni¢ razliCna v omejenem delu V’-tega prevodnika. Upora-
bimo vektorski enacbi

V (jp/R) = R-1\V/ jp + jP . V (1/R)
vV X (jp/R) = Rt/ X jp + V (1/R) X jP (22)

in upoStevamo, da sta prostorska integrala leve strani enacb (22) enaka nic.
Spremenimo ju v ploskovna integrala in integriramo po sklenjeni ploskvi
zunaj dosega primarnih tokov. Vstavimo to v enacbi (15) in (16) in dobimo

nov par enacb .
g®) =@ no)-t{jr.V (/R)d v

1/R lahko razvijemo v vrsto po potencah #'/r in ohranimo le Clene do drugega
reda
I/R=1/r—r' =1/(r?—2r .1 + 12) =
— 711 +r. 2 (L)t — 3522 4 L)) (24)

Z operatorjem \/ dobimo iz te enacCbe
CV(R) =r/rs + 3. v el — I L (25)

Izraza za elektri¢ni potencial in magnetno polje se spremenita v priblizku
drugega reda v

pr) = @Gro)t[{jed3r .x/r3+ (jP. @ .v) /15 —1r'/rd) d3 '] = @1(r) + @a(r)
(26)
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Jdm)[{jpdsr X + § ip >< {3( X)) r/rs — /3y d3 v =

(28)

izrazimo prispevke prvega reda k elektricnemu potencialu in magnetnemu

(29)

polju takole

Prispevka drugega reda pa lahko zapiSemo v razviti obliki

= @G aors)t{3xyla,, + a,) + 3xz(a,., + a,,) +
T 3 Y Z(@yz a;ﬁy} a;@:?x(S X2 — ?2> ay@;{«% y2 T ﬁ) T a~7(3 72 —

N)

r%)]

) = (wo/4nr’)[3xza,, +3yvza,, +322a,—3xya, —
— 3 yz Ay — 3 y<dy, T Fz(ﬁyz - azyn
: = <MO;/ e 7T ?/ﬁ) ‘Eg X? Ayz T 3x Yy a;y;z + 3x sy — 3 x < Uyy —
—3y2z Ayo — 322 a, + r¥ia, — amﬂ (31)

: = <M0¢ 4 7 15) [3 XY Aypy + 3 0% Ay + 3z Y lyy —— 3 x? Aypy —

— 3 x y ayy — 3 Z x a;&:‘y _%— FE(Q«/@Q o ajj:ﬁ)]

m smo uvedll tenzor tokovnega kvadrupolnega n

Ajp = (v o d3r

Pri razvoju elektricnega potenciala in magnetnega polja smo se omejili
na clene drugega reda, ker prispevki ustreznih ekvivalentnih multipolnih
momentov visjih redov dovolj hitro padajo. To velja, ¢e opazujemo elektri¢no
in magnetno polje v oddaljenosti, ki je vecCja od din enzij dela prostora V7,
kjer so primarni mkow razlicni od ni¢. Magnetno polje in dektn@m poten-
cial doﬁoca v priblizku prvega reda ekvivalentni tokovni dipoi prvem
redu lahko zato dobimo iz elektri¢nih in magneimh mem@m le podatke o tem
tokovnem dipolu. V mzuitanh obeh meritev se pojavijo le mzhk@ zamdﬁ ne-
homogenosti prevodnika. Razlika v kolicini podatkov, ki jih dobim
tricnih in magnetnih merj@m pa se skriva v clenih VlSﬂh redov. Za ob
kovni porazdelitvi (Sl. 4a,b) je dipolni prispevek enak nic, usﬁezma tenmma
tokovnega kvadrupolnega momenta pa sta

a b C

Sl. 4. Tri tokovne porazdelitve, ki nimajo dipolnega Clena



pd 0 0
0 pd 0 (33)
0 0 0

Enacbi (31) in (32) kazeta, da lahko takSni tokovni porazdelitvi zaznamo
z elektricnimi in magnetnimi merjenji. Vsota obeh prej$njih tokovnih porazde-
litev pa da novo konfiguracijo (Sl. 4c). Tej porazdelitvi ustreza antisimetric¢ni
tenzor

0 pd O
pd O 0 (34)
0 0 0

Elektricno polje takega tokovnega kvadrupola je v priblizku drugega reda
enako ni¢ in podatke o njem lahko dobimo samo iz magnetnih merjenj. Splos-
no velja, da tokovne porazdelitve z ekvivalentnim tokovnim dipolom, enakim
nic, 1n antisimetricnim tenzorjem tokovnega Kkvadrupolnega momenta ne
moremo meriti elektri¢no. Poseben primer pa je Cista simetricna radialna
tokovna porazdelitev (Sl.5). Tenzor tokovnega kvadrupolnega momenta, ki
ustreza taksni porazdelitvi tokov, je

0 (35)
pd

TakSna tokovna porazdelitev ne povzroca niti magnetnega niti elektri¢nega
polja in podatkov o njej ne moremo dobiti niti z elektriCnimi niti z magnet-
nimi merjenji.

Zapis primarnih tokov z vsoto ekvivalentnih tokovnih multipolov daje
moznost, da vnaprej doloCimo, kateri podatki so dosegljivi z elektricnimi in
kateri z magnetnimi merjenji. TakSen zapis primarnih tokov pa omogoca tudi
preprostejSo primerjavo s fizioloskimi in anatomskimi modeli.

S1.5. Radialna tokovna porazdelitev Sl. 6 Izvor »elekiriCne tisSine«
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Preprost model na osnovi predpostavke, da je fizioloski prevodnik homo-
gen, je le zelo grob priblizek za razmere v ¢loveskem telesu. V bolj realisti¢nih
modelih je zato treba up@é&evaﬁ nehomogeno zgradbo ﬂ@%ék@ga telesa, kar
pa lahko seveda zelo mocno vpliva na rezultate elektri¢nih in magnetnih
merjenj. Trditev ilus ﬁn rajmo s posebnim primerom (Sl.6). Ce je elektricni
upor v oquu 2 veliko vedji kot v podrocju 1, so d@ku‘mm Omnmah v zu»
nanjem podrocju 3 lahko tako osiam’sm da ﬂh ni mog
praksi je ta tezava pogosto pri opazomnju za.mdkm/ega dek@mkardmgm
Ce vmesna 1zoﬁaguska plast preprecuje elektricna merjenja, so magne’ma
lahko bol] ‘ugmk@ma ker takSna zgradba j msmmkega prevodnika
ne vpliva na magnetne signale. Prin @mava med dektmkardmgmmom in m
netokardiogramom zarodka je v tem primeru res pokazala prednost magnet-
nih merjenj.
Magnetna

merjenja dajo v nekaterih primerih nove podatke, poleg tega
pa so popolnoma neinvazivna, celo mﬂi med telesom in merilnim instru-
mentom m otreben Frekvencno merilno obmocje Eahko pn magne&mh
jenjih razsirimo navzdol do enosm@rmh signalov. T iénih

M oremo storiti zaradi kontaktnih napetosti na c

jenjih ne m
je treba mdg rosfmrsko locljivost, ki je pri magnﬁmh bﬁhsa ker
NajvecCja slabost

ni treba meriti razlike med vrednostmi na dveh mestih.
magnetnih merjenj pa je v tem, da so v primerjavi z elekiriCnimi merjenji
tehnicno mnogo bolj zahtevna, ker moramo meriti izjemno Sibka polja ob
veliko mocnejsih motilnih poljih.
Biomagnetna merjenja dozivljajo izredno hiter razvoj. Rezultati iz zad-
njega desetletja, predvsem mozZnost studija prevodnega sistema v ¢loveskem
srcu s fino strukturo magnetokardiogramov viscke locljivosti in na podrocCju
magnetoencefalografije, so taksni, da postajajo danes biomagnetna merjenja

7e obetavna za klini¢no uporabo.
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Bioelectric Phenomena,

. Plonsey,

Rokopis mora biti natipkan v dveh izvodih (drugi izvod je lahko kseroks kopija)
na belem papirju formata A4, z dvojnim razmikom in vsaj 2cm Sirokim robom
na vseh stirih straneh. V tekstu morajo biti vse besede, ki naj bodo postavljene
kurzivno, in vsi matematic¢ni simboli podc¢rtani z valovito ¢rto. Besede in simboli,
ki morajo biti stavljeni polkrepko, pa podcCrtani z ravno Crto. Podrobnejsa navodila
so v Obzorniku mat. fiz, 21 (1974) 62—64. Pri korekturah na krtac¢nih odtisih upo-
rabljajte dogovorjene oznake.
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Clanek obravnava razloge za to, da v pouk fizike vkljuCimo prakti¢ne vaje iz
astronomije. Podrobno navede pet vaj, ki jih lahko izpeljemo z osnovnosolci.

In the article motives to include astronomical exercises in physics lessons are
presented. Five exercises are described that can be done by primary school pupils.

V preteklih letih smo v pouk osnovnosSolske fizike vnesli obilo samostoj-
nega in eksperimentalnega dela ucCencev. Vendar se zdita pri poglavju Zemlja
in Osoncje premalo poudarjeni opazovanje in merjenje v astronomiji. Ucenci
s1 sicer pridobijo nekaj teoretiCnega znanja in spoznanj o astronomiji, prak-
ticnega obCutka za merjenje pa ne. Sestavek navaja pet astronomskih vaj, ki
jih lahko vkljuc¢imo v pouk fizike ali v fizikalni krozek. Vse sem veckrat prak-
ticno 1zvedel z uc€enci osnovne Sole Prezihov Voranc v Ljubljani in osnovne
sole Tomo Brejc v Kamniku. |

Opazovanje nebesnih objektov

Ucenci spoznajo zvezdnato nebo in sami opazujejo in svoje ugotovitve pri-
merjajo z zvezdno karto. Opazujejo in skicirajo meglice, galaksije, planete
in Luno in svoje skice primerjajo s fotografskimi posnetki. Potrebujejo dalj-
nogled in zvezdno karto, na primer Presekovo ali Kunaverjevo. Ze v razredu
poiscCejo znacilna ozvezdja in nekatere najbolj znane, dobro vidne objekte, npr.
M 31, M 13, M44. ZveCer se odpravimo na plano, pozimi lahko ze okoli 17h,
ter si ogledamo nekaj znacilnih ozvezdij, Veliki voz, Mali voz, Kasiopejo,
Orion, in jih primerjamo s podobami na zvezdni karti. Potem ponovimo opa-
zovanje z daljnogledom. Ucenci naj dalj casa opazujejo z daljnogledom. Opo-
zarjamo jih na znacilnosti planetov in dvojnih zvezd.

To je osnovna vaja, saj ucCenec le v naravi dojame razseznost ozvezdij.
Skica v knjigi ne pove dovolj. Za vajo ni nujno potreben astronomski daljno-
gled, ze z dobrim dvogledom vidimo kaksno meglico. Mimogrede lahko opo-
zorimo na znacilnosti in zgradbo daljnogleda. Ce se ucenci malo potrudijo
In opazovanja zabelezijo, bodo laze razumeli stare narode in njihove astro-
nome, ki so s prostim oCesom odkrili marsikatero zanimivost. Ob posebnih
nebesnih pojavih, na primer mrkih, organiziramo opazovanja.

Dolocitev smeri sever-jug in opoldanske viSine Sonca

Ucenci spoznajo, da lahko s preprosto palico doloCijo smer sever-jug, da
se opoldanska viSina Sonca med letom spreminja, in iz tega sklepajo, da se
spreminja tudi deklinacija Sonca. Potrebujemo gnomon, uro in astronomske
efemeride. Gnomon je poljubno dolga, zgoraj osiljena palica, ki jo zabodemo
pravokotno na vodoravno podlago. Okoli gnomona narisemo krog in opazu-
jemo, kdaj se senca palice dotakne kroga dopoldne in kdaj popoldne. Dotika-
1iS¢1 povezemo in pois¢emo srediSce dobljene tetive. Ko povezemo srediscCe
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tetive z gnomonom, dobimo smer se-
ver-jug. Visina Sonca je kot, pod kate-
rim padajo soncni zarki na Zemljo, in
jo doloCimo iz zveze tgh = I/l'. Pri tem
sta [ 1n I’ izmerjeni visina gnomona in
dolzina sence.
'aja je zani
je poglavje Zemlja in
lahko pokazemo, kako se orientirar

1. Dolzino sence '
dan toCno opoldne. V razredu si nare-
dimo veliko razpredelnico in wvanjo
sproti vpisujemo meritve. Tako ucenci
sami opazijo, da se jeseni senca daljsa
in se nato ob zimskem obratu zacne
spet krajsati. Visino lahko izracunamo
v matematicnem krozku, kjer ne bo te-
zav s trigonometri¢nimi funkcijami. Za-
nimivo je narisati visino Sonca in dol-
znio sence v odvisnosti od casa. Prva
rivulja pada, druga pa se dviga, Ce
10 zaceli jeseni (Sl. 1 in 2).

