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ŠTEVILIH'NGRUENTNIH

IVAN VIDAV

Math. Subj. Class. (1980) 10 B 10

Clanek govori o kongruentnih številih, poroča o Tunnellovi rešitvi problema

kongruentnih števil, na koncu pa obravnava povezavo z eliptičnimi krivuljami.

ON CONGRUENT NUMBERS

in this article the congruent number problem is presented, ihe characterization

of congruent numbers siven by J. Tunnell is described, and the relation with ellip-

tic curves is discussed.

1. Problem kongruentnih števil

V teoriji števil poznamo številne elementarne probleme, ki so izredno

težki. Elementarni so zato, ker jih lahko razumemo brez posebnega znanja

iz teorije števil ali kakšne druge veje matematike. Med njimi je gotovo naj-

bolj znan Fermatov problem, ki že stoletja kljubuje naporom matematikov,

da bi ga rešili. Prav v zadnjem času pa je bil pri njegovem reševanju dose-

žen znaten napredek. Nadaljnji tak problem, ki sicer izvira iz geometrije, je

problem kongruentnih števil. Tega je v zadnjem času »skoraj« rešil J. Tunnell

[3]. Za kaj gre?

Naravna števila a, b, c sestavljajo pitagorejsko trojico, če je med njimi

zveza a? -- b' — c?, Tedaj sta a in b kateti, c pa hipotenuza pravokotnega tri-

kotnika. Ploščina pravokotnega trikotnika s katetama a in b je enaka p —
— lab. V vsaki pitagorejski trojici je ena od katet a, b sodo število. Zato je

ploščina takega trikotnika vselej celo število; npr.: trikotnik s stranicami 3,

4, 5 ima ploščino p — 6. Obstajajo pa pravokotni trikotniki, ki imajo za plo-

ščino celo število, čeprav njihove stranice niso cela, temveč le racionalna šte-

vila. Zgled za to je trikotnik

3 20 2 41
a<—, b<-— (1)

2 3

Njegova ploščina p — 5.

Naravno število x, ki je ploščina kakšnega pravokotnega trikotnika z racio-

nalnimi stranicami, se imenuje kongruentno število. Pravkar smo videli, da

sta n — 5 in n — 6 kongruentni števili. Morda pa so sploh vsa naravna števila

kongruentna? Ne, niso. Že n — 1 ni kongruentno število. Ni namreč pravokot-

nega trikotnika z racionalnimi stranicami in s ploščino p — l. Sploh je naj-

manjše kongruentno število 5; števila 2, 3 in 4 niso. Zato je umestno vpra-

šanje, katera naravna števila so kongruentna.

Kongruentna števila so poznali že stari Grki. Sistematično pa so ta pro-

blem študirali Arabci. L. Fibonacci je poznal trikotnik (1) s ploščino 5. Fermat

je ugotovil, da 1 ni kongruenitno število. Dokaz za to je v tesni zvezi z doka-

zom, da enačba x -- y4 — z? nima netrivialne rešitve v celih številih (Ferma-

tova trditev za četrte potence). Euler je odkril, da je / kongruentno število.

Pravokotni trikotnik s stranicami

ima namreč ploščino p — 7.

Obzornik mat. fiz. 33 (1986) 1/2. l



Pri obravnavanju kongruentnih števil se smemo omejiti na naravna šte-

vila, ki so brez kvadratnih faktorjev. Denimo namreč, da je število m deljivo

s kvadratom rž, tedaj n — n,r?, kjer sta m, in r naravni števili. Če je nj; kon-

gruentno število, obstaja pravokotni trikotnik z racionalnimi stranicami a,

b, c in s ploščino p — nj. Trikotnik s stranicami ar, br, cr je podoben trikot-

niku s stranicami a, b, c, njegova ploščina pa je nj; r? — n. Torej je hkrati z n,

tudi n kongruentno število. Narobe je prav tako res: če je n kongruentno šte-

vilo, velja isto za število n/r? — nj. O tem se lahko vsak bravec brez težave

sam prepriča. Zato je dovolj, da obravnavamo naravna števila, ki so brez kva-

dratnih faktorjev.

Naj bo mn kongruentno število in a, b, c racionalne stranice pravokotnega

trikotnika s ploščino p — n. Zaznamujmo z r najmanjši skupni imenovalec

ulomkov a, b, c. Potem lahko pišemo a — x/r, b — y/r, c — zjr, kjer so x, y, z

naravna števila. Ker je trikotnik a, b, c pravokoten, velja zveza x? -- y? — z?.

Torej so števila x, y, z pitagorejska trojica. Ploščina pripadajočega trikotnika

je r?-krat večja od ploščine trikotnika s stranicami a, Db, c, tedaj p — nr?.

Tako smo ugotovili: Če je nm kongruentno število, obstaja pravokotni trikotnik

s celimi stranicami in s ploščino mn rž, kjer je r naravno število. Tudi narobe je

res: če obstaja taka pitagorejska trojica x, y, z, da je ploščina pripadajočega

trikotnika m r?, je m kongruentno število. Zato bi bilo npr. n <— 1 kongruentno

število natanko tedaj, če bi obstajal pravokotni trikotnik, katerega stranice

bi bila cela števila, njegova ploščina pa kvadrat naravnega števila. Dokaz, da

takega trikotnika ni, najde bravec v knjigi [1] na str. 83.

Kako dobimo kongruentna števila? Napravimo tabelo pitagorejskih trikot-

nikov a, b, c. Pri tem je dovolj, če so v tabeli le primitivni pitagorejski trikot-

niki, tj. tisti, pri katerih so si stranice a, b, c paroma med seboj tuja števila.

Vsako primitivno pitagorejsko trojico pa dobimo po obrazcu

a — 2uv, b< u2—v?, c< u?t- v? (2)

Tu sta u in v poljubni med seboj tuji naravni števili, od katerih je eno sodo,

drugo liho. Da bo Bb pozitiven, vzamemo vu > v (glej [1], str. 61). Ko smo sesta-

vili tabelo pitagorejskih trikotnikov, izračunamo njihove ploščine. Če je plo-

ščina p deljiva s kakšnim kvadratnim faktorjem r?, delimo p z 72. Po tej poti

dobimo sčasoma vsako kongruentno število, če le gremo v zaporedju pitago-

rejskih trikotnikov dovolj daleč. Za zgled vzemimo pitagorejski trojici 12, 5,

13 in 8, 15, 17. Ploščina prvega trikotnika: p — 30 nima kvadratnega faktorja.

Pri drugem je ploščina p — 60 deljiva s 4 — 22, Po delitvi dobimo 15. Tako

smo našli kongruentni števili 15 in 30. Ker je vseh pitagorejskih trojic ne-

skončno mnogo, seveda ne moremo z gotovostjo trditi, da število m ni kon-

gruentno, če nismo še naleteli nanj, pa čeprav smo šli v zaporedju pitagorej-

skih trikotnikov zelo daleč; npr.: 41 je kongruentno število, in sicer prvo, ki

da po delitvi z 8 ostanek 1. Pravokotni trikotnik s stranicami a — 40/3, b —

— 123/20, c — 881/60 ima ploščino 41. V pripadajočem pitagorejskem trikot-

niku so stranice že kar velike: 800, 369, 881; dobimo jih iz obrazca (2) pri

u — 25, v — 16. Vendar bi to trojico vseeno kaj kmalu našli. Obstajajo pa raz-

meroma majhna kongruentna števila m, pri katerih ima tudi najmanjši pri-

padajoči pitagorejski trikotnik izredno velike stranice. Zgled za to je 157, ki

je kongruentno število. Najpreprostejši pravokotni trikotnik s ploščino 157

in racionalnimi stranicami pa je

2



6 803 298 487 826 435 051 217 540

U 411 340 519 227 716 149 383 203
b— 411 340 519 227 716 149 383 203

21 666 555 693 714 761 309 610

ec — 224 403 517 704 336 969 924 557 513 090 674 863 160 948 472 041

| 8 912 332 268 928 859 588 025 535 178 967 163 570 016 480 830

Pripadajoči pitagorejski trikotnik ima za hipotenuzo število, ki je v števcu

ulomka c. To je število z 48 ciframi. S prej opisano metodo gotovo ne bi brez

računalnika nikoli odkrili, da je 157 kongruentno število.

Pripomba. Ta trikotnik je našel D. Zagier. Pisec teh vrstic ne ve, s kakšno

metodo. Upa samo, da je števila pravilno prepisal. Preizkusa ni napravil.

V zvezi s kongruentnimi števili sta zato dva problema:

I. Najti kriterij, s katerim lahko za dano število ugotovimo, ali je kon-

gruentno ali ne.

II. Dobiti metodo, s katero najdemo pravokotni trikotnik z racionalnimi

stranicami in ploščino n, če že vemo, da je nm kongruentno število.

Prvo nalogo je deloma rešil J. Tunnell l. 1983 [3]. Povezal jo je z reševa-

njem preprostih diofantskih enačb. Tole je dokazal:

IZREK (Tunnell). če je liho število x, ki je brez kvadratnih faktorjev,

kongruentno, potem velja tole:

(A) Število rešitev enačbe 2x? -- y" -- 8z' — n v celih številih (x, y, z) je

dvakrat večje od števila rešitev enačbe 2x? -- y' -- 322? — n v celih številih.

Torej je pogoj (A) potreben za to, da je m kongruentno število. Ali je tudi

zadosten? Na to vprašanje daje Tunnell tale odgovor:

Če velja šibka Birch-Swinnerton-Dyerjeva domneva, je pogoj (A) zadosten:

Vsako število z, ki mu zadošča, je kongruentno.

Ker omenjena domneva ni dokazana, Tunnellova rešitev problema kon-

sruentnih števil še ni popolnoma zadovoljiva.

Preizkusimo zdaj Tunnellov kriterij na številu n — 3. V vsaki celoštevilski

rešitvi enačbe

2x2 - y? - 87? — 3 (3)

mora očtno biti z — 0. Enačba 2x? -- y? — 3 pa ima tele rešitve: x — tl, y —

— d l. Torej so štiri celoštevilske rešitve enačbe (3): (1, 1, 0), (1, —1, 0),

(—1,1,0) in (— 1, — 1, 0). Prav tako pa mora biti z — 0 v vsaki celoštevilski

rešitvi enačbe 2x? -- y? -- 32:22 — 3. Od tod sledi, da imata obe enačbi iste

rešitve, torej obe štiri rešitve. Pogoj (A) ni izpolnjen in 3 ni kongruentno šte-

vilo.

Vzemimo zdaj mn — 7. Spet mora biti z — 0 v vsaki celoštevilski rešitvi

enačbe 2x2 -- y? -- 8z? — 7. Toda enačba 2x" -- y? — 7 nima nobene celoštevil-

ske rešitve. Število rešitev enačbe 2x? -- y? -- 8z? — 7 je potemtakem enako

nič. Isto velja za enačbo 2x? -- y? -- 32z? — 7, ki tudi ne premore nobene re-

šitve v celih številih. Ker je 0 enako 2.0, je pogoj (A) izpolnjen. Res je 7 kon-

gruentno število, kar je vedel že Euler.

Bravec naj sam poišče vse celoštevilske rešitve enačbe 2x? -- y? -- 82? — 4l

in enačbe 2x? -- y? -- 327? — 41. Brez težave bo ugotovil, da ima prva 32 rešitev,

druga pa 16, to je polovico manj. 41 je kongruentno število.



Doslej je bilo m liho število. Če je n sodo, je n/2 liho število, saj n nima

kvadratnega faktorja, torej ni deljivo s 4. V tem primeru moramo pogoj (A)

zamenjati z

(A") Število rešitev enačbe 4x? -- y? -- 87? — n/2 v celih številih (x, y, z)

je dvakrat večje od števila takih rešitev enačbe 4x? -- y? -- 32z? — n/2.

Zgled. Pri m — 10 ima enačba 4x? -- y? - 8z? — 5 štiri rešitve, namreč x —

— t1, y-— t1, z — 0. Iste rešitve pa ima enačba 4x? -- y? -- 327? — 5, Zato

10 ni kongruentno število.

Dokaz Tunnellovega izreka je izredno zamotan in zahteven, saj je potrebno

poznanje številnih področij sodobne matematike, ne samo iz teorije števil,

temveč tudi iz teorije eliptičnih krivulj, modulskih form itd. N. Koblitz je

v navdušenju nad Tunnellovo rešitvijo napisal celo knjigo [2] in jo motiviral

s tem problemom. Toda čeprav ima knjiga okoli 250 strani, v njej ni celot-

nega dokaza Tunnellovega izreka.

V izreku je omenjena Birch-Swinnerton-Dyerjeva domneva. Kaj pravi ta

domneva, se ne da povedati s preprostimi besedami. Gre za tole: V nasled-

njem razdelku bomo spoznali, da je problem kongruentnih števil tesno po-

vezan z enačbo

n je kongruentno število natanko tedaj, kadar ima ta enačba neskončno reši-

tev v racionalnih številih x in y. Enačba (E,) pomeni neko kubično krivuljo

v ravnini (xy). Zaradi povezave z eliptičnimi funkcijami jo imenujemo tudi

eliptična krivulja. Oglejmo si splošnejšo kubično krivuljo

y? — xš — Ax — B CE)

Krivulja (£E) je nesingularna, če ima polinom na desni x3 — Ax — B same med

seboj različne ničle. Nesingularna krivulja (£) se imenuje eliptična krivulja.

Kadar nas zanimajo racionalne točke na krivulji (£), tj. točke z racionalnima

koordinatama x in y, po navadi vzamemo, da sta koeficienta A in B celi števili.

Vsaki eliptični krivulji E s celima (oziroma racionalnima) koeficientoma

A in B se da prirediti na precej zapleten način tako imenovana Hasse-Weilova

funkcija L(E,s). Ta funkcija je prvotno definirana za vsa kompleksna števila

s, ki imajo realno komponento Re s večjo od 3/2. Na polravnini Re s > 3/2 je

ICE, s) holomorfna funkcija. Domnevajo, da se da L(E,s5) analitično nadalje-

vati na vso ravnino s, tako da je povsod regularna, torej cela funkcija. Za

krivulje E, je ta domneva dokazana. Če se da L(E,s) analitično nadaljevati

na vso ravnino, je regularna v točki s — 1. Šibka Birch-Swinnerton-Dyerjeva

domneva pravi, da ima eliptična krivulja E neskončno racionalnih točk na-

tanko tedaj, ko je točka s — 1 ničla funkcije L(E, s), tedaj L(E,1) — 0. Doslej

te domneve v celoti ni še nihče dokazal, pa tudi protiprimera nihče ni našel.

Vendar sta pred kratkim B.H. Gross in D. Zagier dosegla v tej smeri določen

napredek. Uspelo jima je dokazati tole: Naj bo m tako naravno število, da

dobimo pri delitvi z 8 enega od ostankov 5, 6 ali 7. Potem je na krivulji £,

neskončno racionalnih točk, če je s — 1 enostavna ničla funkcije L(E,, 5). Nji-

hov dokaz vsebuje tudi metodo, kako najdemo v tem primeru racionalne

točke na krivulji £,. Ker določa vsaka netrivialna racionalna točka na E,,

pravokotni trikotnik z racionalnimi stranicami in ploščino n — to bomo videli

v naslednjem razdelku — je v tem primeru rešena tudi naloga IL.

4



2. Povezava z eliptičnimi krivuljami

Že Grki in Arabci so formulirali problem kongruentnih števil v tejle ekvi-

valentni obliki: Pri danem n je treba poiskati tako racionalno število u, da sta

razlika u? — n in vsota u? -- n kvadrata racionalnih števil. Velja namreč

IZREK 1. n je kongruentno število natanko tedaj, ko obstaja tako racio-

nalno število x, da so števila

x, x—n in xJ-n (4

kvadrati racionalnih števil.

DOKAZ. Naj bo mn kongruentno število in a, b, c racionalne stranice pra-

vokotnega trikotnika s ploščino mn. Potem je a? - b? — c? in ab — 2n. Za x

vzemimo število x — c?/4. Imamo

(c? -- 2ab) — i (a - b)?x —n — i(c? — 2ab) —< i(a—b)?, x - ns<— žBiH

Res so števila x, x —n in x - n kvadrati racionalnih števil c/2, (a — b)/2 in

(a -- b))2.

Denimo zdaj, da so vsa tri števila (4) kvadrati racionalnih števil, npr.

x — uč, x—n — v?in x -ns— W?, kjer so u, vy, We0. Pišimo a — w v, b —

— W— v in c — žu. Potem je a? -- bt — 2w? -- 2v? — 4x — du? — c?, Torej so

racionalna števila a, b, c stranice pravokotnega trikotnika. Njegova ploščina

je enaka 4 ab — 41(w?— v?) — n. Zato je v tem primeru m kongruentno šte-

vilo. Izrek 1 je v celoti dokazan.

Če so števila (4) kvadrati racionalnih števil u, v, w, je njihov produkt

Xx(x? — n?) kvadrat racionalnega števila uvw. Pišimo x — u?, y — uvw, pa vi-

dimo, da zadoščata x in y enačbi

yi — XSS—nN?x (5)

ki smo jo navedli že v prejšnjem razdelku. Če je n kongruentno število, ima

enačba (5) racionalno rešitev x — u?, y — uvw, pri čemer y »< 0.

Kakor smo že omenili, je (5) enačba eliptične krivulje, ki smo jo imeno-

vali E,. Narišimo jo. Desna stran v (5) je pozitivna, če leži x na intervalu

(— n, 0) ali na (nm, oo). Zato sestoji krivulja iz dveh vej. Ena veja, namreč tista,

ki leži med —n in 0, je sklenjena, druga se razteza v neskončnost. Krivulja je

simetrična glede na os (x) (sl. 1). Zanimajo nas racionalne točke na tej kri-

vulji, tj. točke z racionalnima koordinatama x in y. Trivialne racionalne točke

so tele: (0, 0), (m, 0) in (— x, 0). Pri vseh je ordinata y — 0.