T

SIL. 1. Ucenca osnovne sole Prezihov Vo-
ranc merita solarno konstanto s svin-
ceno plosco, pritrjeno na teleskop
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SL. 2. Izmerjena dolZina sence I’ v odvisnosti od c¢asa ¢ (dolzina gnomona [ = 138 cm
(levo) in izraCunana viSina Sonca /1 (desno)
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anj
ri tej vaji ucCenci spoznajo povr$je Sonca in dolocijo njegovo aktivnost.
otrebujejo astronomski daljnogled, zaslonko, zaslon in temno krpo ter astro-

skiciramo njegovo povrS$je. Aktivnost Sonca doloca
= 10 s + p, v katerem je s Stevilo skupin peg in p Stevilo peg.




Zorni kot Sonca je kot, pod katerim vidimo premer Sonca z Zemlje. Za-
radi navideznega vrtenja neba opisSe toCka na Soncu v casu ¢ kot ¢ = w  cos J.
Pri tem je kotna hitrost navideznega vrtenja neba w = 15%/h = 15/min in §
deklinacija sredis¢a Sonca, ki jo razberemo iz astronomskih efemerid. Na za-
slonu nacrtamo dve pravokotnici, x in y. Cas ¢ izmerimo takole: ko se slika
Sonca dotakne premice y na eni strani, pritisnemo na stoparico in jo usta-
vimo, ko se je dotakne na drugi strani. Med uro fizike opravimo dve ali tri
meritve in ocenimo zorni kot.

Ce spremljajo aktivnost vsak dan, lahko ucenci sami dozivljajo, da se na
Soncu neprestano kaj dogaja. Drugi del vaje je namenjen samo spretnim opa-
zovalcem in merilcem in ga lahko podrobno izpeljemo pri fizikalnem krozku.
Ucence najbolj preseneti dejstvo, da 1ma Sonce pege in da morajo biti po-
zorni in natancni, Ce Zelijo dobiti dobro meritev. Nalogo poglobimo z dodat-
nimi razmisljanji: Ali se zorni kot spreminja? Ali je Wolfovo stevilo odvisno
od tega, kaksen daljnogled imamo?

Vajo lahko Se popestrimo, ¢e ocenimo premer Sonca 2 R; z zvezo 2 R;/a =
= 2 7 v/360%, v kateri je » astronomska enota r = 1,5.108km, to je srednja
oddaljenost Zemlje od Sonca, in ¢ izmerjeni zorni kot. UcCenci dobijo obcCutek
za velikost Sonca. Dobljeni rezultat primerjajo z ze znanimi podatki, ocenijo
lahko relativno in absolutno napako in vse povezejo z obravnavanjem te snovi
pri fiziki in matematiki [2], [3]. Sami potem ocenijo, kako dobra je bila me-
ritev. V Solskem letu 1982/83 so ucCenci osnovne Sole Prezihov Voranc merili

25-krat in dobili za zorni kot poprecno vrednost ¢ = 0,52° in za premer Sonca
2R, = 13,8.105 km.

Zorno polje teleskopa

Ucenci spoznajo eno od karakteristik teleskopa. Naucijo se, da morajo biti
pri opazovanjih potrpezljivi in da z naglico ni¢ ne dosezejo. Ugotovijo, da je
zorni kot teleskopa odvisen od povecave. Naucijo se uporabljati efemeride in
se spoznajo z ekvatorskim nebesnim koordinatnim sistemom. Z zornim po-
ljem teleskopa lahko ocenijo kote med nebesnimi telesi. Potrebujejo astro-
nomski daljnogled z veC okularji, stoparico, zvezdno karto in astronomske
efemeride. Opazovalec s stoparico meri prehod zvezde preko sredine zornega
polja daljnogleda od pojava (A) do izginotja (B). Zorno polje doloC¢imo s ko-
tom, ki ga zajame daljnogled: ¢ = w ?# cos §; tu je ¢ izmerjeni Cas preckanja
zvezde.

Ze merjenje Casa pri razlicnih okularjih pove nekaj o zornem polju. UcCen-
ci morajo paziti, da bo zvezda zares potovala po sredini zornega polja. Ob
vaji si lahko zastavimo vprasanja, kaksSno poveCavo kaze uporabiti pri opa-
zovanju planetov, Lune in kakSno pri opazovanju galaksij.

Ocena gostote svetlobnega toka s Sonca

Ucenci spoznajo, da je Sonce izvir energije. Potrebujejo izolirano svinceno
plosCo, termometer, stoparico in gnomon aii visinomer. Svinceno plosco, na
katero lovimo soncno svetlobo, po¢rnimo s sajami. Potem zasledujemo na-
rasCanje temperature plosce, ki jo obseva soncna svetloba. Temperaturo me-
rimo z zivosrebnim termometrom, ki ga vtaknemo v izvrtino v plosci. To
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dobro izoliramo, npr. s stiroporom, in preverimo izolacijo tako, da plo$co po-
lozimo v senm posebnega zasmna Nato zacnemo meriti: zasledujemo spre-
minjanje ?[@mp@mmm v odvisnosti od ¢asa in narisemo diagram. Potem dolo-
cimo strmino na mestu, kjer je krivulja najbolj enakomerno strma. Visino
sonca dolocimo z gnomonom ali visinomerom. Gostoto svetlobnega toka izra-
unamo takole: j = k dT,/d¢, koeficient k = m ¢/S vsebuje maso svincene plo-
ce m, specificno miom svinca c¢ in povrsino pocrnjene ploskvice S. V casu
't = fo— 11 se spremenl temperatura za di = T5—17.
Ze na zacetku povejmo, da je vaja zahtevna in primerna za dodatni pouk.
V sedmem razredu pri poglavju o toploti izpeljemo vajo z nekaj ucenci tako,
da pmvsfjamo kako temp@mmm v senci zaslona ostaja konstantna, na soncu
raste fm nato v senci zaslona p@C&Sl pada. Narisemo @ammm odvisnost tempe-
imo toploto, ki jo je pre] jela plosca: O = m ¢ AT. Razliko AT
a, ki ga lahko primerjamo s tistim, ki smo ga naredili,
ko smo zasledovali S@gmvam@ vode [1]. Ucencem s tem pokazemo, da se raz-
h@ne snovi razlicno segrevajo. Lahko pa nalogo popestrimo tako, da na soncu
enaki kohum vode in svinca.
m zastavimo nekaj vprasanj. Pod kaksSnim
Soncu? Zakaj jo izoliramo? Zakaj jo pocrni-
mo s sajami? Koliko casa naj merimo na soncu? Kaj vpliva na meritev? Vaja
tudi v preprosti obliki pokaze, da je Sonce lahko koristen vir energije. Na
rezultate se lahko spomnimo kasneje v sedmem razredu, ko govorimo o ener-
giji svetlobe [1]. Nalogo z ucCenci osmega razreda lahko poglobimo, ¢e racu-
najo gostoto Sveﬂobnega toka. Toplotni tok poznajo [1] in zato jim ni tezko
poj asnm enacbe j = P/S.
Naredimo %h ko meritev pri razlicnih visinah Sonca in za vsako nariSemo
diagram 7'(¢). Ce krwuha ni »lepa«, navadno zaradi aimosfﬁrskih m@tenb
ritve ne upasteva mo. Pri tem zlasti osmosolci lahko poglabljajo znanje o funk
cijah, saj vecCkrat slisimo kritike, da imajo pozneje tezave s to snovjo.
Z. dovolj prizadevnimi ucenci lahko naredimo Se korak naprej in ocenimo
gostoto svetlobnega toka, ki pade na vrh nasega ozracja (»solarno konstanto«)
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Sl. 3. Spreminjanje temperature 1 svince- SL. 4. Pot svetlobe od zvezde Z do
ne plosc¢e v odvisnosti od Casa ¢ opazovalis¢a O skozi planpara-
lelno zemeljsko ozracje. Z zvezda
na visini h < 60 Z’ zenitna zve-

zda, ko je h = 909
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7o, in ekstinkcijski koeficient zemeljskega ozracja. Svetlobni tok v ozracju
oslabi in je odvisen od viSine Sonca. Opazovanja kazejo, da velja enacCba
. v kateri je n = ¢/1,08, ¢ je ekstinkcijski koeficient in A visSina
Sonca.* Zapisano enac¢bo logaritmiramo in dobimo logj = log j,— n/sin A.
Nato narisemo log; kot funkcijo 1/sin % in skozi merske tocke potegnemo
najboljSo premico. Z ekstrapolacijo do presecCi§¢a premice z ordinatno 0sjo
dobimo j, in s tem Se ¢ Vprasamo se lahko tudi, kolikSno mo¢ seva Sonce:
P = j,4dxr: Leta 1981/82 so ulenci o. §. Tomo Brejc v Kamniku ocenili j,

s 1260 W/m2.

Ne smemo pozabiti, da velja enacba j = n ¢ AT/S At le priblizno. Uposte-
vati b1 morali se sevanje ploscCe in okolice:

]' — j![} e—n/sinh

Pri tem je a albedo in ¢ Stefanova konstanta. Drugi Clen na desni podaja raz-
liko med toplotnim tokom, ki ga plosc¢a s temperaturo T oddaja okolici, in
tistim, s katerim okolica pri temperaturi 1) obseva ploSco.

Astronomijo lahko vpeljemo tudi v cdetrtem in petem razredu, med Solo
v naravi. Ob jasnem veceru popeljemo ucence na plano in jim razkazemo zna-
Cilna ozvezdja in orientacijo po njih. Ce imamo daljnogled, pogledamo Luno

in Se kaksno zanimivost.

S prispevkom sem Zzelel pokazati, kako lahko astronomske vaje vkljucimo
v redno Solsko delo ali v dodatni pouk. Izbral sem samo nekaj vaj, ki naj bi
nakazale pot od najlazje do najtezje. Vse sem z ucCenci naredil po veckrat,
vCasih zelo uspesno, drugi¢ pa tudi ne. Predvsem zelim vzpodbuditi ucitelje,
da bi z vajami ulencem priblizali astronomijo.
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* Pr1 prehodu skozi zemeljsko ozracje svetloba zvezde oslabi. Vzemimo eno-
staven primer, da je nase ozracCje homogena planparalelna plast z viSino s = 10 km
In poprecnim absorpcijskim koeficientom u, neodvisnim od valovne dolZine svet-
lobe, in da ni loma. Tako je gostota svetlobnega toka j zvezde na visini # nad ob-
zorjem j(h) = joe—ns/sinh, Tu smo z j, oznacili gostoto svetlobnega toka z zvezde na
vrhu zemeljskega ozradja (Sl.4).

Iz definicije sija zvezde mi — n1y = 2,5 1log j/j¢ sledi, da oslabitev svetlobe namesto
z razmerjem j/jo lahko i1zrazimo tudi z razliko sijev m —my, torej m — iy =
= —25loge—wus/sinh =25 ys/sinh.loge = 1,08 us/sin h. Vpeljimo ¢ = 1,08 us in do-
bimo m —myy = ¢/sin h. Oslabitev svetlobe zenitne zvezde pri prehodu skozi ze-
meljsko ozracje imenujemo ekstinkcijo. S sijem izrazimo ekstinkcijo takole:
m’ —my = ¢ = 1,08 us. [4]
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/apis pmmca o 16. mednarodni fizikalni olimpiadi v PortoroZzu od 23. do 30.
junija 1985. Po uvodu z osnovnimi podatki o olimpiadah in udelezencih na tej
olimpiadi so navedene teoretiCne in eksperimentalne naloge in njihove resitve.
Dodan je kmtek pregled dogodkov na olimpiadi, pregled nagrad in pohval ter
vrstnl red drzav.

i6th I

The 16th International Physics Olympiad is reported. Theoretical and experi-
mental exercises and their solutions are presented. A short outline of events 1is
given and the list of prize and diploma winners is quoted.

3%5 se j@ udezﬁ@ l degaeu m
Smmﬁke pub Nemci]
S ke

Bolgarije, K Kub
Nemske demokraticne mp ubhke
Britani j e, Madzars ke Islandije, Nizozemske, Norveske, Poljske,
GVJeigke zveze, Svedske, TurcCije, Vietnama in Eugosiamje skupaj
@9 tekmovalcev in 40 Spremhevaicev Francua Grcua [talija in Knaﬁska se
mbﬂu niso odzvale, paC pa sta hahja in Kitajska poslali opazovalca. Olim
";_-' }@ Wbu dila veliko zaniman g@ v ZDA, ki se do sedaj te ga 1ovan } a

niso udelezevale: letos S0 v posﬁaﬁe dva opazovalca. | zba je bila
r@kor@na

PO Stemm drzav in po stevilu tekmovalcev.