Vsaki netrivialni racionalni točki (x, y) na krivulji E£,, to je taki točki, pri

kateri je y < 0, pripada racionalen pravokotni trikotnik s ploščino n. Posta-

vimo namreč

2n x

v
(id

bo kij ce m rm (6)
Bi v

Števila a, b, c, so pozitivna in racionalna. Ker je med nijmi zveza a? -- bt? —

— c?, so stranice pravokotnega trikotnika. In ker je zaradi enačbe (5) ploščina

tega trikotnika p — dab — n(xš — n?x)/y? — n, je n kongruentno število. Tako

smo dokazali



TRDITEV 2. n je kongruentno število natanko tedaj, ko leži na eliptični

krivulji E,, kakšna netrivialna racionalna točka.

Naj bo (xo, Yo) — To netrivialna racionalna točka na krivulji E,, tedaj

yo << 0. Postavimo v T, tangento na E,. Tangenta seče E,, še v eni točki T, —

— (x, Yi), ki ima tudi racionalni koordinati x;, v; (Sl. 1). To ugotovimo takole:

Smerni koeficient tangente je y'; dobimo ga z odvajanjem enačbe (5), tedaj

iz enačbe 2yy' — 3x? — n?. Od tod se vidi, da je smerni koeficient yo v ra-

cionalni točki 7, racionalno število (3xg? — n?)/2yo. Enačba tangente v T, se

glasi

Y — vo — Yo (X — 40) (7)

in ima racionalne koeficiente. Eliminirajmo zdaj y iz (5) in (7)

Yo? - 2yoyo (X — x) -- yo 2(X — x0)? — aš — ni? x (8)

To je kubična enačba za x. Če upoštevamo zvezo yo? — xo$ — n? xa, takoj vi-

dimo, da ima (8) dvojni koren x — x,. Njen tretji koren, označimo ga Z x;, je

abscisa točke T,, kjer tangenta drugič seče krivuljo E,. Kratek račun nam da

(xož -- n2)? |

dyo?

X, je racionalno število, ker sta x, in y, racionalna. Ordinata y;, ki jo dobimo

iz enačbe (7), če vstavimo vanjo x — x;, je prav tako racionalno število. Torej

je T, racionalna točka na E£,. Desna stran v (9) je kvadrat racionalnega šte-

vila, ki ni enako 0. Od tod sklepamo, da je tudi y;, -< 0. Če bi namreč bilo

My)

So AN / (x)

SI. 1. Krivulja 4y? — x? — n'x (pri n<— l



Yi — 0, bi bil tedaj x, — n ali x; < —n. Toda število m ni kvadrat. Zato T',

ni trivialna racionalna točka na E,,. (Tu smo izvzeli n — 1, ki ni kongruentno

število.)

V 7, lahko spet postavimo tangento na E, in poiščemo drugo presečišče

tangente s krivuljo. Tako pridemo do racionalne točke T3, ki ni trivialna. Če

nadaljujemo, dobimo zaporedje racionalnih točk T,, T,, T,, ... Ali so vse te

točke med seboj različne ali pa je lahko T; — T;, pri j -: k? Odgovor se glasi:

Vse točke T); so med seboj različne. To ugotovimo takole:

Koordinati x,, yo Sta racionalni števili. Pišimo x, — s/z, yo — t/w, kjer so

s, t, z, w cela števila, z >0, w>0, ulomka s/z in t/w pa naj bosta okrajšana.

Ker leži točka (x, Yo) na krivulji £,, imamo

s s—nz S — nz

Z Z Z

Yož — Koš — N?' Xa —

Vsi ulomki na desni so okrajšani. Vstavimo yo — t/w. Ker je tudi t/w okraj-

šan ulomek, mora biti i? —< s(s—nz) (s - nz) in wž? — z, Zadnja enakost

pove, da je z kvadrat naravnega števila, npr. z — r?, in od tod w — 15. Torej

sta x, in yo oblike x, — s/r2, yo — t/rš. Vstavimo to v (9). Abscisa x; je potem

kvadrat ulomka
V 2 pdset — n?r o re >O (10)

2r t 3

Ulomek vuj/r; na desni smo dobili tako, da smo ulomek na levi okrajšali,

kolikor se da. Ker sta si s in 7 tuja (x, — s/r? je okrajšan ulomek), faktor r

v imenovalcu 2r t pri krajšanju ostane in je zato r, deljiv z r. Če je 7 sodo

število, tudi faktorja 2 ne moremo krajšati, saj je tedaj s lih. Zato je v tem

primeru r; deljiv z 2r in potemtakem r,;, > 2r. Isto velja tudi tedaj, ko je r

lih. Zaradi enostavnosti dokažimo to le za liho število m. Če je s sod, je šte-

vec na levi v (10), namreč s? -- n?r4, lih in faktor 2 v imenovalcu se ne da

krajšati. Tako je spet r;, > 2r. Če pa je s lih, je vsota s? -- n?r' soda, toda

ni deljiva s 4, saj sta s? in m?r' kot kvadrata lihih števil oblike 8m - 1 in

8n -- 1. Vsota s? -- n? rt — 8(m -- n) - 2 tedaj ni deljiva s 4. Ker je i? —

— s(s — nr?) (s - nr?) in sta s—nr? ter s - nr? sodi števili, je tudi z sod.

Ker ostane po krajšanju z 2 v imenovalcu desnega ulomka (10) vsaj še en

faktor 2, je tudi zdaj r, > Žr.

Tako smo ugotovili, da je x, v okrajšani obliki kvadrat ulomka u;/r;, kjer

je r, > 2r. Zato je x; — ujirj? < s/r? — x.

Če ima točka 7; koordinati x;, Y;, Je seveda abscisa x;, prav tako kvadrat

racionalnega števila, npr. x; — (u;/r;)?, kjer je ulomek u,;/r; okrajšan. Pri tem

velja r;, > ž2rj;, ,. Imenovalci 7; z indeksom k strogo naraščajo. To pomeni,

da so vse abscise x; med seboj različne in isto velja za točke T;. Tako smo

dokazali

IRDITEV 3. če leži na krivulji Z, kakšna netrivialna racionalna točka,

potem je na njej neskončno racionalnih točk.

Abscisa x, točke T; je kvadrat (u;/r;)?. Iz obrazca (9) dobimo

2 — o — m2)? 2 1 2m xa, — ni)?x, ug Sa 2n x. — n?) x bne -- 2n xy — ni?) 1

dye? dye?



Torej so xX,, x; —n, x; - n kvadrati racionalnih števil. Iz dokaza izreka 1 je

razvidno, da je x; — (c,/2)?, kjer je c; — 2uy/r, hipotenuza pravokotnega tri-

kotnika z racionalnimi stranicami in ploščino mn. Prav tako so seveda x,,

X; —n, x; iu kvadrati racionalnih števil, saj dobimo x; — mn in X; - n iz

obrazcev (11), če na desni zamenjamo x, z X;., in yo Z yy,.4. Zato je tudi

Cy, — 2uj;/T,, hipotenuza pravokotnega trikotnika z racionalnimi stranicami in

ploščino m. Vse hipotenuze c;, kx— 1,2, ..., so med seboj različne. Tako

smo dokazali

IRDITEV 3a. Če je nm kongruenino število, obstaja neskončno različnih

pravokotnih trikotnikov z racionalnimi stranicami in ploščino x. |

Za zgled vzemimo n <— 6, ki je ploščina trikotnika s stranicami 3, 4, 5. Na

pripadajoči eliptični krivulji y? — aš — 36x leži racionalna točka T, s koordi-
natama x, — 25/4, v, — 35/8. Po obrazcu (9) dobimo x; — 12012/140?. Torej je

prav tako c — - 1201/70 hipotenuza pravokotnega trikotnika s ploščino 6. Ka-
teti pa sta a — 120/7, b — 7/10.
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Vertex Operators in Mathematics and Physics, Edited by J, Lepowsky, S. Man-

delstam and I. M. Singer. Proceedings of a Conference, November 10—17, 1983.

Mathematical Sciences Research institute Publications 3, Springer Verlag, New

York 1985, 482 str.

Obravnavana knjiga je izšla kot tretja publikacija novega matematičnega raz-

iskovalnega instituta, povezanega s kalifornijsko univerzo v Berkeleyu. Vsebuje

referate s kongresa, ki je obravnaval dosežke na novem področju matematične

fizike. Gre za afine Liejeve algebre, t.i. Kac-Moodyjeve algebre in njihovo pove-
zavo z nekaterimi operatorji v kvantni teoriji polja. Podana je tudi zveza z Rie-
mann-Hilbertovim problemom, ki sprašuje o tem, kako lahko določeno funkcijo

iz enotske krožnice v matrike izrazimo kot produkt funkcije, analitične v notra-

njosti enotskega kroga, in funkcije, analitične zunaj tega kroga. Obstaja tudi zveza

z Yang-Millsovo teorijo renormalizacije in drugimi fizikalnimi problemi. Med av-

torji najdemo tudi Mirka Primca z zagrebške univerze.

Teorija je večinoma delo fizikov. Gre za prav težko in eksotično matematiko,

tako končno kot neskončno dimenzionalne Liejeve algebre, analitične operatorske

funkcije itd. Tudi matematiki bodo verjetno na tem področju našli mnogo spod-

bude za nadaljnje delo. Res pa je, da je matematiku mnogo teže videti povezavo

med teorijo in konkretnim fizikalnim problemom (ki jih je po prejšnjem prese-

netljivo veliko) in zakaj enkrat ta teorija je uporabna, drugič pa ne.

Podpisani je v Berkeleyu nekaj časa hodil na seminar z naslovom Gauge theo-
ries pod vodstvom 1.M. Singerja. Snov seminarja je bila v tesni zvezi s snovjo
te knjige in je bila prav zanimiva tudi z matematičnega stališča. Vendar je sča-

soma prišlo do zanimivega pojava. Matematikov med poslušalci je bilo zmeraj

manj, preostali fiziki pa so bili zmeraj bolj aktivni. Zato domnevam, da bo tudi

obravnavana knjiga pri nas zanimiva predvsem za fizike.

Peter Legiša
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MATJAŽ OMLADIČ

Math. Subj. Class, (1980) 62 H 25

V članku sta podani osnovna motivacija in preprosta intuitivna pot do stati-

stičnih metod glavnih komponent in faktorske analize.

THE FIRST STEP TO FACTOR ANALYSIS

The statistical methods of Principal Components and Factor Analysis are

explained in a simple intuitive way and the motivation of these methods is given.

0. Se preden začnemo,

naj od branja teh vrstic odvrnemo tiste, ki o faktorski analizi že kaj vedo,

ta člančič jim namreč ni namenjen. Pisec te umetnine si je na vse kriplje

prizadeval, da bi jo mogel doumeti vsakdo, ki je kdaj končal katerokoli smer

matematike in tako dobil prvi vtis o tej zanimivi, pomembni, a dokaj težavni

metodi matematične statistike.

1. Za začetek malo fizike (poudarek na »malo«)

Oglejmo si najprej s posebnega zornega kota enega dobro znanih pojmov

klasične fizike; če želimo biti zelo natančni, bi lahko raje rekli, mehanike.

Gre za vztrajnostni moment. Imejmo sistem mas m; v točkah s krajevnimi

vektorji r; zati. 1, 2,..., N. Sistem naj bo togo povezan in naj kroži okrog

fiksne osi. Označimo z w vektor kotne hitrosti, to je vektor, katerega velikost

je proporcionalna kotni hitrosti vrtenja sistema, smer se ujema s smerjo osi

vrtenja, usmerjen pa je tako, da kaže pot desnemu vijaku, ki ga vrtimo tako

kot sistem. Tedaj je hitrost krožeče točke s krajevnim vektorjem r; enaka

celotno vrtilno količino sistema pa dobimo, če uporabimo znano formulo za

dvakratni vektorski produkt

N N N

Po b> m;X; X V; — Ž m;x; X (o X 6;)) — S m/(;.r;) o —(;. 00) r]

Pri tem smo z znakom X označili vektorski, z znakom . pa skalarni pro-

dukt. Dogovorimo se, da bo odslej znak a za nas avtomatično pomenil vektor

stolpec, znak aT pa bo pomenil transponirani stolpec, torej vektor vrstico.

V teh oznakah lahko skalarni produkt a.b zapišemo tudi v obliki aTb ali

pa v obliki bTa, pri čemer razumemo, da neoznačena operacija pomeni mno-

ženje matrik. Jasno je, da nam množenje vrstice s stolpcem v tem vrstnem

redu da skalar, množenje stolpca z vrstico v tem vrstnem redu pa nam da

matriko reda 3 X 3. Zdaj pa prepišimo zgornjo enačbo na novi način!

! Fizikom bi bil najbrž tu bolj všeč »brezkoordinatni« zapis z dtadnim pro-

duktom. Ta priredi vektorjema a in b operator (a; b), definiran s predpisom

(a; b)x — (a.x)b.
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N | N

T <— $ m[4GTr) o—r;rT o] < V m[(GTr;) I —;1/7] o
i—l il

Pri tem smo z Z označili identično matriko reda 3 x 3, bralca pa opozar-

jamo, da je produkt stolpca z vrstico r;r;T tudi matrika reda 3 X 3. Matriki

N

J; — V mg (riTr;) 1 —r;r;T]
i—l

pravimo fizikalni vztrajnostni moment danega sistema točkastih mas. Ta mo-

ment nam posreduje preprosto linearno zvezo med vektorjem kotne hitrosti

in vektorjem vrtilne količine, če oba gledamo kot stolpca

T—<JoE

Do geometrijskega vztrajnostnega momenta J, pa pridemo, če fizikalnega

delimo s celotno maso sistema

N

m — m;

i—l

Vpeljimo oznake p; — m;/m, za i— 1,2, ..., N, pa dobimo od tod nepo-

sredno izražen geometrijski vztrajnostni moment

N

J, — $ pl(riTr) I — r; r;T]
isl

Mimogrede povejmo, kar je bralcu gotovo že znano, pa tudi izpelje lahko

kaj hitro iz zgornjih enačb, da sta oba vztrajnostna momenta simetrični ma-

triki, torej velja J;T — J, in J,T — J,.

Ker je
N

x pi—l
i—1

nam sistem krajevnih vektorjev r; s pripadajočimi količinami p;, za i— 1, 2,

... N (te količine so, mimogrede bodi povedano, brez enote), določa neko

diskretno verjetnostno porazdelitev. Vpeljimo matriko drugih začetnih mo-

mentov te porazdelitve
N

M — E(rrT) — S p;r;r;T
i—l

(tu smo z E označili matematično upanje po zgornji diskretni verjetnostni po-

razdelitvi). Za nas bo v nadaljnjem razmišljanju matrika drugih momentov

celo pomembnejša od vztrajnostnega momenta. Kaj hitro pa se lahko tudi

prepričamo, da iz matrike M lahko dobimo tudi matriko J,. Naj bo namreč s

sled matrike M, to je vsota njenih diagonalnih elementov

3 N

s — sled(M) — 9 m;; — > pila? t yi tt zč) —

isl

N

piriT r;)
jsl —1lz

zdaj pa že lahko zapišemo vztrajnostni moment na popolnoma »verjetnostni«

način

J], <sI—M
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Povejmo še to, da bi bila lahko masa ali verjetnost v zgornjem primeru

tudi zvezno razmazana po prostoru. V tem primeru bi morali pač v formulah

za vztrajnostni in za drugi začetni moment nadomestiti vse vsote po i— 1,2,

... N s trojnimi integrali po prostoru.

2. Pa še nekaj linearne algebre

Zastavimo si tole vprašanje: V kateri smeri naj se sistem masnih točk iz

prvega razdelka vrti, da bo imel pri konstantni velikosti kotne hitrosti naj-

večjo ali pa najmanjšo kinetično energijo? Pri tem fiksirajmo izhodišče in

dopuščajmo različne osi vrtenja skozi to točko.

Kinetično energijo sistema dobimo, če upoštevamo v osnovni definiciji

klasične fizike znane formule za mešani produkt

N N N

W — š S m;vyT v; < šSmjo X r)T (o X r;) — $>, mdto,T;, o X T;) —
i—l isl i—i

»

N N

— 3 > m;(r;, co X r;, v) < 3X m;oT(r;X (o Xr)) < šeTT<šoeTtJ;o
i—l i—1l

Poiskati moramo torej ekstreme funkcije

Hoi, va, 03) — woTJ; o

pri pogoju konstantne velikosti kotne hitrosti. Enote pa lahko vselej izbe-

remo tako, da je konstanta enaka 1. Zato se lahko omejimo na primer, ko je

omejitveni pogoj kar

oTyw<—1l

Problem pa raje formulirajmo še nekoliko splošneje. Naj bo

dji PE 4,1

A —

dni... dn

poljubna simetrična matrika reda n X n. Neznanke X;, Xs, ..., X, razvrstimo

v stolpec n-terko x. Določiti jih želimo tako, da bo funkcija

(Xi, Xo, ..., X,) — xTAx

imela največjo ali najmanjšo možno vrednost pri pogoju

| xTx— 1]

Naloge se lotimo z znano Lagrangevo metodo. Vpeljimo novo neznanko ;,

ki ji pravimo Lagrangev koeficient ali Lagrangev multiplikator. Z njo pomno-

žimo »vez« xT x — 1 — 0 in jo prištejemo k dani funkciji ali odštejemo od nje.

Iščemo ekstreme tako dobljene funkcije

F(X;, Xa, ..., X75;A) << xT Ax—A(iaTx—lh

Ko izenačimo parcialni odvod funkcije F na spremenljivko x; z nič, do-

bimo
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zai— 1,2, ..., m, te skalarne enačbe pa po krajšanju z 2 združimo v vektor-

sko enačbo

Ax—;x (1)

Ker mora vektor x ustrezati pogoju xT x — 1, mora biti neničeln, neničel-

nim vektorjem x, ki ustrezajo pogoju (1), pa pravimo lastni vektorji matrike

A. Številom ;, pri katerih ima (1) neničelno rešitev x, pravimo lastne vred-

nosti matrike A. Tako smo spoznali, da moramo kandidate za ekstrem funk-

Cilje f iskati med lastnimi vektorji matrike A.