O pripravah na olimpiado smo v Obzorniku Ze porocali [1]. Fizikalna olim-
piada je mednarodno tekmovanje srednjesolcev v teoretiCnem in eksperimen-
talnem znanju ﬁzik@ Naloge pripravi organizator tekmovanja in jih na vecer
pred predsfiaw mednarodni komisiji, ki jo Sestaﬂjajo vodje
dﬂegacu V diskusiji o predlogih, ki poteka vzporedno v angiesm 11 1In ru-
sCini, imajo vodje pravico naloge spremeniti ali zavrniti, ne morejo pa pred-
lagati novih ali spreminjati eksperimentalne opreme. Ko dosezejo SogEaSje
o nalogah, jih vodje prevedejo v jezike udelezencev. Za pregkd in ocenje-
vanje izdelkov je zadolZen organizator, vodje pa imajo moznost, da predhodno
pregledajo ocene in dajo pripombe. Vodje to moznost obiCajno izkoristijo in
skupaj s popravljalci pregledajo skoraj vsak izdelek. Na ta nacin se tudi
izognejo napakam zaradi jezikovnih tezav.

Fizikalne olimpiade imajo precejSen vpliv na raven pouka fizike v drza-
vah udelezenkah, se posebe] tam, kjer imajo razvit sistem izbirnih tekmovanj.
/Znanje tekmovalcev raste iz leta v leto. Tako danes na Solskih in regionalnih
tekmovanjih resujejo naloge, ki so bile neko¢ na olimpiadi. Zelo je napre-
dovala tudi oprema na eksperimentalnem delu tekmovanja; vzporedno z njo
pa raste zahteva po novih eksperimentalnih znanjih in spretnostih. To je
postalo Se posebej ocCitno na olimpiadah v ZR Nemciji in na Svedskem, kjer
so morali ucCenci delati z osciloskopi, laserji in razmeroma zahtevnimi elek-

tronskimi vezji.

Obzornik mat. fiz. 33 (1986) 1/2




Pri pripravi nalog in eksperimentalne opreme za olimpiado v Portorozu
smo se zavedali pomena tekmovanja. Zato smo zeleli izbrati in pripraviti
naloge, ki b1

(1) obravnavale nova podrocja fizike,

(i1) zahtevale originalen pristop k reSevanju, osnovan bol] na fizikalnem
razumevanju in intuiciji kot na racunskih spretnostih,

(ii1) imele prakticen in ne zgolj akademski znacaj,

(1v) presegale raven drzavnih tekmovanj.

Pri eksperimentalni opremi smo zeleli vkljuciti nove merilnike, ki jih doslej
Se niso uporabili na olimpiadah. Pri prvi eksperimentalni nalogi (A) smo kot
del merilnega sistema uporabili racunalnik, ki je dandanes ze postal nepo-
gresljiv del eksperimentalne opreme. Ker so nekatert ucCenci nanj navajeni,
drugi pa ne, smo izbrali poskus, pri katerem je bilo meritev mogoce izvest:
s preprostimi ukazi. Bili smo prijetno preseneceni, saj so se vsi tekmovalici
hitro znasli in z racunalnikom niso imeli tezav. Pri drugi eksperimentalni
nalogi (B) smo pripravili merilnik za gostoto magnetnega polja. Naloga je
zahtevala veliko fizikalnega znanja, eksperimentalnih spretnosti in iznajdlji-
vostl.

V razmeroma kratkem casu, ki so ga imeli tekmovalci na voljo za oba
poskusa, so nekateri pokazali precej eksperimentalne spretnosti in iznajdlji-
vosti. V celoti gledano pa so bili tekmovalci uspesnejsi na teoreticnem delu
tekmovanja. Vsekakor uspeh na eksperimentalnem delu odraza raven fizi-
kalne izobrazbe v dolocCeni drzavi, saj se da resevanja racunskih nalog nauciti
tudi z individualnim delom. Zato ne preseneca uspeh Velike Britanije, ZR
Nemcije in Svedske, dezel, v katerih posvecajo veliko pozornost prav ekspe-
rimentalni izobrazbi. |

Naloge

1. Mlad radioamater vzdrzuje radijsko zvezo z dekletoma v dveh mestibh.
Antenski sistem namesti tako, da sprejema dekle v mestu A najmocnejsi
signal, ko dekle v mestu B ne sprejema signala, in obratno. Sistem sestavljata
navpicni palicasti anteni, ki sevata v vodoravni ravnini enakomerno v vseh
smereh. |

a) PoisCi razmik med palicama, orientacijo sistema in fazno razliko med
elektricnima signaloma, priklju¢enima na anteni, v primeru, ko je razmik
med palicama najmanjsi.

b) Poisci stevilsko resitev, ¢e deluje oddajnik pri frekvenci 27 MHz in ga
postavi fant pri Portorozu. Po zemljevidu je kot med smerjo proti severu
in smerjo proti mestu A (Koper) 72 in med smerjo proti severu in smerjo
proti mestu B (Buje) 1579, |

2. Na palici v obliki kvadra z robovi a, b, ¢ (a > b > ¢), iz polprevodnika
InSb tecCe tok I vzporedno z robom a. Palica je v zunanjem magnetnem polju
z gostoto B, ki je vzporedna z robom c¢. Magnetno polje toka I smemo zane-
mariti. Nosilci naboja so elektroni. Povprecna hitrost elektronov v polpre-
vodniku je v = u E, Ce nastopa le elektricno polje z jakostjo E. Koeficient p
imenujemo gibljivost. Ce nastopa Se magnetno polje, pa elektricno polje ni
veC vzporedno z elektricnim tokom. To je Hallov pojav.

a) Doloci velikost in smer jakosti elektricnega polja, ki poganja po palici
tok 1.
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dveh tockah v smeri mfba b.
PoisCi analiti¢ni izraz za enosmerno komponento potencialne ‘ﬁ*azﬁke' W
vprasanja b), ce dekaﬂm’n tok in gostota magnetnega | polja sinusno nihata
?[akok E = f@ smeptin B=Bysin(wi+ ).

d) Zamisli si in poiasni nacrt za elektricno vezje, s katerim na osnovi re-
zultata iz vpmsa,n}a ¢) izmerimo elektricno moc, ki jo rabi naprava, pnkhuw
¢ena na izmenicno napetost. -
V sta gibljivost elektronov 7,8 m2/V u d@kﬁtmnv
mk I meri 1,0A , gostota magnsmega oi}a U ¢

n. Osnovni nabm je 1,6 . 1019 As, o |

3. V okviru vesoljskega mzmkmfam ega programa prescjajo dva nacina
gzgfgmhmv vesoljske sonde 1z Sonqa Po nac¢inu 1 izstrelijo sondo z dovolj
V@hk@ hitrostjo, da ubezi iz Osoncja naravnost. Po naému 2 pa naj se sonda
-- enemu od zunanjih pEan@mV k1 nay ji - gibanja in ji
Osonc j a. Privzemi, da se sonda giblje samo
\Y @mvuacmskem p@hu }a,new ali Sonca, pac¢ glede na to, katero od obeh je
mogne}% .

mer glede na gibanje

Zemlje, ki naj
1O d@geze Sﬁna PO nacinu E =
b) Naj mgimh}o SQHdO v smeri W me&ama (a), a z drug@ m‘émsua

“1 b Hmsﬁg sonde, ko k pravokotno
glede na m‘“ Marsa ni v hZHH ko sonda knza megov m:
Naj sonda vstopi v gravitacijsko p@h@ Marsa. Pois¢i najmaniso

moramo izstreliti sondo glede na Zemljo, da bo ubezala 1z O

Namig: Iz odgovora na Vprasange (a) poznas najugodnejso velikost hm sti
in SMeET, da ubem Sonda iz UsoncCja naravnost, potem ko zapusti gravitacijsko
Marsa med Srecan_gem S SOHdO ni treba pozna‘u}
.HEOSUG in komponenéama hitrosti, preden vsto D1 Sonda
pri mesamu (b). Kaj poves

zvgzo ms_ to
v gravitacijsko p@l}?@ Marsa, ki st ju dolocil
O @hmmm energije sonde? | |

) Oceni najvecCji relativini prihranek energue pri na¢inu 2 glede na na-

mi, da se gibljejo planeti okoli Sonca po krogih v isti smeri in v isti
ravnini. Zanemari zracni upor, vrtenje Zemlje okoli lastne osi in energijo,
ki je potrebna, da sonda ubeZi iz gravitacijskega polija Zemlje. Hitrost Zemlje
okoli Sonca meri 30 km/s, razmerje oddaljenosti Zemlje in Marsa od Sonca
pa 2/3. | a |

A. Zasleduj pospeseno in pojemajoce vrienje medeninaste valjaste plosce,
ki jo poganja elektriéni motor na izmenic¢ni tok. Iz merjenih c¢asov za pOE
vrtljaja narisi zasuk, kotno hitrost in kotni pospesek plosce v odvisnosti od
casa.
DoloCi navor in moC motorja v odwsnesu od kmne humsﬁ

Potrebscine: 1. elektri¢ni motor za izmeni¢no napetost z medeninasto plosco,
2. indukcijsko tipalo,
3. veCkanalna stoparica.

Navodilo: Indukcijsko tipalo zazna nastavek, pritrjen na plosci, ko se mu
kateri od Obeh pribliza bolj kot na 0,5 mm, in odda signal stoparici. K




parica je programiran racunalnik, ki zabelezi trenutek, ko tipalo zazna bliza-

joCi se nastavek, in ga shrani v spomin. Stoparico sprozis s pritiskom na eno

od naslednjih tipk:

5 — merjenje.
Merjenje se ne pri¢ne takoj. Stoparica c¢aka, dokler ne izberes Stevila
meritev, to je Stevila zaporednih prehodov nastavka,

3 — 30 meritev,

6 — 60 meritev.
Na vsakega od teh ukazov se zaCne merjenje. Ko je merjenje koncano,
pokaze racunalnik izide grafiCno. Na navpi¢no os nanese ¢asovni razmik
med zaporednima zaznavama nastavka in na vodoravno zaporedno Ste-
vilko zasuka.

1 — pokaze izide s preglednico.
Prvi stolpec podaja zaporedno stevilko zaznav, drugi cCas od zacetka
merjenja in tretji ¢asovni razmik med zaporednima zaznavama.

Za primer 60 meritev:

8 — pokaze prvo stran preglednice,
2 — pokaZze drugo stran preglednice,
4 — pokaze izide graficno.

Merjenje lahko prekines, preden je dosezeno predpisano Stevilo zaznav,
s tem, da pritisnes$ katerokoli tipko in poskrbis, da se plos¢a zasuce Se za pol
vrtljaja.

Motor poganja 1zmenicCna napetost z efektivno vrednostjo 25 V. Prikljucis
ga s stikalom na podstavku. Vcasih je morda treba plosCo rahlo pognati ali

udarrtl po podstavku da se plosSCa zacCne vrteti. — Vztrajnostni moment vrte-
nnnnnn Aanla o {1dn—!-n:\ 1n"“"6-l((fm2

LE;%@ S€ Glia IHcri VETT U

B. Doloci lego sredisCa magnetov in njihovo orientacijo. Magneti so skriti

v ¢rno pobarvanem kvadru. Koordinate x, y in z meri od rdecega ogla (SI. 2).
Doloc¢i komponento z vektorja gostote magnetnega polja B v ravnini x, y pri
z = 0 z merilnim sistemom, ki si ga poprej umeril. PoisCi najvecCjo gostoto B
v polju dodatnega magneta. Oznaki polov na magnetu razlozi sl. 1.
Potrebscine: 1. trajni magnet, kakrsni so skriti magneti,

2. indukcijska tuljava, 1400 navojev, upor 230 ohm,

3. dve tuljavi za ustvarjanje polja s po 8800 ovoji in uporom
990 ohm,
¢rno pobarvan kvader s skritimi magneti,
. voltmetcr (priporocCeni obsegi 1V, 3V, 10V),
. elektronsko vezje (priporocena napetost 24 V),
ampermeter,
spremenljivi upornik z uporom 3,3 kohm,
spremenljivi stabilizirani napetostni izvir 0—25V z omeje-
valnikom toka,
10. Zice,
11. luknjasta plosCa za podstavek,
12. gumijasti obrocCki, na primer za pritrditev tuljav,
13. zobotrebci,
14. ravnilo,
15. nit.