S tem pa se vsaj na videz dokončni rešitvi problema še nismo kaj prida

približali. Da bi lahko problem rešili, bomo morali uporabiti nekoliko globlje

rezultate linearne algebre. Prikličimo si v spomin, da ima vsaka simetrična

matrika A reda n X n n realnih lastnih vrednosti, če le vsako štejemo toliko-

krat, kolikor znaša njena algebraična kratnost (karkoli že to pomeni). Ozna-

čimo te lastne vrednosti z ),, %3, ..., 2,, in se domenimo, da so že urejene po

vrsti torej % Z /z Z ... Z ),. Poleg tega vemo, da lahko k vsaki lastni vred-

nosti 3); najdemo po en lastni vektor y; za i— 1, 2, ..., n in to tako, da so

vektorji y; drug na drugega pravokotni, njihova dolžina pa je enaka 1. Vse

te ugotovtive zapišimo še simbolično

vy lei) (2)

A yi — liyYi (3)

Zaradi pogoja (2) morajo biti vektorji y;, Vs, ..., y, linearno neodvisni, kot

se lahko hitro prepričamo. Če namreč enačbo

di Yi ro... Z dn Yu — O

pomnožimo skalarno z vektorjem x;, dobimo od tod a; — 0 za vsak i — 1,2,

..., n. Ker je teh vektorjev natanko n, morajo tvoriti bazo celega m-razsežnega

vektorskega prostora m-terk. Razvijmo zdaj poljuben stolpec n-terk x po tej

bazi

X — diYi T ... Fr an Y,

Zaradi (3) je tedaj

od tod zaradi (2)

xT Ax — ažij Ht ... ž avih,

zaradi (2) pa tudi velja

NA xIl x — diž - ..- dni

Če torej velja xT x — 1, mora biti xTr Ax x", in xTAxz.z);, Ker pa je po

drugi strani

in

yiT Ay; —yiTAi Yi —<Mh

se rešitev našega problema glasi: Funkcija f doseže maksimum ;/, v smeri y;

in minimum ;, v smeri y,. Vseh mn »stacionarnih smeri« je paroma pravo-

kotnih.
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Kaj nam ta rešitev pove o problemu z začetka razdelka? V trirazsežnem

»običajnem« vektorskem prostoru obstajajo tri med seboj pravokotne smeri

Vi, Ve in ya, ki jim pravimo glavne osi vztrajnostnega momenta. V (vsaj) eni

od teh doseže kinetična energija pri konstantni velikosti kotne hitrosti svoj

maksimum in v (vsaj) eni doseže svoj minimum.

Tudi v splošnem, n-razsežnem primeru pravimo vektorjem y;, Ve, ..., Y,

glavne osi simetrične matrike A. Glavne osi simetrične matrike so vselej pa-

roma pravokotne.

Kot zanimivost povejmo še to, da imata matrika drugih momentov M in

geometrijski vztrajnostni moment J, iz prvega razdelka iste glavne osi. Če so

i,, ža in 48 lastne vrednosti matrike M v treh glavnih smereh, potem ima ma-

trika J, v istih smereh lastne vrednosti ;s -- 23, 23 -- 2, in |, -t 32. O tem se bo

lahko bralec tudi sam kar hitro prepričal.

3. Vprašanje si zastavimo ob zgledu

Po kvadru s stranicami a, b in c naj bo masa (ali verjetnost, če že hočete)

enakomerno zvezno razmazana. Izhodišče koordinatnega sistema postavimo

v težišče kvadra, osi pa naj bodo vzporedne s stranicami, kakor kaže slika.

Izračunajmo matriko drugih momentov. Najprej je

alž

1 11 3 3 2
Mj, — E(x?) — ! x? dx dy dz —— | x? dx — (> ŠYLo.E

abc a a3|Y2 2 12
| —aj2

Nato izračunamo še

aj2 j bj2

mMjo — E(xy) — xydx dy dz <— |xdx—- |ydy—-0
abc a b

—a]2 —bj2
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Zaradi simetrije mora biti matrika drugih momentov enaka
— o —

— 0 0
12

M<; 0 — (00 4)

12

o o —

Sled te matrike je

s — a? - bt - ce?

12

torej je vztrajnostni moment
— pa h —

77€ 5 0
12

I, — o PEŠ ob
12

2 1. b2

0 po PT?

Imeli smo »srečo«. Glavne osi obeh matrik se ujemajo s koordinatnimi

osmi. In sicer je

yit —<110 9]

yaT — [0 1 0]

| 2 b2 2

Lastne vrednosti matrike (4) so enake ? , —in č , lastne vrednosti matrike
be 4 ce gi 4 ce? a? J- b2 12 12 12

J, pa , in ———.
12 12 12

Po vseh teh pripravah je končno dozorel čas, ko si lahko zastavimo glavno

vprašanje. Kako ugotoviti, ali je neka masna oziroma verjetnostna porazde-

litev zares razmazana v vse smeri, ali pa se morda drži približno na neki

ravnini ali celo na neki premici? Odgovor na to vprašanje bomo prebrali iz

matrike drugih momentov. Najprej ga bomo seveda poiskali na našem pre-

prostem zgledu.

Denimo, da je naš kvader v resnici zelo tanka plošča. Da bi to še posebej

poudarili, vpeljimo za tretjo stranico novo oznako c — 8, kjer naj bo število č

zelo majhno v primerjavi s številoma a in b. Matrika drugih momentov ima

O? .. a?
tedaj tretjo lastno vrednost Ta zelo majhno v primerjavi s prvima dvema Ta

in-. Vsa masa je skoncentrirana približno v ravnini (x, y).

Kaj pa, če je naš kvader tanka palica? V tem primeru je b < c — a, kjer

je število 8 zelo majhno v primerjavi s številom a. Druga in tretja lastna
2

vrednost matrike M drugih momentov sta tedaj enaki —, torej sta zelo majh-
a? . . .

ni v primerjavi s prvo lastno vrednostjo —. Vsa masa je skoncentrirana pri-

bližno ob osi x. 12

14



Tudi v večrazsežnem primeru si bomo drznili obdržati to intuitivno pred-

stavo. »Masi«, to je verjetnosti, ki je na neki način razporejena po m-razsež-

nem prostoru, bomo priredili matriko drugih momentov. Tej bomo poiskali

glavne osi. Če bodo lastne vrednosti v prvih r paroma pravokotnih glavnih

smereh bistveno večje od lastnih vrednosti v preostalih n-r smereh, potem

bomo rekli, da je verjetnost skoncentrirana približno v r-razsežnem podpro-

storu, napetem na prvih r glavnih osi. |

Opozorimo naj še na eno dejstvo, ki smo ga doslej privzemali skoraj mol-

če. V zgledu iz tega razdelka smo izhodišče koordinatnega sistema postavili

avtomatično v težišče. Kadar imamo opravka z verjetnostno porazdelitvijo na-

mesto z masno, ima vlogo težišča točka matematičnega upanja verjetnostne

porazdelitve. Na zgledu iz tega razdelka pokažimo, kako neprijetno se lahko

zabriše obnašanje mase iz matrike drugih momentov, če premaknemo izho-

dišče v kakšno nerodno izbrano točko.

Kot prvi zgled premaknimo izhodišče v točko

r"T —[ka, kb, kc]

kjer je k primerno izbrano realno število. Po kratkem računu dobimo novo

matriko drugih momentov

aa om

mre kt ab kžac
12

| l
M, — ktab (et z)e k? bc

| 12

1
kžac k? bc ua oje

Če je k zelo velik, tako da je k"? mnogo večje od D5' ima M, eno glavno

os približno v smeri vektorja r; z zelo veliko lastno vrednostjo, ki je blizu

številu k?(a? -- bt? -- c?), Drugi dve glavni osi sta približno pravokotni na

smer r; in lastni vrednosti v teh dveh smereh sta zelo majhni v primerjavi

s prvo lastno vrednostjo. Naj imamo opravka s kocko, tanko ploščo ali tanko

palico, videti je, kot da bi bila vsa masa skoncentrirana skoraj na premici.

Do tega učinka je prišlo, ker smo se s točko zelo oddaljili od mase, zato

matrika drugih momentov »vidi« celotno maso kot približno točko v daljavi.

Premaknimo zdaj izhodišče še na en način. Če ga prenesemo v točko

Cc

k ( 12
postane matrika drugih momentov

na)
T—- až

% o 0
12

M,—| 0 bt -- ce b c

H 12 12

0 be b?-ež

C 12 l2 —
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Ta matrika ima lastne vrednosti

a? . bt be -te? bit —bc- ec?

12 Hi 12 12

v glavnih smereh

1 1 1 1
vit — 1, 0, 0 , ysT — 0, ——:; TOO—— IS ysT zz 0, —,. —a dai S z JA

Če bi imeli v tem primeru opravka s tanko ploščo in bi bilo število c — 6

mnogo manjše od števil a in b, tega iz matrike Ms ne bi mogli ugotoviti, saj

nobena od njenih treh lastnih vrednosti ne bi postala bistveno manjša od

preostalih dveh.

Bodita nam ta dva zgleda dovolj za zaključek: Če hočemo iz lastnih vred-

nosti in glavnih osi matrike drugih momentov sklepati na porazdelitev mase

oziroma verjetnosti, naj bo ta matrika izračunana glede na točko težišča te

mase oziroma glede ria točko matematičnega upanja verjetnostne porazde-

litve.

4. In zdaj je na vrsti statistika

Pogosto imamo opravka z veliko količino podatkov. Merimo jih v »točkah«,

ki jim pravimo statistične enote. Tako so statistične enote lahko ljudje, pre-

bivalci kakega kraja, pokrajine ali države, lahko so podjetja, gospodarske

panoge, posamezna geografska območja v kaki državi, lahko pa tudi cele

države ali skupine držav; včasih so statistične enote lahko tudi dogodki, na

primer nesreče, telefonski klici na centrali, splavitve novih ladij in še mar-

sikaj. Realnim vrednostim, ki jih imamo podane za posamezne statistične

enote, pravimo statistične spremenljivke. Nekateri slovenski avtorji uporab-

ljajo v približno istem pomenu pojem statistični znakt. Za vrednosti spre-

menljivk zahtevamo, da so bile izmerjene na vseh statističnih enotah na isti

način. Kot tipičen primer takih podatkov si zamislimo nabor N statističnih

enot, ki jih zaradi lažjega razpoznavanja oštevilčimo z zaporednimi števili

od 1 do N. Na vsaki od teh enot izmerimo po m statističnih spremenljivk, ki

jih prav tako označimo z zaporednimi številkami od 1 do n.' Navadno zahte-

vamo, da je vsak od m podatkov izmerjen na vseh N statističnih enotah. Če

bi na kateri od enot ne imeli izmerjenih vseh podatkov, bi jo morali žal za-

vreči. Označimo z X;; vrednost, ki jo ima i-ta spremenljivka na j-ti statistični

enoti, zai—l,2,...,n, j<—1,2,..., N. Vse podatke pospravimo v matriko?

Xyi Xjz ... Xiw

Kako si bomo to goro podatkov »geometrijsko« predstavljali? Zamislili

si bomo, da je vsaka od N statističnih enot točka. Ker imamo za vsako po m

realnih podatkov, si jo bomo »narisali« kot točko v n-razsežnem realnem vek-

torskem prostoru. Pri tem nam bo j-ti stolpec matrike X

? V statistiki se pogosto uporablja N za velikost populacije, mn za število enot

in zn za število spremenljivk.

s Opozorimo naj, da statistiki radi z X označijo matriko, ki je tej transponirana.

l6



Xaj |
X;<|.,

KJ
pomenil pravokotne koordinate j-te točke v prostoru R", za j—1,2,..., N.

Vsaki točki pripišimo še njeno »maso«, to je verjetnost. Če so vse statistične

enote med seboj enakovredne, bomo seveda vsem točkam pripisali isto ver-

jetnost. In ker mora biti celotna verjetnost enaka 1, bo imela vsaka od točk

verjetnost —. Vektor matematičnega upanja tega sistema točk lahko sedaj

N

- 1

njaN

izračunamo takole

Če označimo z e vektor stolpec, sestavljen iz N enic, lahko to formulo za-

pišemo krajše v matrični obliki

Iz vektorja matematičnega upanja lahko hitro dobimo matematično upa-

nje v katerikoli smeri prostora. Naj bo ye ik" poljuben enotni vektor, to po-

meni, da je yTy — 1. Iz danih statističnih spremenljivk lahko tvorimo novo

spremenljivko, ki ima na j-ti statistični enoti vrednost

un

V; — xi Xij

Če zvrstimo podatke v vrstico YT — [Y, Ys ... Yy], lahko to, novo stati-

stično spremenljivko zapišemo

Matematično upanje te spremenljivke je število

— 1 1 —

Y — —(yTXj)e — —yT(Xe) — yTX
N 4 N

Premaknimo zdaj izhodišče koordinatnega sistema v težišče. Matrika vred-

nosti spremenljivk se spremeni v

rna 1 1

N N

Matriki drugih momentov v tako premaknjenem koordinatnem sistemu

pravimo matrika centralnih drugih momentov in jo označimo z D.
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NA 1
Do oXKro lx I—žeer) (— eer)ar -

N N NO, N

2x — ee ceni zeeteer jr
N N N N2

1 1 1 NI
—— x I— cer JXr o XAT—XXH
N N N

Matriki D rečemo tudi variančno-kovariančna matrika ali disperzijska

matrika ali na kratko disperzija. Besedi varianca in disperzija uporabljamo

v ožjem pomenu tudi kot sinonima za diagonalne elemente matrike D, izven-

diagonalnim pa pravimo kovariance.

Izberimo si spet smer y v m-razsežnem realnem prostoru in ji priredimo

statistično spremenljivko YT — yT X. Njeno matematično upanje smo že iz-

računali in dobili Y — yT X. Disperzija te spremenljivke pa je po definiciji

enaka matematičnemu upanju kvadratov odstopanj te spremenljivke od nje-

nega povprečja, torej je

N

D, — —(YV;j—Y)? —- — (Y—YeT(Y—Ye-—
N N

jel

2 yrX—. yrXee? kryo zeerxry) — z yršXry - yrDy
N N N N

Disperzija D,, v smeri y se torej zelo preprosto izraža z matriko D, saj je

kar enaka yT D y. Spomnimo se zdaj ugotovitev iz drugega razdelka, pa bomo

kaj preprosto znali odgovoriti na naslednje vprašanje: V katero izmed smeri

so točke najbolj razpršene, točneje, v kateri smeri je disperzija največja?

Poiščimo lastne vektorje in lastne vrednosti simetrične matrike D. Ker

je za vsako smer y število yT Dy vsota nekih kvadratov realnih števil, mora

biti to število nenegativno, torej je matrika D po definiciji pozitivno semi-

definitna. Iz linearne algebre pa vemo, da je simetrična matrika pozitivno

semidefinitna natanko takrat, kadar ima vse lastne vrednosti nenegativne.

Vse lastne vrednosti matrike D so torej nenegativne, največja med njimi,

h, pa je enaka maksimalni možni disperziji, ki je dosežena v »glavni« smeri

y,. V tej smeri so torej naše točke najbolj razpršene.

Zdaj pa si poglejmo (mn — l1)-razsežni podprostor prostora IR", ki ga se-

stavljajo vektorji, pravokotni na vektor y;. V tem podprostoru je največja

možna disperzija enaka drugi lastni vrednosti matrike D, to je )2. Ta disper-

zija je dosežena v smeri druge glavne osi yz. Postopek nadaljujemo. Denimo,

da smo že določili maksimalne disperzije 2; Z 42 Z ... Z 1, v glavnih smereh

Yi, Va, ..., Vs. V podprostoru vektorjev, ki so pravokotni na vseh teh r smeri

(ta podprostor ima razsežnost nm — r), je maksimalna možna disperzija v enot-

ni smeri enaka (r -- l)-vi lastni vrednosti 3,,; matrike D in je dosežena v

smeri glavne osi y,,,. Seveda se nam lahko zgodi, da je pri nekem r lastna

vrednost ),,,; zanemarljivo majhna v primerjavi z lastnimi vrednostmi );, 4x,

.. hy. To pomeni, da je v primerjavi z disperzijami v smereh y;, ysa, ..., y,

maksimalna disperzija v podprostoru, pravokotnem na te smeri, zanemar-
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ljivo majhna. Rečemo lahko, da je praktično vsa verjetnost skoncentrirana

v smereh y;, Y2, ..., Y,. To dejstvo bomo uporabili, kadar bomo imeli opravka

z velikim številom spremenljivk (deset, morda celo več desetin), izmerjenih,

seveda, na še večjem številu statističnih enot (sto, morda celo tisoč). V tej

veliki količini spremenljivk se nam kaj lahko zgodi, da so nekatere med

seboj povezane, ali pa, da so nekatere v primerjavi z drugimi statistično ne-

relevantne. Lahko se torej iz tega ali onega razloga zgodi, da bi mogli pri-

bližno isto informacijo popisati že z bistveno manjšim številom spremenljivk.

V ta namen bomo uporabili tu opisano metodo. Izbrali bomo 7 smeri in jim

priredili z novih spremenljivk

VYT—<yTX

za i—1, 2, ..., r. Te spremenljivke, ki jim bomo rekli glavne komponente,

so linearne kombinacije prvotnih. Če bomo izbrali dovolj velik 7, bomo vanje

prenesli večino informacije, ki je skrita v spremenljivkah X. Število 7 bo lah-

ko bistveno manjše od števila n prvotnih spremenljivk. In kako izbrati šte-

vilo r? Eden od najpreprostejših in najbolj razširjenih »kuharskih receptov«

za ta primer pravi: v model vključi vse tiste glavne smeri, katerih lastne vred-

nosti niso manjše od — sled (D). Seveda obstajajo mnogi statistični preizkusi

za določitev števila r. "

Statistični metodi za analizo podatkov, katere eno od osnovnih variant
smo tu poskušali preprosto opisati, pravimo navadno metoda glavnih kom-

ponent. Bralca naj še enkrat opozorimo, da je bil naš pristop predvsem intul-

tiven. Vsaka resnejša utemeljitev te metode bi terjala še mnogo prelitega

črnila, da o preliti matematiki niti ne govorimo.

5. Naš cilj v daljavi — faktorska analiza

Z metodo glavnih komponent, takšno, kakršno smo popisali v prejšnjem

razdelku, še nismo čisto zadovoljni. Prva stvar, ki bo zbodla v oči vsakogar,

ki ima občutek za »fiziko«, so enote, v katerih izražamo vrednosti spremen-

ljivk. To, kar smo v prejšnjem razdelku počeli, so bile v bistvu translacija,

rotacija in morda še zrcaljenje prvotnega koordinatnega sistema. Koordi-

natni sistem pa ima smisel vrteti le, kdar so vse koordinate merjene v istih

enotah. In to se nam v statistiki le redkokdaj primeri.