O %0 N o U
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Koncno - cﬂg na } vse bt g@ mzuham enach @ “ . Slednje

sever — moder

Ustrezno rabo

ducirane napetosti k nik reagira
1M agnatno polje.

ajvecja napemst je sorazmerna s Spremembﬂ

m stikalom levo -' aj ON ( m gumbom (U
mislu urnega kazaka vecas 1zhodno napetost napetost }e 24 V
am naj bo pr v le gg_ 12V WZS V. Z vgrajenim nstrum meris
mbom omeﬂg tok pod nasmvh eno wedno% Ce ga zasuces < do
km}a v smislu urnega kazaka zmore izvir najvec¢ 1,5 A. — Indukcijska kon-
stanta meri gy = 1,2.10

Shka 3. 1 — gumb za vrnitev v zacetno lego
() — potenciometer za nastavitev nicle

Resttve nalog

[. a) Elektricna Sﬁgnaia v antenah 1 in 2 zapisg 10 kot E{ = Eycosw t in
Es = Ejcos (wt + 8). Pogoj za ojacenje v smeri 9, (sl. 4) zapiSemo kot

Qma/l)sin g, — o6 =2a N

pogoj za oslabitev v smeri J5 pa kot

N in N’ sta poljubni celi stevili.
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- Kota 9, In 9 povezuje enacba: ¢, —
— B = ¢, pri tem je kot ¢ dan.

Zdaj je treba poiskati parametre a, 94,
9, 6, N in N’, ki zadoscCajo zapisanim enac-
bam, tako da bo a najmanjsi.

Najprej se znebimo ¢ tako, da od prve
enacbe odStejemo drugo

asin g, —asingg = A (N — N’ — 1)

7 adicijskim i1zrekom za sinus in zvezo
9B = ¥4 — @ dobimo

Slika 4 2acos (Pa—35@)singg = I(N—N —3

A == /L(N — N — sz)’ 2 cos (194 — i qj) sin % @
Izraz postane najmanjsi, ko je imenovalec najvecji, torej ko velja
cos (Dy—2qp)=1 In Iy, =2%¢

Stevec pa najmanjsi: N — N’ = 1.
Resitev je

a22/48in%’¢3 ﬁ‘ém%()ﬁ, ﬁBz"—“%(p iﬂ é:‘:%ﬂmzﬁN (6t.)

- Ce privzamemo, da je N = 0, ne izgubimo nobene fizikalno zanimive re-
Sitve. |

b) Valovna dolZina je 1 = ¢/v = 11,1 m in kot med smerema proti A in B
meri ¢ = 1570 — 720 — 859, Najmanjsa razdalija med antenama je a = 4,1 m,

simetrala zveznice anten pa tvori s smerjo proti severu kot 72% + 42,5° —
= 114,50, (2 t.)

2. a) Najprej izracunamo hitrost elektronov 1z znanega toka I =;S =
= neyvbc
v=1Imneybc=25m/s

Komponenti jakosti elektri¢nega polja izraCunamo iz hitrosti elektronov.
Komponenta v smeri toka meri

E“ == 1’ U = 3,2 V/ m | (0 ,5 { )

vl

SL5. (1,51
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Komponenta v smeri roba b je enaka Lorentzovi sili na elektron, deljeni
z osnovnim nabojem

3 = 2,5V/m

Velikost jakosti elektricnega polja je

E— (B + E 9% — 406V

Njeno smer kaze sl.5. Smer hitrosti elektronov je nasproitna smeri elek-
tricnega toka.
b) N apemst meri Uy = E | b= 25mV. (1t.)
c) Napetost Uy je v tem primeru odvisna od casa Uy =1Bb/neyb ¢ =
= [y Byneyc)sinwtsin(w it + ). Njena enosmerna komponenta je enaka
By/2mneyc)cosd. (3t.) |
d) Mozno vezje kaze sl. 6.
3.* a) Da sonda zapusti Osoncje naravnost, mora biti vsota njene kineti¢ne

in potencialne energije v gravitacijskem polju Sonca pozitivna

m V22 — Gm M/Rg = 0

m je masa sonde Vg nﬁena hitrost glede na Sonce, M masa Sonca, Ry razdalja
Zemlje od Sonca in G gravitacijska kongwma Uporabimo izraz za hitrost
krozenja Zemhe okoli Sonca vi = (G M/Rg)": in tako izlo¢imo G in M iz po-

goja:
— ZVE?‘2 | (i L.}

ima sonda pri izstrelitvi z Zemije hitrost v,” in naj bo 9 kot med vy
v, (S1. 7). Tedag iz zvez v, = v,/ + vy in v,2 = 2vy2 sledi

v, + Zv,,_; vpcos)—vp2 =0 ali v, = vg[—cosy + (1 + 6082 )]

0 pri @ =0: v,/ =vp()2—1) = 12,3 km/s
(1t)

Najmanjso hitrost v,” dobin

Slika 7 Slika 8

* Resitev ponuja odgovor na vprasanje: 113 — Ali lahko vesoliska ladja, k1 se
giblje po elipticnem tiru okoli Sonca, zaradi sreCanja s kaklm planetom brez upo-
rabe motorjev pobegne iz Osoncja?, ki ga je postavil T. Pisanski (Obzornik mat.
fiz. 25 (1978) 169. (Op. ur.).

45



b) Naj bo v,” hitrost sonde glede na Zemljo in v, njena hitrost glede na
Sonce. Iz reSitve (a) vemo, da v najugodnejSem primeru velja v, = v,/ + vp.
1z ohranitve vrtilne koli¢ine sonde

m vy, Rg = m v Ry (11.)

in ohranitve energije
mv22 —Gm M/Ry = m(v“2 + v _J_z)__...fz — Gm M/Ry, (1t.)
dobimo za eno komponento hitrosti (SL8) v = (v,/ +vg)r in za drugo
v, = [(vy +vp)2 (1 —#)—2vp2(1 —#)]Y:. Pri tem smo vpeljali r = Rg/Ry.
(1t.)

¢) NajmanjSa hitrost sonde glede na Mars, da zapusti sonda Osoncje na-

ravnost, je v, = v_,,w(l/f—-'l) v smeri vzporedno z Marsovim tirom (vy je hi-
trost Marsa okoli Sonca). Mars ima potemtakem nalogo, da spremeni smer
in velikost hitrosti sonde tako, da ima sonda potem, ko zapusti Marsovo
gravitacijsko polje, hitrost v,”. (1t)

V Marsovem opazovalnem sistemu se energija sonde ohranja. To ne velja
v soncnem opazovalnem sistemu, v katerem sreCanje opiSemo S proznim
trkom med sondo in Marsom; pri tem se ohranita skupna polna energija in
gibalna koliCina. Hitrost sonde pred vstopom v Marsovo gravitacijsko polje
je torej v Marsovem opazovalnem sistemu enaka hitrosti, s katero sonda
zapusti njegovo gravitacijsko polje. Komponenti hitrosti pri vstopu sta:

7/

v " =wv, v~ = v, — vy, tore} velja

Ve (o R v TR = ) 2 (v = vp)®] = (1t.)

Z izrazoma za v in v, iz reSitve b), lahko poisCemo zvezo med hitrostjo
izstrelitve z Zemlje v,” in hitrostjo v,”, v, = vM(]/Zm-- 1)

(v +vg)? (1 —1r2) — 2v*(l —7) + vy +
+ ('VZ‘), + 'VE)2 p2 — 2'1)!11(12’(; + vp) v = 1';;1_1':2(3 - Vj)

Hitrost krozenja Marsa okoli Sonca je vy = (G M/Ry)": = r'2 vy, tako da
lahko enacbo za v, prepisemo v obliko

(v, + vg)2—2¢r2vp(vy + vg) + (2 ]/57 — 2D v =0 (1t.)

36 - /

204“ 10.,

104

} | ' % ; ¢ +- *
1 2 3 43 t 1 2 3 48 t

Sl'. 9. Casovna odvisnost zasuka Sl1. 10. Casovna odvisnost kotne hitrosti
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Njena smiselna resitev je
vy = vp[rlt—1+ (3 + 2—2}2 )] = 55km’s (1)

Relativni prihranek energije meri

= (Vﬁ = IV@’Q},/V&?ZE

po nacinu 2.
A Casovno odvisnost zasuka pri pospeSevanju di
trost diska izraCunamo takole

wi(ty) = m/(t;1— 1;)

ustrezni cas vzamemo na sredini intervala (¢, ¢;,.1), se pravi 1" = & (¢f; .1 + ;).
Izracunane kotne hitrosti kaZeta tabela 1 in SI. 10

Iz dolzine casovnih intervalov za pol obrata pri wfienju
lahko ugotovimo, da zobca nista postavljena povsem simetricno ’E@
ticno napako lahko pn racunu kotne hnmsn
upostevati pri racunanju kotnega pospeska. Napaki se izognemo, ¢
s Casovnimi intervali za en obrat

a g(f ;;:H} = Aw ,f [

kjer sta

Aty = toj o —1ta  Aw; = 20/ (Ta; 53—l 1) — 2 (L2; 1 — L2i—4)

in t;” = ts,1. Casovno odvisnost kotne-

oga pospeSka kazeta tabela 1 in Sl. 11. ' p

Navor M in mo¢ P, ki sta potrebna | /
za pogon diska (koristni navor in ko- 7 | "

rigﬁmo 1zmcunam0 1z zZvez [(7) =

omem dm kd J = (14,0 + l . A

. 10— kg m2, je dan. Ustrezno kotno hi- o
trost razb eremo z interpolacijo s Sl. 10. | | _I,
S tem diagramom tudi doloc¢imo odvis- - T % W aen
nost navora in moci od kotne hitrosti g |

. 11. Casovna odvisnost kotnega po-

M
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Sl. 12. Koristni navor (polna d¢rta) in Sl. 13. Koristna mo¢ (polna ¢rta), polna
polni navor (Crtkano) v odvisnosti od moc¢ (Crtkano) in i1zgube moci zaradi
kotne hitrosti trenja (Crtica in pika) v odvisnosti od

kotne hitrosti
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Tabela 1. Merski rezultati pri nalogi A
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Polni navor in polno moc¢ motorja do-
bimo tako, da koristnemu navoru pri-
Stejemo navor trenja in pri moci upo-
Stevamo ustrezno izgubo moci. Z mer-
jenjem kotne hitrosti med ustavljanjem
diska (Sl. 14) ob izkljuCenem motorju
lahko doloCimo navor trenja. Je pribliz-

SI. 14. Casovna odvisnost kotne hitrosti
pri zaviranju
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~  no konstanten in meri: M’ = 3,1 + 0,3).
. 10— Nm. Polni navor in polno moc¢ ka-
Zeta Sl. 12 in 13.



Shema tockovanja resitve:
1. Ocena napak 1
2. Graf za casovno odvisnost kota zasuka
3. Graf kotne hitrosti in pospeska
4
5

. Pravilna izbira Casov za kotno hitrost
. Koristni navor kot funkcija kotne hitrosti
(samo Casovna odvisnost navora 1t.)

6. Koristna moc kot funkcija kotne hitrosti It.
Dolocitev izgub zaradi trenja 1t.
Hajna magneta v obliki kvadra z robovi 50 m 0 mm in 8 mm sta
skrita v bloku iz stiropora z dimenzijami 50 cm
magnetov so vzporedne s stranicami bloka. Eden od magnemV 3@ postav-
ljen tako, da vektor gostote magnetnega polja B (S1.1) kaZe v smeri osi z,

drugi magnet (B) pa tako, da kaze B v smeri osi x ali v (SL. 15).
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Sl. 16. Navidezna magneta na
mestu magneta

Lego in orientacijo magnetov dolo¢imo tako, da opazujemo silo na do-

datni magnet. To najbolje naredimo tako, da dodatni magnet obesimo na
vrvico in ga premikamo nad opazovano povr§ino. Ce dodatni magnet obesimo
v vodoravni polozaj (ko je njegovo magnetno polje vzporedno z 0sjo z), ugo-
tovimo tri podrocja mocnih sil, kar nas navede na misel, da so skriti trije
magneti. Dve od teh podméij, eno s privlacno silo (podrocje P na S5S1.16) 1n
drugo z od’bojne silo (R), sta blizu skupaj.

Ce razisCemo razmer@ na drugi strani bloka, opazimo, da je v podrocju
P’ sila prav tako privlacna, v podro¢ju R’ pa odbojna. To je v nasprotju
s predvideno postavitvijo magnetov (Sl. 16), ustreza pa polju enega magneta
(S1. 15).