Problem si poskušajmo osvetliti ob temle preprostem zgledu. Statistične

enote naj bodo ljudje, spremenljivki pa višina in teža. Če bomo »pomotoma«

merili višino v milimetrih in težo v tonah, bo seveda višina videti milijonkrat

pomembnejša od teže in bomo slednjo smeli brez skrbi zanemariti. Če pa

bomo merili višino v kilometrih in težo v gramih, bo teža postala milijonkrat

pomembnejša od višine. Tokrat bomo smeli zanemariti višino, pa čeprav so

podatki v bistvu isti kot v prejšnjem primeru. Obakrat so nas neprimerno iz-

brane merske enote pripeljale v položaj, ki mu statistiki popularno pravijo

»seštevanje jabolk in hrušk«.

Nobena statistična metoda seveda ne sme biti odvisna od izbire enot, v ka-

terih merimo posamezne spremenljivke. Da bi ta problem obšli, moramo tudi

pri tej metodi uporabiti star in preizkušen trik, ki mu pravimo standardiza-

cija statističnih spremenljivk. Prvi korak k standardizaciji smo v bistvu že

napravili, ko smo premaknili koordinatno izhodišče v »težišče« sistema. Zdaj
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moramo le še ustrezno »utežiti« posamezne koordinate. V matriki D central-

nih drugih momentov ima (i, ])-ti element enoto, ki je produkt enot i-te in

j-te spremenljivke. Enota diagonalnega elementa, disperzije d;, je torej ena-

ka kvadratu enote i-te spremenljivke. Kvadratnemu korenu iz disperzije o; —

— V di; pravimo standardna deviacija i-te spremenljivke. Enota standardne
deviacije se ujema z enoto spremenljivke. Če kovarianco med t-to in j-to

spremenljivko delimo s standardnima deviacijama teh dveh spremenljivk,

dobimo korelacijski koeficient

d;;
(>)

Gi 0;
Tij —

ki je torej količina brez enote. O njem pa lahko povemo še nekaj. Spomnimo

se namreč, kako smo izračunali kovarianco

N

1 so — —
di; < — i (Xi; — X) (X;; — X;)

N

k-i

pa dobimo po Cauchy-Schwarzevi neenačbi

N N |

< Ne >, Ku— Iv Xn — A): — dyd,;
N2

ki ki

zato leži realno število r;;, definirano z enačbo (5), vselej na intervalu [— 1, 1].

Števila r;; razvrstimo v korelacijsko matriko

idi"

gi ... Fin

R—

a

Tai ee. Pan

do te pa lahko pridemo še na en način. Na naših statističnih enotah defini-

ramo »nove« spremenljivke tako, da od vsake vrednosti te spremenljivke od-

štejemo njeno povprečno vrednost in rezultat delimo s standardno deviacijo

te spremenljivke. Tako dobljeni spremenljivki, ki je brez enot, pravimo stan-

dardizirana statistična spremenljivka. Za razliko od matrike vrednosti prvot-

nih spremenljivk, označimo matriko vrednosti standardiziranih spremenljivk

s črko Z. V matrični obliki je standardizacijo zelo preprosto zapisati. Če ozna-

čimo s S diagonalno matriko z elementi 6; po glavni diagonali, je

Z — S-(X —XeT) - Sa X

Disperzijska matrika standardiziranih spremenljivk pa je očitno enaka

1 1 no

N N

torej se ujema s korelacijsko matriko prvotnih spremenljivk. Tako smo mi-

mogrede dokazali, da je tudi korelacijska matrika simetrična in pozitivno

semidefinitna, če so spremenljivke neodvisne, je celo strogo definitna. Za-

pomnimo pa si še to, da so na diagonali korelacijske matrike same enice,

izvendiagonalni elementi pa po absolutni vrednosti ne presegajo števila 1.
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Kadar bomo torej imeli opravka s spremenljivkami, merjenimi v različ-

nih enotah, bomo z metodo glavnih komponent napadli korelacijsko matriko

R namesto disperzijske D. S tem je problem seštevanja jabolk in hrušk

v našem primeru na neki način rešen.

Dokler se ne odločimo za opuščanje posameznih komponent, v metodi zdaj

ne vidimo več večjih lukenj. Glavne smeri y;, V:;, ..., v, matrike R vpišemo

v vrstice matrike O

no]

|e |
O — 8

MA
Ker so smeri normirane in druga na drugo pravokotne (glej enačbo (2)),

velja OOT — I, zato mora biti tudi OTO — I in matrika O je po definiciji

ortogonalna. Ker pa tvorijo vrstice matrike O lastne vektorje matrike R, mora

biti (glej enačbo (3))

ROT-<OTA

kjer smo z A označili diagonalno matriko z lastnimi vrednostmi ), Z 25 >...

> An Matrike R po glavni diagonali. Če to enačbo množimo z leve z matriko

O, dobimo

A < OROT

Vpeljimo matriko novih, zarotiranih spremenljivk

Y —OZ

Disperzijska matrika novih spremenljivk je

—YYr- Z OZZrOr-OR TA (6)

Zarotirane spremenljivke imajo torej ničelne korelacijske koeficiente;

temu pravimo, da so spremenljivke paroma nekorelirane. Tudi iz novih spre-

menljivk lahko izračunamo stare nazaj. Če namreč pomnožimo enačbo Y —

— O Z z leve strani z matriko OT, dobimo

Z —O0OTY

Denimo zdaj, da je prvih zr lastnih vrednosti ;,, 42, ..., 2, matrike R od

nič različnih, vse druge pa so enake nič. Tedaj mora biti zaradi (6) zadnjih

n-r vrstic matrike Y ničelnih. Če označimo z ZL" diagonalno matriko reda

r X r, ki ima po diagonali kvadratne korene prvih r lastnih vrednosti matrike

R, z Y, matriko reda r X N, sestavljeno iz prvih r neničelnih vrstic matrike

Y in s O, matriko reda r X m, ki jo sestavlja prvih r vrstic matrike O, dobimo

najprej:

Z—OTY,

in nato, če označimo še F — [-' Y, in A — O,TL, pridemo do enačbe

Z—<AF (0

1 Pogosto se z L označuje kvadrat te matrike.
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Disperzija spremenljivk F je enaka

m F FT ZZTE 1 L-i Y, Y,T LA ZZE k LA A, L-! IZI [
N N N

kjer smo z A, označili matriko reda r X r, ki ima po diagonali lastne vred-

nosti matrike R; torej je A, — L2. Tako smo ugotovili, da so tudi spremen-

ljivke F še zmerom paroma nekorelirane, poleg tega pa so tudi standardi-

zirane. Tem spremenljivkam recimo (z nekaj poguma) faktorji. Enačbo (7)

smo dobili, kadar je bilo zadnjih n-r lastnih vrednosti matrike R enakih nič.

Če pa so te lastne vrednosti le približno enake nič, bomo tej enačbi morali

dodati še matriko razločkov, ki jo označimo z E. Tako dobimo realnejši mo-

del faktorske analize

Z—AF-E (8)

Problem si zdaj zastavimo takole: Fiksirajmo r in iščimo matriko uteži

A reda n X r, matriko faktorjev F reda r X N in matriko razločkov E reda

n X N, tako da bo izpolnjena enačba (8). Na matrike A, F in E navadno po-

stavimo še celo vrsto zahtev, kot na primer:

1. Faktorji naj bodo standardizirani in paroma nekorelirani, torej naj bo

njihova disperzijska matrika enaka identiteti

PpEro]
N

2. Tudi razločki naj bodo paroma nekorelirani, če je le mogoče. To po-

meni, da mora biti njihova disperzija diagonalna matrika. Če označimo z U

diagonalno matriko, ki ima po diagonali standardne deviacije razločkov, lahko

ta pogoj zapišemo takole

JEEr- U?
N

3. Faktorji naj bodo nekorelirani z razločki, torej

hi EFT .—0
N

4. Ker razločki »merijo« odstopanje danih podatkov od faktorskega mo-

dela, si seveda želimo, da bi bile njihove disperzije čim manjše.

Enačba (8), skupaj s štirimi zahtevami, nam da eno osnovnih variant

modela faktorske analize. Problem, kako določiti matrike A, F in E, je iz-

redno težak, ni vselej rešljiv in kadar je rešljiv, rešitev zagotovo ni enolična.

Če nič drugega — matriko faktorjev F lahko množimo z leve s poljubno orto-

gonalno matriko reda r X r, matriko A pa z desne z njej transponirano ma-

triko; vse zgornje zahteve ostanejo v tem primeru v veljavi in dobili smo

novo rešitev istega problema.

Seveda je jasno, da se z reševanjem tega problema tu ne bomo mogli

ukvarjati. Poti je preveč in so za okvir tega članka prezahtevne. Očitno je

namreč, da je takšenle problem z mnogo rešitvami bogato lovišče razisko-

valcev, ki nam ponujajo vsak svojo metodo in tudi vsak svojo rešitev pro-

blema. V praksi se v nekaterih primerih bolj obnese ta in v kakšni drugi

situaciji ona pot.
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Le zaradi popolnosti dodajmo kratek oris ene od dokaj zanesljivih, ite-

racijskih metod za reševanje tega problema. Na prvem koraku iteracije na-

redimo metodo glavnih komponent. Po nekem kriteriju določimo število fak-

torjev r in ga za naprej fiksirajmo. Na osnovi dobljenih razločkov popravimo

korelacijsko matriko. Na splošnem koraku iteracije naredimo metodo glav-

nih komponent na popravljeni korelacijski matriki prejšnjega koraka z na-

prej določenim številom faktorjev. Iz faktorjev izračunamo nove razločke in

spet popravimo korelacijsko matriko. Iteracijo ustavimo, kadar je maksi-

malni popravek korelacijske matrike manjši od naprej predpisanega števila.