Globino magnetov dolo¢imo z merjenjem komponente gostote magnetnega
polja B, v smeri 0si z na powémi bloka. Izmerjeno vrednost primerjamo
V4 vrednostm \% diagmmu odvisnosti B, od oddaljenosti do povrsine dodatnega

magneta (S1.18). Meritev naredimo tako, da mdukcusko tuljavico merilnega
sistema premaknemo iz tocke, v kateri merimo gostoto magnetnega polja,
v razdaljo, v kateri magnetno polje prakticno pade na nic¢, in odcitamo naj-
veCjo napetost na voltmetru.

Absolutno pa umerimo merilni sistem z magnetnim poljem z znano gostoto.

Najugodneje je, ce izbsremo magnetno polje v rezi med dvema tuljavama.

Meritev shemati¢no kaze SI. 17.




Gostoto magnetnega polja v rezi med tuljavama izracunamo takole
B = uyNI/(2l + d)

N je Stevilo ovojev ene tuljave, [ njena dolzina, d Sirina reZe in I tok skozi
ampermeter. Merimo najveCjo napetost U, ko indukcijsko tuljavico vzamemo
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S1.17. Umeritev merilnega sistema SI. 18. Pojemanje gostote magnetnega

polja z razdaljo od sredine osnovne
ploskve magneta

1z reze. Obcutljivost merilnega sistema dolo¢imo iz diagrama, v katerem na
abscisno os nanasamo napetost U, na ordinatno os pa gostoto magnetnega
polja B:

B/U = 0,020 T/V

NajvecCja gostota magnetnega polja meri 0,21 T.
(NatancCnejSi racun magnetnega polja v rezi pokaze, da je resni¢na vred-
nost le 609/, zgornje vrednosti. Seveda pa tak raCun presega zahtevnost na-

loge.)

Shema tockovanja:

1. Dolocitev lege v x, y ravnini (+ 1 cm) 1t.
2. Dolocitev orientacije 1t.
3. Globina magnetov (4 4 mm) 2 t.
4. Umeritev (+ 50 9/y) 3t.
5. Slika magnetnega polja 2 t.
6. DolocCitev najvecje gostote (£ 50 9/p) 1t.

Kratek pregled dogodkov

Vecina delegacij je prispela v Portoroz v nedeljo, 23. junija. Vodje dele-
gaci] so bili nastanjeni v depandansi hotela Palace, tekmovalci pa v hotelu
Lucija. Uradni zacetek colimpiade je bil v ponedeljek v portoroskem Avdito-
riju. Slavnostni govorniki so bili A. Moljk, predsednik Organizacijskega od-
bora, L. Silverberg, generalni sekretar lanskoletne olimpiade na Svedskem,
podpredsednik piranske obcline in L. Baban, predstavnik Zveznega izvrsSnega
sveta, ki je uradno odprl olimpiado. Sledil je kratek koncert.
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Segmn@k mednarodne komisije za izbiro teoreti¢nih nalog se je zacdel ob
1'7. uri. Med odmorom so ¢lani komisije dobili hladno veclerjo, saj zaradi taj-
nosti nalog niso smeli zapustiti prostorov, v katerih je potekala razprava.
Razpravo in dokoncno oblikovanje nalog so koncali ob 22. uri. Po tem so
vodje delegacij prevedli naloge v svoj jezik in jih natipkali. Ob dveh zjutraj
je bila vecina besedil pripravljena za fotokopiranije.

Teommgm del tekmovam& je potekal v dveh dvoranah, v hotelu Metropol

ju. Tekmovalci so zaceli z reSevanjem ob 8. uri in koncali ob
ko so se tekmovalci kopali, so vgd}@ delegacij razpravljali
dogovoru o vsebini mkmovam Generalni sekretar fizikalnih olim-

W. Gorzkowski, je skupaj s c¢lani organizacijskega odbora pri-
pravil na podlagi dosedanjega programa nov predlog, v katerega so vkljucili
tudi nekatera poglavja sodobne fizike. Vecina vodij je menila, da je program
preobsezen in da ga je potrebno bistveno skrciti, a kljub temu obdrzati ne-
katera nova poglavja. Izvoljena je bila manjsa delovna skupina z nalogo, da
do petka zveler pripravi skrajsano inadico programa. Tretji dan je zaklju-
Cila Dubravka TomSié-Srebotnjak s klavirskim recitalom v Avditoriju.

V sredo dopoldne so gostje obiskali Postojnsko jamo. Razprava o pred-
logih za eksperimentalne naloge se je zacela po vecerji. Ugovorov proti racu-
nalniku ni bilo: vsi so se zavedali, da danes resno eksperimentiranje brez
racunalnika ni mogoce. Bilo pa je Zivahno, saj je vsakdo Zelel sam preiskusiti
eksperimentalno opremo. Vseeno se razprava ni prevec¢ razvlekla in ob enih
ponoci je vecina vodij koncala s prevajanjem in tipkanjem.

Tekmovanje v reéevanju eksperimentalnih nalog je potekalo v 14 ucilnicah
Srednje naravoslovne in pedagoske Sole v Kopru. Zacelo se je ob 9. uri in
Hajalo s polurnim odmorom do 15. ure. Doslej se nikdar v Jugoslaviji ni bilo
na enem mestu zbrane toliko solske eksperimentalne in racunalniSske opreme.
Kljub temu je tekmovanje minilo brez kakrsnih koli zapletov, za kar gre

zasluga pn,dvsem Swdenmm fizike, profesorjem fizike s koprske Sole in so-

delavcem ISKRE, ki so opremo temeljito preskusili v dneh pred tekmo-

van g em.
Popoldne so vodje zvedeli za prehmmarn@ ocene svojih tekmovalcev na

teoreticnem delu. Nato so se o @wmevamu p@g@’mmh s clani komaisije, k1 je
pregledovala izdelke. Diskusija je bila zelo zivahna in je trajala do i @Enou
vendar je potekala na visoki strokovni ravni in v prijateljskem vzduS}u
ucitelji fizike, ki so sodelovali v komisiji za popravljanje, so tako imeli priloz-
nost, da so se neposredno seznanili z razlicnimi pogledi na pouk fizike v svetu.
Piknik, ki je bil naslednji dan v Lipici, je bil prijetna sprostitev za vse
udelezence. Posebno zabaven je bil tek v vrecah, v katerem so nastopili tudi
vodje delegacij. Generalni sekretar fizikalnih olimpiad se je v razburljivem
finalu vrgel Cez ciljno ¢rto, a je bil vodja sovjetske delegacije le hitrejsi.
ZvecCer je bilo nadaljevanje razprave ¢ novem programu tekmovanj. Novi
program teoretiCnega dela tekmovanja so hitro sprejeli, delovna skupina pa
je dobila nalogo, da pripravi tudi program za eksperimentalni del tekmo-
vanja.
Razprava o ocenjevanju eksperimentalnih nalog je potekala v soboto do-
poldne. Po kosilu se je sestala mednarodna komisija in potrdila koncne re-
zultate. Vodje delegacij so ob tem prirediteljem izrekli priznanje za visoko
strokovno raven prireditve in za prijetno bivanje v Portorozu.

O novem
piad, Polj ak
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ZakljuCna slovesnost se je odvijala popoldne v Avditoriju. O olimpiad:
so govorili A. Moljk in E. Vrenko, predsednik Pokroviteljskega sveta olim-
piade in predsednik RepubliSkega komiteja za raziskovalno dejavnost in teh-
nologijo, ter C. Isenberg, organizator naslednje olimpiade v Veliki Britaniji.
Izvedeli smo, da imajo organizatorji tudi tam velike tezave z zbiranjem de-
narja, zato se ni gotovo, Ce olimpiada drugo leto sploh bo. Po svecani pode-
l1tvi nagrad in priznanj je nastopila folklorna skupina.

ZveCer smo nad portoroskimi strehami lahko opazili rubinast Zzarek —
prva nagrada, Iskrin helijsko-neonski laser, je uspeSno prestala prvo pre-
skusanje. |

Delegacije so zapustile Portoroz v nedeljo, 30. junija, v upanju, da se bodo
ponovno srecali drugo leto v Veliki Britaniji.

Pregled nagrad in pohval

Prva nagrada: Roy Badami (V. Britanija), Viktor Barzykin, Georgij Grigorev,
Taras Ivanenko (vsi SZ), Patrik Spanel (CSSR).

Druga nagrada: Norbert Bollow (ZRN), Zoltan Egyed (Madzarska), David Mac-
kay (V. Britanija), Dan Przzol (Romunija), Peter Schupp (ZRN), Jurij Zestkov (SZ).

Tretja nagrada: Phons Bloemen (Nizozemska), Oleg Cerp (SZ), Igor Djokovié
(Jugoslavija), Anthony Duell (V. Britanija), Richard Green (V. Britanija), Reiner
Hippmann (ZRN), Antal Jakovac (Madzarska), Mathias Ketzel (NDR), Ovidiu Klo-
cea (Romunija), Jane Kondev (Jugoslavija), Mirostaw Lis (Poljska), Jan Luzny
(CSSR), Katalin Malureanu (Romunija), Thomas Palm (Svedska), Olaf Wendt
(ZRN), Marcin Wolter (Poljska), Peter Zegelaar (Nizozemska).

Pohvala: Lars Aronsson (Svedska), Nicholas Bateman (Kanada), Dobrin Bosev
(Bolgarija), Mathias Drochner (NDR), Jari-Pekka Ikonen (Finska), Henrik Jurk-
schat, Thomas Klotz (oba NDR), Stefan Komilev, Nikolaj MecCkov (oba Bolgarija),
Ivo Myslivec (CSSR), Kristian Mihai Neasu (Romunija), Akos Nemeth-Buhin (Ma-
dzarska), Jeroen Nijhof (Nizozemska), Nguyen Ninh Khang (Vietnam), Veikko
Punkka (Finska), Jens-Uwe Sachse (NDR), Jorg Schwelberger (Avstrija), Przemy-
staw Siemion (Poljska), Torbjorn Soderberg (Svedska), Harun H. Solak (Turcija),
Hakan Svensson (Svedska), Ralf Vandenhouten (ZRN), Veli-Pekka Viitanen (Fin-
ska), Jacek Wojcik (Poljska), Phan Xuan Hai (Vietnam).

Posebne nagrade:

Najvisje Stevilo dosezenih tock Patrik Spanel (CSSR)
Najboljsa resitev teoreticne naloge Taras Ivanenko (SZ7)
Najboljsa resitev eksperimentalne naloge David Mackay (VB)
Najmlajsi udeleZenec Viktor Barzykin (SZ)
NajboljSa udelezenca iz novih drzav Nicholas Bateman (Kanada)
Harun Solak (Turcija)
Najbolj humoristi¢na resitev Lars Aronsson (Svedska)

Vrstni red drzav

Teoreticni del (maksimalno stevilo tock 150): 1. Sovjetska zveza 121 tock, 2. ZR
Nemcija 99,5, 3. Velika Britanija 94,5, 4. Romunija 90,5, 5. CesSkoslovaska 83,5, 6. DR
Nemcija 79,5, 7. Madzarska 77, 8. Poljska 75,5, 9. Vietnam 74,5, 10. Jugoslavija 70,
11. Nizozemska 68,5, 12. Svedska 67,5, 13. Bolgarija 67, 14. Finska 52, 15. Turcija
51,5, 16. Avstrija 43, 17. Norveska 27, 18. Islandija 21,5, 19. Kanada 26, 20. Kuba 25,5.

Eksperimentalni del (100): 1. Velika Britanija 61, 2. ZR Nemcija 58, 3.—4. sved-
ska in Sovjetska zveza 55,5, 5. Nizozemska 54,5, 6. Romunija 51, 7. DR Nemcija 48,5,
8. Ceskoslovaska 47, 9.—10. Bolgarija in Poljska 43,5, 11. Kanada 40, 12. Jugoslavija
38,5, 13. Finska 37,5, 14.—15. Avstrija in MadZarska 36,5, 16. Norveska 34, 17. Turcija
32,5, 18. Vietnam 29, 19. Islandija 22,5, 20. Kuba 18,5.
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Skupaj (250): 1. Sovjetska zveza 176,5 2. ZR Nemdija 157,5, 3. Velika Britanija
155,5, 4. Romunija 141,5, 5. Ceskoslovaska 130,5, 6. DR Nemdija 128, 7.—8. Nizozem-
ska in Svedska 123, 9. Poljska 119, 10. Madzarska 113,5, 11. Bolgarija 110,35, 12. Ju-
ocoslavija 108,5, 13. Vietnam 103,5, 14. Finska 89,5, 15. Turc¢ija 84, 16. Avstrija 79,5,
17. Kanada 66, 18. Norveska 61, 19. Island 44, 20. Kuba 44.

Pregled nagrad in pohval po drZavah (prva/druga/tretja/ pohvala):

Sovjetska zveza (3, 1, 1, —), V. Britanija (1,1, 2, —), CSSR (1, 0, 1, 1), ZR Nem-
¢ija (0, 2, 2, 1), Romunija (0, 1, 2, 1), Madzarska (0, 1, 1, 1), Poljska (0, 0, 2, 2), Nizo-
zemska (0, 0, 2, 1), Jugoslavija (0, 0, 2, 0), DR Nemcija (0, 0, 1, 4), Svedska (0, 0, 1, 3),

Bolgarija (0, 0, 0, 3), Finska (0, 0, 0, 3), Vietnam (0, 0, 0, 2), Avstrija (0, 0, 0, 1),
Kanada (0, 0, 0, 1), Turcija (0, 0

e e A

Ry R mompeoms e ey et s v S o e

S1.19. Uspeh pri teoreti¢nih (1, 2, 3) in eksperimentalnih (A, B) nalogah. Na vodo-
ravini oSl so nanesene tocke, na navpicni pa Stevilo tekmovalcev, ki so dosegli
doloceno stevilo tock

SI. 20. Slika sveta, ki je Svedu Larsu
Aronssonu prinesla nagrado za najbolj hu-
moristicno resitev. Pri tretji nalogi je pod
njo napisal: »Naloga gradi na napacni sliki
sveta 1n je zato ni mogoce resiti... poleg

tega pa 1mam Se premalo ¢asa« \.,
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EKSPERIMENTAL

TOMAZ SKULJ

A 06.90

Zapis poroca o izbiri in pripravi racunalnikov in opreme, ki jo je za olimpiado
dala na voljo Iskra.

APPARATUS FOR PHYSICS OLYMPIAD

In the contribution the selecting and providing of computors and equipment
for the Physics Olympiad, supplied by the firm Iskra, is described.

Priprava in izvedba eksperimentalnih nalog je bil eden od najvecjih izzi-
vov za organizatorje olimpiade. Jeseni 1984 so se nacrtovalci nalog na oddel-
ku za fiziko Fakultete za naravoslovje in tehnologijo skupaj s sodelavci Iskre
okvirno odlodili za dva poskusa. Prvi z racunalnikom naj bi imel dva nape-
tostna izvira, enosmernega za napajanje induktivnega tipala in izmeni¢nega
za napajanje motorcka. Pri drugem poskusu naj bi zadostoval enosmerni na-
petostni 1zvir za napajanje elektronskega balisticnega integratorja in za po-
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Sl. 1. Napeljava na delovna mesta za eksperimentalno nalogo A. S pikcéasto ¢rto je
nakazana napeljava za napajanje motorcka (24 V)
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ganjanje toka skozi tuljavici. Tok skozi tuljavici naj bi uravnavali z drsnim
upornikom in merili s Solskim ampermetrom. Napetost na izhodu balistic-
nega integratorja — na njegov vhod je prikljucena tuljavica za merjenje
gostote magnetnega polja — pa bi merili s Solskim voltmetrom. Pri obeh po-
skusih naj bi pritrdili elemente na elektricne vezavne plosce z luknjami.

Zaradi nevarnosti, da bi se kaj pokvarilo, bi bilo treba pripravitli vsaj
10 ¢/¢ rezervne opreme. Najvec preglavic je delal racunalnik. Ko je bilo jasno,
da ne bo mogoce zagotoviti predvidenih 70 rac¢unalnikov HR 84, je priskocila
na pomoc Iskra Delta s posebej za ta namen opremljenimi racunalniki
Partner. |

To, da so morale biti priprave tajne, je otezkocalo odlo¢anje v Iskri. Na-
posled pa so njene delovne organizacije Indusirija merilne elektronike Hor-
jul, Industrija merilno-regulacijske in stikalne tehnike — Kibernetika Kranj
Tovarno merilnih instrumentov Otoce, Tovarno mehanizmov Lipnica, To-
varno stikal Kranj in Tovarno stevcev Kranj, Industrija elementov za de}{-
tmmko Ljubljana s Tovarno industrijske elekironike Kosiamewca na Krki,
Tovarno merilnih materialov, Tovarno polprevodnikov Trbovlje, Tovarno po-
tenciometrov in uporov Sentjernej in Industrija kondenzatorjev SemicC po-
skrbele, da je bila vsa zelena oprema na voljo ob pravem cCasu. To je bil velik
uspeh, saj je bil dokoncen seznam opreme znan Sele mesec pred olimpiado.

Sodelavci oddelka za fiziko so Ze v Ljubljani sestavili opremo za obe eks-
perimentalni nalogi. Veckrat so ponovili oba poskusa, tako da je bilo mogoce
ugotoviti tezave, se preden so ju postavili v veCjem Stevilu. Na Srednji nara-
voslovno-matematicni in pedagoski soli v Kopru so teden dni pred tekmo-
vanjem sodelavci sole in oddelka za fiziko, Studenti fizike in sodelavci Iskre
pripravili po en prostor za nalogi A in B. Sele pozneje so pripravili se 12 ta-
Mh prostorov.

Na Soli sta le dve ucilnici za fiziko z elektri¢cno napeljavo na delovnih
mestih, vse druge ucilnice imajo samo po dve vticnici. Tudi v teh ucilnicah

racunalnik napetostni

iZvir
|

0V ==

elektromotoréek |

2L Y~
220 ¥V~

Sl. 2. Vezje in risba za nalogo A
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je bilo treba zagotoviti varno in zanesljivo napeljavo. Prav napeljava v drugih
ucllnicah je povzrocala najvec preglavic.

Nazadnje smo se dogovorili, da bo najprej resevala polovica tekmovalcev
nalogo A in druga polovica nalogo B, nato pa se bosta skupini zamenjali.
Tako je bilo treba v celoti pripraviti 7 ucilnic s po 8 delovnimi mesti s po-
skusom A in prav toliko s poskusom B. Po en poskus v vsaki ucilnici je bil
v rezervli. V skadiSCu v telovadnici je bila v rezervi Se oprema za po Sest po-
skusov vsake vrste. Posebej smo poskrbeli, da so bila delovna mesta kolikor
mogoce enakovredna.

Pri nalogi z racunalnikom je bila napeljava najbolj zapletena. Na vsakem
delovnem mestu sta morala biti dva prikljucka za 220 V za racunalnik in za
malonapetostni enosmerni izvir. Za napajanje motorCkov pa je bilo treba
pripravitl Se izmenicCni izvir za 24 V. Ker smo se bali, da bi delo z merilniki
in vklapljanje in izklapljanje napetostnih izvirov in motorcka povzrocalo
motnje na racunalniku, je bilc treba tega prikljuciti loceno. Odlocili smo se,
da prikljuCimo napetostne izvire na napeljave za IucCi. Pri nalogi B je bila
napeljava nekoliko preprostejsa.

Urejanje prostorov in napeljave in postavljanje opreme je trajalo 5 dni.
Zanesljivo je mogoce trditi, da pri nas doslej $e nikdar ni bilo zbrane toliko
racunalniske in merilne opreme na enem mestu. Med preskusanjem se je
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SI. 3. Napeljava na delovna mesta za eksperimentalno nalogo B
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pojavilo nekaj napak na racunalnikih Partner in se je pokvaril en napetostni
1zvir. Spretna serviserja Iskre Delte sta napake na racunalnikih hitro popra-
vila. To so bile vse tezave. Dan pred eksperimentalnim tekmovanjem je bila
nekaj ur prikljucCena vsa oprema z racunalniki vred. Pri tem se niso pokazale
nobene pomanjkljivosti. Tako je bilo skoraj brez skrbi pocakati na tekmo-

valce. Med tekmovanjem je v vsakem prostoru nadzoroval delo Student fizike,

S51.4. Vezje 1n risba za eksperimentalno nalogo B

v pripravljenosti pa so bili sodelavci Sole, oddelka za fiziko in dva serviserja
racunalnikov. O mnozicnem cksperimentiranju, pri katerem bi lahko prislo
po nesreCi do poskodb, poZara ali okvar na elektricnem omrezju, smo obve-
stili zdravstveni dom, gasilce in elektrodistribucijsko podjetje. Medtem ko so
dopoldne delali oba poskusa udelezenci olimpiade, so popoldne delali poskus
z racunalnikom mladi jugoslovanski fiziki. K srec¢i ni prislo do nobenih
pletljajev. |

Za brezhiben in uspesen potek eksperimentalnega dela Mednarodne fizi-
kalne olimpiade gre zahvala sodelavcem koprske Sole in oddelka za fiziko,
Studentom fizike in sodelavcem Iskre. Posebe] je treba omeniti Braneta Pok-
larja in Cirila Memona s koprske Sole ter Studenta fizike Toneta Verbovska
i Matjaza Kaluzo, ki so nosili najveCje breme.

o)
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Malo so se mu posmehovali, ker ga pogosto niso razumeli, skoraj brez-
mejno so ga obcudovali in brezmejno so ga 1imel radi.

*

Bohr si je v druzbi sodelavcev ogledal film z Divjega zahoda. Nekdo se je
pritozil nad tem, da nazadnje Zli vedno zgubi, ker Dobri hitreje strelja. Bohr
je rekel: »Ampak Zli mora zaradi slabe vesti premagati prag Cetrtine sekunde.
Dobri ima mirno vest in strelja takoj, ko je potrebno.« Domenili so se za
poskus in kupili dve otroski piStoli. Bohr in na primer Gamov sta si sedela
nasproti. Bohr je moral seveda igrati Dobrega in je smel potegniti pistolo
Sele, ko je videl potegniti nasprotnika. Poskusili so veckrat in vsakokrat je
Bohr ustrelil drugega.

E S

Ce Bohr govori, so pravili, pozabi na pravila akustike, slovnice in logike.
Tiho, jecljaje, s ponavljanji, ko pripoveduje, kar ze vsi vedo, a ko pove kaj
zares pomembnega, si da celo roko pred usta. Ce pa je imel referat kdo drug,
na primer Heisenberg, Dirac, Pauli, ga je prekinil Bohr z vprasanjem, zavitim
v sladkorni preliv svojega razorozujoce prijaznega nacina govorjenja: »lTo je
zelo zelo zanimivo.« »Midva se precej bolj strinjava, kot si mislite ...« »Me-
nim ... ne da bi kritiziral, samo da bi se poucil... moram reci, moram reci.«
Pri zelo neumnih ljudeh pa je obupano rekel samo se: »Oh, zelo zelo.«

C. F. von Weizsicker, Niels Bohr, Phys. Bl. 41 (1985) 308.
Izbral in prevedel Janez Strnad

NOVE KNIJIGE

High-energy iomn-atom collisions: Proc. 2. workshop High-energy Ion-atom col-
lision processes, Debrecen, August 27—28, 1984 / ed. C. Berenyi, G. Hock, Budapest,
Akademiai Kiado 1985, 306 str., 24 cm.

Knjiga je zbornik z lanskoletnega mednarodnega srecanja o atomski fiziki vi-
sokih energij. Po koristnem obicaju, ki se je utrdil v zadnjem desetletju, prinasa
zbornik le vabljena predavanja, torej obseznejse tekste, ki podajajo pregled posa-
meznih ozjih podrocij. Tako je bralcu prihranjeno prekopavanje skozi obilico zelo
specializiranih prispevkov, celota postane bolj berljiva in laze doumljiva tudi za
nespecialista. Pricujoci zbornik je imel pri tem Se posebno sreco, saj so se najbolj
znana imena podrocja — B. Crasemann, K. Taulbjerg, I. Sellin, T. Mukoyama in
drugi — zelo potrudili in prispevali resni¢no Siroko pregledne c¢lanke. Obseg knjige
je najbolje podan z naslovi poglavij: Coulombska ionizacija (lahki izstrelki), Vzpo-
reditveni ucinki (alignment), Vecelektronske korelacije, VeCkratna ionizacija (tezki
izstrelki), Sevalni prehodi z notranjih lupin, Zajetje elektronov, Izbitje elektronov
v smeri curka, Interakcue ion-trdna snov. Knjigo priporocam vsakomur ki bi se
zelel seznaniti z novejSimi dosezki v eksperimentalni atomski fiziki in z njo pove-
zanl teorijl.

Alojz Kodre
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Erkenntnis. Aufsatze und V¢ mﬁg@ aus

é; zmr Neuausgabe von Kaﬁ von M
Wiesbaden 1985, 160 sir. (Facetten der |

Swi@imm Bohrovega rojstva je 1zsla knjizica z desetimi | Bohrovimi sestavki
za SirsSo javnost. Nekatere izmed njih je izdal pri isti zalozbi }efia 1958 Bohr sam,
druge pa leta 1966 njegov sin Aage Bohr. Sestavki so razvrsceni po casu prvega
izida. Teorija atomov m opisovanje narave je zapis predavanja skandinavskim na-
ravoslovcem leta 1929. Biologija in atomska 7‘z<zi<:a je zapis predavanja na medna-
rodnem kongresu za ﬁmk@ in biologiio v spomin na Luigija Galvanija leta 1937.
Spoznavno teorijska vpraSanja v fiziki in ljudske kulture je zapls predavanja na
mednarodnem kongresu za antropologijo in etnologijo leta 1938. Diskusijo z Ein-
steinom o spoznavnoteorijskih vprasanjih v atomski fiziki je Bohr napisal za zbor-
nik Albert Einstein kot filozof in naravoslovec, ki ga je 1zdal P. A. Schilpp leta 1949.
Fizika in problemi Zivljenja so leta 1957 predelani zapis predavanja v danskem
medicinskem drustvu iz leta 1949. Enoinost znanja je zapis predavanja na simpo-
ziju s tem naslovom ob dvestoletnici univerze Columbia leta 1954. Atomi in clo-
veSko spoznanje so zapis predavanja na zasedanju Kraljeve danske akademije zna-
nosti leta 1955. Aromska fizika in filozofija — kavzalnmz‘ in komplementarnost je
Bohrov prispevek za zbornik Filozofija sredi stoletja, ki jo je izdal R.Klibansky
v Cast Maxu Plancku leta 1958. Rutherjordovo spominsko predavame 1958: S pomzm
na zacetnika jedrske fizike in na razvoj, ki ga je sproZilo njegovo delo je zapis
predavanja v Fizikalnem drusStvu v Londonu. Bohr ga je dokonc¢no oblikoval leta
1961, leto dni pred svojo smrtjo. Nastanek kvantne mehanike je Bohrov prispevek
k zborniku Werner Heisenberg in fzzzka nasega casa iz leta 1961.

Deset sestavkov dobro kaze na Bohrov sSiroki krog zanimanja. Sestavki, ki so
jih pomagali izdelati Bohrovi Soddava in ucenci, so zanimivi tudi z zg@domnskega
vidika. Niso prezahtevni in se dandanes delujejo sveze, é@piav je razve] zZe obsel

nekaﬁﬁem zamisli iz njih. Zato je mogoce knjiZzico toplo priporociti tudi slovenskim

fanez Strnad

Km}.zma je preved angieskega originala, kl je zzsei leta E98E F. Franks pomca
o polivodi, domnevni polimerni obliki vode, ki naj bi nastala, ko se voda izloca 1z
pare v steklenih kapilarah.

Na zadetku Sestdesetih let je zadeva, ki je priéla iz SZ, ‘povzrocila precej vZne-
mirjenja. Po daljsem ¢asu so se vneli zanjo tudi na Zahodu in potrebovali stiri leta,
veliko znanstvenih clankov in nekaj znanstvenih sestankov, preden so ugotovil,

da ogre za raztopino soli, predvsem silicijevih, v vodi. O tem jJe porocal tudi

Obzornik.*

Franks se sicer dve desetletjn ukvarja z VOdO a »odkritja« v zvezi s polivodo je
zasledoval kot nepristranski opazovalec, ne da bi o njej objavil kak c¢lanek. Prija-
telji so ga svarili pred pisanjem porocila, ¢eS da je bolje na vse skupaj cimprej
pozabiti, da bodo porocilo sociologi uporabljali kot orozje proti raziskovanju, da
bodo raziskovalne skupnosti zaradi njega zmanjsale podporo za raziskovanje in da
bo sploh sejalo nezaupanje do naravoeslovcev.

Franks je sodil, da je mogoce dobiti boljse razloge proti znanosti in naravo-
slovju kot zgodbo o polivodi, da pa je zanimivo pogledati sencne strani razisko-
vama V tem pogledu predstavlja zgodba o pohvodl zares poucen droben zgled.
Bere se kot detektivka, iz katere pa je mogoce izvedeti to in ono o raziskovanju.
Franks mu drzi zrcalo in podoba v zrcalu utegne delovati zdravilno na tiste, ki ga
preve¢ kujejo v zvezde. Ocitno malo raziskovalcev posnema skromnost Michaela
Faradaya, ki je 1zrazil upanje, da petdeset let po njegovi smrti ni¢, kar je napisal,
ne bo vecC veljalo za pravilno. Po vsem tem se zdi, da knjiZice ni treba posebe]j
priporocati.

Janez Strnad

* J. Strnad, »Anomalna« voda in »polivoda«, Obzornik mat. fiz. 17 (1970) 158.
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Za 37. ob¢ni zbor drustva smo si iz slikovito Skofjo Loko. V petek,
13. oktobra popoldne, smo na strokovnem delu obCnega zbora poslusali dve
predavanji matemati¢no-racunainiske narave. Matjaz Omladi¢ je govoril o na-
crtovanju z racunalnikom, Tomo Pisanski pa o nakljuc¢nosti na racunalniku.
Predavanji sta bili zanimivi za vse Clane drustva, za ucitelje in tudi za tiste,
ki niso zaposleni v Solah. Vsi smo tudi prisluhnili razlagi Bojana Gollija in
Andreja Likarja o eksperimentalnih nalogah na fizikalni olimpiadi v Porto-
rozu. Naloge so bile domiselne in zahtevne; v opremo, potrebno za poskus,
je bil prvi¢ vkijucCen racunalnik.

Za ta obc¢ni zbor smo nacrtovali okroglo mizo o materialnem polozaju
pouka matematike in fizike na Solah. Vendar je nismo priredili, ker ni bilo
v pravem casu odziva podruZnic, ki naj bi poskrbele za uvodne prispevke.
Ce sodimo po druzabnem veceru, to vprasanje cClane druStva mocno vzne-
mirja, saj se niso sprostili tako kot prejsnja leta.

V soboto, 19. oktobra, je obCni zbor
imenoval dva castna cClana drustva:
prof. dr. Antona Peterlina in prof. Iva-
na Stalca. Priznanje za delo z mladimi
je letos prejela Anita Fakin, uciteljica
matematike in fizike na Osnovni Soli
IX. korpus NOVJ v Novi Gorici. Njeni
ucenci se uvrsc¢ajo ne samo na repub-
liska, ampak tudi na zvezna tekmova-
nja; od vsega zacCetka uspesSno priprav-
lja podrocno tekmovanje fizikov —
__ osnovnosolcev,

Na obclnem zboru je Drustvo mate-

matikov, fizikov in astronomov SRS
prejelo priznanje gibanja Znanost mladini za delo z mladimi na podrocju
racunalniStva in za izvedbo tekmovanj.

Letosnja dejavnost drusStva je bila zaradi organizacije mednarodne fizi-
kalne olimpiade junija v Portorozu zelo razgibana. Vsemu organizacijskemu
odboru in Se posebej Antonu Moljku, Bojanu Golliju, Aljosi Zerjalu, Daniju
Tancerju s sodelavci 1z VIOZD Fizika, ISKRE 1n s c¢lani podruznice Koper
je drustvo izreklo priznanje, ker je po njihovi zaslugi olimpiada v vseh po-
gledih uspela. Izbira racunskih kot eksperimentalnih nalog, ki so bile pri-
merno zahtevine in sodobne, je znova potrdila strokovni ugled slovenske in
jugoslovanske fizike. Na eni izmed obeh tekmovalnih eksperimentalnih nalog
je merilo svoje znanje tudi 50 srednjesolcev iz vse Jugoslavije. V vseh jugo-
slovanskih strokovnih listih za mladino so fizikalna olimpiada in z njo pove-
zane prireditve nasle odmevno mesto.

Tudi v drugih dejavnostih nismo pocivali. Komisije za popularizacijo ma-
tematike in fizike v osnovnih in srednjih Solah nastavljajo cedalje vecCje Ste-
vilo tekmovalcev. Za srednjesolce sc bila Solska tekmovanja organizirana
v dveh etapah: najprej so se pomerili v znanju ucenci vseh usmeritev razen
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naravoslovno-matemati¢ne, v drugi etapi tezje naloge udenci naravoslovno-
matematicne usmeritve in najboljsi tekmovalci iz prve etape. Tudi na zwzmh
tekmovanjih so se slovenski tekmovalci dobro uvrstili: srednjesolec Roman
Drnovsek iz Ljubljane se je udelezil matematic¢ne olimpiade na Finskem, Mico
wranja pa fizikalne olimpiade v Portorozu.

irkaic€ iz F
PedagoSka komisija je organizirala fizikalni seminar Osnovni delci. Zamn

manje za te seminarje je Se vedno veliko, kar potrjuje 120 udeleZzencev. Me-

secni sestanki aktiva uciteljev matematike in fizike so v tem letu zamrli.

Komisija za tisk uspeSno skrbi za izdajanje strokovnih knjig in revij,
Ceprav financne tezave niso manjse kot lani. Zbirka SIGMA je novembra 1984
dobila Trubarjevo priznanje za izdajanje strokovnih knjig za mladino.

Podruznice so uspesno delovale. Njithovi ¢lani so organizirali podrocna
tekmovanja 1z matematike in fizike za osnovnosolce ter predavanja za uci-
telje matematike in fizike.

Financ¢no poslovanje drustva je letos potekalo tako kot prejsnja leta: iz
rok v usta, vendar brez hujsih tezav za redno dejavnost. Za zdaj Se niso po-
krili vseh stroskov fizikalne olimpiade.

NereSen problem pa je ureditev Plemljeve hise na B
nekaj veC nocitev, vendar s to dejavnostjo ne bomo dobili do*mh denarja za
potrebno popravilo strehe,

Na obc¢nem zboru je bﬂ zzvohen upravni odbor drustva: predsedmk Janez
Strnad, podpr@dsedmca Martina Koman, tajnik Janez Krusi¢, blagajnicarka
Helena Velikonja Sekretam} komisu za popuianzamjo maiemaﬁke \ osnmfm
soli M@kgander hzﬂ{a v onovni soli Boris Kham in Joze K
matematike v srednji SOh Darjo Felda, {fizike v srednji soli Iztok K
seckretarka komisije za pedagosko dejavnost Nada Razpet, sekretarka sekcije
za uporabno matematiko Jana Jamsek, sekretarja sekcije za uporabno fiziko
Zvone Trontelj in Marko Vali¢. Upravni odbor ljubljanske podruznice — ko-
misije za tisk: predsednik Peter Petek, sekretar, racunovodja in urednik
Ciril Velkovrh, blagajnik Janez Markelj; odgovorni uredniki so: za zbirko
matematika-fizika Joze Vrabec, za SIGMO Ivan Vidav, za Obzornik Janez
Strnad, za Presek Edvard Kramar.

Martina Kowman

3% B P

i B, I
Bj ©

S 4 EE

Drustvo matematikov, fizikov in

Na 37. obnem zboru v Skofji Loki je

astronomov SR Slovenije imenovalo za Castna Clana Antona Peterlina in Ivana
Stalca. Profesor Peterlin se zbora ni udelezil, ker bi bila pot iz ZdruzZenih

drzav predolga. Objavljamo obe ute‘ndjﬁvi Prvo je prispevai prof. dr. Peter
Gosar in jo objavhamo skrajsano. Druga ie segmvhena 17 odiomkov ki so jo
pripravili bivsi ucCenci in sodelavci profesorja Stalca.

Uredniski odber se v imenu bralcev Obzornika za matematiko in fiziko

pridruzuje iskrenim cestitkam. Janez Strnad, Ciril Velkovrh

6. Akademik profesor dr. Anton Peterlin je bil rojen 25. septembra 1908
v Ljubljani. Diplomiral je leta 1930 iz matematike na filozofski fakulteti
v Ljubljani. Po diplomi je bil asistent na fizikalnem institutu tehniske fakul-
tete. Leta 1937 je odsel na strokovno izpopolnjevanje na matematicno-naravo-
slovno fakulteto v Berlin in bil tam naslednje leto promoviran z odli¢nim
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uspehom za doktorja naravoslovnih ved. Leta 1939 je bil izvoljen za docenta
za fiziko na tehniski fakulteti univerze v Ljubljani. Za izrednega profesorja
je bil imenovan leta 1945, za rednega pa 1947. Leta 1947 ga je Slovenska aka-
demija znanosti in umetnosti izvolila za dopisnega cClana in dve leti kasneje
za rednega Clana. Leta 1960 je prevzel mesto profesorja in predstojnika fizi-
kalnega instituta na tehniski visoki Soli v Munchnu, leta 1961 pa je postal
prvi direktor Dreyfusovega laboratorija v Durhamu v Severni Karolini v ZDA.
To znanstveno ustanovo je vodil zelo uspesno 12 let. Leta 1973 je presel na
Drzavni urad za standarde v Washingtonu kot namestnik direktorja na od-
delku za polimere. Od leta 1975 dalje je bil tudi gostujoci profesor na univerzi
v Clevelandu.

A. Peterlin je organiziral fizikalni institut pri Akademiji znanosti in umet-
nosti, ko je bil leta 1949 ustanovljen. Institut se je kasneje preimenoval
v Institut Jozef Stefan. Njegova zasluga je, da smo se Slovenci, do tedaj brez
ustrezne znanstvene tradicije, vkljucili v mednarodni svet fizikalnih in drugih
naravoslovnih znanosti.

A. Peterlin je zacel svoje znanstveno delo z raziskovanjem sipanja rent-
genske svetlobe v kapljevinah, nato pa je presel na podrocje polimernih raz-
topin in se posvetil lastnostim tekocih in trdnih polimernih sistemov. V fiziki
polimernih raztopin je najbolj] znan po raziskavah viskoznosti, strujne in
akusticne dvolomnosti, osmoznega tlaka, sedimentacije, dielektri¢ne polari-
zacije in sipanja svetlobe. V fiziki polimernih kristalov pa je obravnaval
plasticno deformacijo, mehanizem zloma, termodinamiko, kristalizacijo, mor-
fologijo ter jedrsko in elektronsko magnetno resonanco. Ukvarjal se je tudi
s transportnimi lastnostmi polimernih membran. Znanstveni opus A. Peterlina
obsega priblizno 400 razprav. Skupaj s H. A. Stuartom je napisal monografijo
0 dvojnem lomu.

A. Peterlin je C¢lan Stevilnih strokovnih zdruzenj. Za znanstveno delo je
dobil leta 1950 red dela I. stopnje in leta 1935 PreSernovo nagrado. Leta 1970
so mu podelili Binghamovo medaljo ameriskega reoloSkega drustva in leta
1972 Fordovo nagrado ameriSkega fizikalnega druStva. Leta 1983 je prejel
Kidricevo nagrado za Zivljenjsko delo.

A. Peterlin se je posvecal tudi popularizaciji znanosti. V letih od 1935 do
1937 je urejal Tehniko in gospodarstvo, v letih od 1945 do 1947 pa Proteus.
V domacih casopisih in revijah je objavil okoli 80 poljudnoznanstvenih c¢lan-
kov.

Znanstveno delo A. Peterlina je izjemno po kakovosti in po obsegu in nje-
gove zasluge za razvoj in uveljavitev slovenske fizike doma 1n v svetu so ne-
precenljive.

1. Profesor kvan Stalec je bil rojen 23, decembra 1910 v Dolenji vasi nad
skofjo Loko. Po klasi¢ni gimnaziji v Kranju se je leta 1930 vpisal na filo-
zotsko fakulteto v Ljubljani in leta 1934 diplomiral iz matematike in fizike.
Ta dva predmeta je pouceval nad 40 let na gimnazijah v Murski Soboti,
Trbovljah in v Ljubljani. Ves cas je veljal za zelo dobrega ucitelja. UcCence je
navajal k rednemu in trdemu delu in bil pri ocenjevanju strog in pravicen.
S tem je pripravil zanesljivo matematicno in fizikalno osnovo Stevilnim mate-
matikom, fizikom in tehnikom. V letih 1949-51 je bil pomozni inspektor za
matematiko in fiziko za trboveljski in celjski okraj ter ljubljansko okolico.
Nekaj Casa je pouceval metodiko pouka fizike na Pedagoski akademiji v Ljub-
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TOPOLOGY AND ITS APPLICATIONS

Prvi mednarodni kongres Topology and Its Applications je bil 1968. leta
v Hercegnovem [1], drugega smo imeli 1972. leta v Budvi [2] in tretjega 1977.
leta v Beogradu [3]. Od 30. 9. do 5. 10. 1985 je v Dubrovniku potekal cetrti
kongres z istim naslovom. Organiziralo ga je DruStvo matematikov, fizikov
in astronomov Jugoslavije, v pripravljalnem odboru pa so bili D. Adnadjevic
in M. MrsSevi¢ iz Beograda, J. Vrabec iz Ljubljane ter I. Ivansi¢ in S. Marde-
S1¢ 1z Zagreba.

Kongresa se je udelezilo okoli sto topologov: iz Avstrije (1), Brazilije (2),
Ceskoslovaske (4), Finske (1), Francije (1), Gr¢ije (3), Italije (24), Izraela (1),
Jugoslavije (38), MadzZarske (3), Nizozemske (1), Nove Zelandije (2), Spanije
(2), Turcije (4), Velike Britanije (4), ZDA (7) in ZRN (3). Iz Slovenije smo
prisli: M. Cencelj (Iskra Telematika), N. Mramor-Kosta (Fakulteta za elektro-
tehniko), D.Repovs (Fakulteta za naravosiovje in tehnologijo) z referatom
Peripheral acyclicity in 3-manifolds, J.Srekl (Fakulteta za strojniStvo) in
- J. Vrabec (Fakulteta za naravoslovje in tehnologijo).

Predavanja na kongresu so potekala v dveh locCenih sekcijah: a) za splosno
topologijo in b) za algebrai¢no in geometri¢no topologijo. Prva dva dneva so
bila dopoldne in popoldne, zadnja dva pa le zjutraj. Skupno je bilo predstav-
ljenith 39 referatov v sekciji a) in 30 v sekciji b). Vsa predavanja so bila
v Meduniverzitetnem centru za podiplomske $tudije (IUC) v Dubrovniku.

Tretji dan kongresa so si udelezenc: lahko ogledali staro mesto, Cetrti dan
zvecer pa je bil organiziran komorni koncert v prostorih tamkajsnje glasbene
Sole (J. Foy, W. Jaworowski in I. Brandjolica). Po konCanem kongresu sta bila
pripravljena dva enodnevna izleta — prvi na Korculo in drugi v Mostar.

SreCanje v Dubrovniku je biloc predvsem priloznost za domace topologe,
da pridejo v stik s kolegi iz tujine in izmenjajo izkusSnje in rezultate svojega
raziskovalnega dela. Kijub odsotnosti nekaterih pomembnih drzav (predvsem
Poljske in Sovjetske zveze) je v tem pogledu kongres uspel.

Dusan Repovs

BURDE G, Zieschang, Knots. — Berlin : Walter de Gruyter, 1985, 399 + X str. —
(De Gruyter studies in mathematics ; 3).

Z. vozli imamo posla vsepovsod, brez njih si Se Cevljev ne obujemo; njihovo po-
znavanje cenijo taborniki, mornarji, Ccarovniki, da o matematikih niti ne govorimo.

Pricujoce delo sta sestavila znana mojstra s tega podrocja; obravnavata klasi¢no
teorijo vozlov v trirazseznem prostoru. Delo ne ponavlja tega, kar poznamo iz
drugih (ne prestevilnih) knjig (Fox, Rolfsen), temveC daje alternativne prikaze.

Za nekaj uvodnih poglavij (Vozli in izotopije — Seifertove ploskve vozlov —
Grupe vozlov) zadosca poznavanje in obvladovanje osnov algebrske topologije. Tudi
nekaj drugih poglavij je mogocCe nekako razumeti s tem osnovnim znanjem, toda
pisca opozorita sStudirajocCega bralca, naj se pred nadaljevanjem seznani s temelj-
nimi izreki teorije trirazseznih mmnogoterosti; za to delo navajata tudi vire. Velik
napredek v razumevanju trirazseznosinih mnogoterosti in vozlov je namre¢ 0mo-
ogoCillo ravno uspesno delo matematikov v zadnjih dveh desetletjih (Bing, Moise,
Waldhausen, Fox, Stallings, Jaco, predvsem pa Papakyriakopoulos).

Sveze je prikazan pomen cikli¢nih krovov in vioga spletov. V dodatkih so ko-
ristni napotki in opombe ter tabele invariant vozlov.

Obsirna literatura je upostevana do letos (1985). Enote imajo kot dodatno infor-
macljo navedena podrocja.

Menim, da bo to delo spodbudilo zanimanje za Studij povezav med geometrij-
skimi sistemi in nizkodimenzionalno topologijo. Posredno pa tudi za korektnejsi
pouk analize. Ivan Pucelj
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V tem koledarskem letu nameravamo pohiteti in ¢im prej i1zdati vseh
sest Stevilk Obzornika za matematiko in fiziko, da bi tiskarski stroski
nekoliko manj narasli. Zato vas lepo prosimo, da po poloznici v tej Ste-
vilki ¢im prej nakazete narocnino za Obzornik, ¢lani pa s tem tudi cla-
narino za Dru$tvo matematikov, fizikov in astronomov SR Slovenije.
Oboje je letos poskocilo kar na 1500.— din, pa se to pokrije le del stro-
Skov. Upamo, da boste kljub temu ostali zvesti Drustvu in da boste
s pravocCasnim placilom omogocCili redno izhajanje Obzornika.

Janez Strnad, Ciril Velkovrh
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Racdunalniske krozke Instituta Jozef Stefan, ki jih je doslej obiskovalo ze vec

kot 3000 udelezencev, zZelimo razSiriti in obogatiti. Zato vabimo k sodelovanju

vse, ki zelijo posredovati SirSemu krogu:

— svoje znanje in izkuSnje z razlicnih podrocij s pomocjo hisnega racu-
nalnika;

— moznosti uporabe hiSnega racunalnika na kateremkoli podrocju;

— svoje zamisli in nove reSitve s pomocjo racunainika ZX Spectrum.

Vabimo vas, da predloge s kratkim zivljenjepisom in opisom podrocja, na ka-

terem zelite posredovati znanje, posljete na naslov Institut »Jozef Stefanc,

Odsek za uporabno matematiko, Zoran Radalj, Jamova 39, 61111 Ljubljana.

[zbrane teme bomo vkljucili v program nasih racunalniskih krozkov, avtorji

pa bodo to snov predavali. Lahko pa se dogovorimo tudi za kaksno drugacno

obliko sodelovanja.

Marko Batista

Institut za matematiko, fiziko in mehaniko organizira

Prejsnji seminarji so bili v Zagrebu (leta 19380, 20 udelezencev), v Ljubljani
(1981, 30), v Novem Sadu (1982, 45) in v Splitu (1984, 90). Od drugega semi-
narja dalje izhaja Zbornik, od cCeirtega dalje pa so referati v Zborniku napi-
sani v tujem jeziku in recenzirani po merilih za objavljanje clankov v znan-
stvenih revijah.

Srecanje bo v Ljubljani od 2. do 5. septembra 1986. Organizacijski odbor
sestavljajo: prof. dr. Ibrahim Aganovi¢ (Zagreb), prof. dr. Zvonimir Bohte
(Ljubljana) — predsednik, prof. dr. Dragoslav Herceg (Novi Sad), prof. dr.
Gradimir Milovanovi¢ (Nis), asistent Marko Petkovsek (Ljubljana) — tajnik,
prof. dr. Gabrijel Tomsi¢ (Ljubljana) in prof. dr. Bozo Vrdoljak (Split).
Referati na seminarju bodo razvrsceni po sekcijah:

klasi¢na uporabna matematika,
numericna analiza,
racunalniska matematika,
matematicna statistika.

Da bi na srecanju omogocili porocanje tudi o delih, ki Se niso zakljucena,
ali ki bodo objavljena drugje, lahko udelezenci, ce zelijo, poSljejo le rezime
referata v kateremkoli jeziku v obsegu do 1 strani formata A4, ki bo objav-
ljen v programu srecanja.

Znesek kotizacije bo odvisen od Stevila udeleZzencev in od financ¢ne pod-
pore.

Ceprav je uradni rok za prijave 20. januar 1986, bo organizator sprejemal
prijave tudi naknadno. Rok za oddajo referatov je namrec 20. marec 1986.
Navodila za pripravo rokopisov za objavo bodo dobili le prijavljenci.

Vsi, ki se zelijo prijaviti, a niso dobili vabila osebno, naj izpolnijo prilo-
zeni formular in ga posljejo ¢imprej na naslov:

Institut za matematiko, fiziko in mehaniko

61111 Ljubljana, Jadranska 19, p.p. 64

Zvonimir Bohte
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