Če zahtevamo natančnost na nekaj decimalk in podatki niso preveč hudobni,

nam ta metoda da rezultat navadno že v kakih desetih korakih ali še prej.

Kljub temu je precej zahtevna, saj moramo na vsakem koraku iteracije rešiti

po en problem lastnih vrednosti, kar niso ravno mačkine solze.

Bralcu, ki si želi o metodah faktorske analize in o drugih multivariatnih

metodah statistične obdelave podatkov izvedeti kaj več, priporočam, da si za

začetek ogleda knjižico [2], v kateri bo našel podroben opis mnogih multi-

variatnih metod, obdelanih vse do programov za računalnik; priročnik [9],

v katerem bo izvedel, kako uporabljati enega od boljših računalniških pake-

tov, kjer so mnoge od teh metod že sprogramirane; in ne nazadnje učbenik

[7], v katerem bo spoznal nekatere multivariatne metode in njihovo uporabo

v ekonomiji.
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VPRAŠANJE št. 120

Na kaseti Mojca Pokrajculja in druge slovenske pravljice (Helidon) poslu-

šamo zgodbo O fjunaškem kovaču, v kateri junak vrže kamen v zrak tako

močno, da šele po treh dneh prileti nazaj. Kako visoko poleti kamen in ko-

likšno začetno hitrost mora imeti? Zračnega upora ne upoštevamo in vza-

memo, da se Zemlja ne vrti in da so druga vesoljska telesa daleč.

Ali bi Zemlja dobila nov umetni satelit, če bi kovač enako močno zagnal

kamen vodoravno?

Radij Zemlje je 6400 km, težni pospešek na površju Zemlje pa 9,8 m/s?.

Anton Cedilnik
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BIOMAGNETIZEM

JANKO LUŽNIK

A87.40-w

Razvoj novih merilnikov je v zadnjih dveh desetletjih omogočil tudi merjenje

izredno šibkih biomagnetnih polj. Sestavek opisuje možnosti, ki jih ponujajo mer-

jenja teh polj za proučevanje bioelektrične aktivnosti v človeškem telesu.

BIOMAGNETISM

Ihe development of new sensors in the last twenty years has enabled also the

observation of extremly weak biomagnetic fields. In the article the possibilities of

studying the human bioelectric activity through biomagnetic field measurements

are discussed.

Uvod

Človek se zanima za magnetne pojave že dolgo vrsto let. Tudi povezava

magnetizma z biološkimi pojavi ima dolgo zgodovino. Magnetni železovec so

uporabljali v zdravilske namene skoraj dva tisoč let. Uspehe, ki so jih pri tem

dosegali in si so jih pripisovali vplivu na magnetne sile v človeškem telesu,

lahko pojasnimo psihološko. Tako je bil magnetizem povezan z biološkimi

pojavi v glavnem po raznih kultih in mazačih.

Magnetna polja človeškega telesa izvirajo iz onesnaženosti nekaterih orga-

nov s feromagnetnimi snovmi ali pa jih povzročajo biokemični ionski tokovi,

ki spremljajo aktivnost organov. Ker so ta magnetna polja izredno šibka, je

šele razvoj novih merilnikov in merilnih metod omogočil opazovanje in mer-

jenje. Pravi razvoj na področju biomagnetnih merjenj in študija biomagnetne

aktivnosti v človeškem telesu se je začel pred dvema desetletjema. V zgodnjih

šestdesetih letih sta Baule in McFee posnela prvi magnetokardiogram člo-

veka. V letih 1966 in 1967 so se pojavili prvi sguidi (Superconducting Ouan-

tum Interference Devices) [1], ki so danes najobčutljivejši merilniki za šibka

magnetna polja [2]. Razvoj sguidov pa je omogočil izredno hiter napredek

biomagnetnih merjenj.

Izvori biomagnetnih polj

Magnetno polje spremlja električni tok, zato spremlja tudi vsako bioelek-

trično aktivnost. Najmočnejše takšno polje je magnetno polje srca. Maksi-

malna amplituda meri pri odraslem človeku okrog 50 pI. Ker je to polje za

okrog šest velikostnih stopenj šibkejše od zemeljskega, je razumljivo, da je

treba meritve opraviti v magnetno zaščitenem prostoru. Če merimo v običaj-

nem okolju, pa moramo uporabiti izpopolnjeno tehniko, ki zmanjša magnetne

motnje iz okolice. Poleg magnetnega polja srca lahko danes že opazujemo

polja možganov, oči, mišic itd. Največji signal iz oči meri okrog 100 fT. Pri-

bližna spodnja meja najšibkejših signalov, ki jih danes lahko zaznamo, pa je

okrog 10 fT. Vsa našteta biomagnetna polja izvirajo iz bioelektrične aktivnosti

v človeškem telesu. Biornagnetna merjenja dajo dodatne podatke in deloma

dopolnjujejo že udomačena bioelektrična merjenja.

Močan izvir biomagnetnih polj so feromagnetni delci, ki so zašli npr.

v pljuča ali zaradi bolezni povečana koncentracija železa, npr. v jetrih. Pri

merjenju teh polj postavimo običajno človeka za kratek čas v konstantno

magnetno polje in opazujemo magnetizacijo, ko izključimo polje. Remanentna
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gostota polja lahko doseže npr. v pljučih do 100 nT. Z merjenjem teh polj

lahko zasledujemo časovno spreminjanje koncentracije feromagnetnih delcev

pri rudarjih ali železarjih, ki so izpostavljeni prahu s feromagnetnimi pri-

mesmi. Pojemanje magnetizacije je posledica gibanja delcev v živem tkivu

in tudi čiščenja organov. Zato opazovanje pojemanja deloma omogoča študij

aktivnosti in čiščenja teh organov.

Bioelektrična aktivnost v človeškem telesu

Biološko celico obdaja membrana, ki selektivno prepušča različne vrste

ionov. Zato nastane med zunanjostjo in notranjostjo celice razlika ionske

koncentracije. V stacionarnem stanju opazimo med zunanjostjo in notra-

njostjo razliko potencialov, ki uravnovesi razliko ionske koncentracije. To

razliko potencialov imenujemo transmembranski potencial. Električni dražljaj

spremeni relativno prepustnost celične membrane, to pa povzroči spremembo

ionske koncentracije v celici in s tem tudi spremembo transmembranskega

potenciala. Po določenem času pa se vzpostavi prvotno ravnovesje. Na te

spremembe mislimo, ko govorimo o akcijskem potencialu [3], [4], ki ga po-

vzroči dvig prepustnosti za natrijeve ione (Sl.1). Natrijevi ioni začnejo pro-

dirati v notranjost celice in povzročijo obrat transmembranskega potenciala,

tako imenovano depolarizacijo. Transmembranski potencial zraste na približ-

no -- 40 mV. Temu sledi dvig prepustnosti za kalijeve ione, ki potujejo na-

vzven in vzpostavijo ravnovesni transmembranski potencial pri okrog

— 90 mV. Temu pravimo repolarizacija.

Zamislimo si celico podolgovate oblike z okroglim prerezom. Z akcijskim

potencialom so povezani tokovi skozi membrano. Te tokove opisuje serni-

empirična Hodgkin-Huxleyeva enačba

U 4

[nav]
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-40-

mirovni potencial— 60
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1007 Clepolarizacija — Tepolari Začija -—
Sl. 1. Tipični časovni potek akcijskega potenciala
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V enačbi je U transmembranski potencial, c,, kapaciteta na enoto dolžine ce-

lice, gy,, £gx in g, pa ionske prevodnosti za natrijeve, kalijeve in preostale

ione na enoto dolžine. Prvi člen opisuje kapacitivni tok, druga dva pa sta

ionska tokova natrijevih in kalijevih ionov. Zadnji člen, ki ustreza puščanju,

vključuje vse preostale ionske tokove in je običajno zanemarljivo majhen.

Vsi ionski tokovi so odvisni od razlike med transmembranskim potencialom

in ravnovesnim potencialom za ustrezne ione. Prevodnosti v enačbi (1) niso

konstantne in se spreminjajo s transmembranskim potencialom. Ker so deli

celice v bližini aktiviranega področja še vedno v ravnovesnem stanju, se po-

javi električni akcijski tok med aktiviranim in neaktiviranim področjem ce-

lice, torej v smeri osi x celice, kot odgovor na neenak transmembranski po-

tencial. Akcijski tok depolarizira sosednje dele celice. Tako pojasnimo meha-

nizem širjenja vzburjenja po živčnih in mišičnih celicah. Zmanjšanje akcij-

skega toka na enoto dolžine je enako membranskemu toku na enoto dolžine

0j4/0X — — jx(2/a) (2)

Pri tem je j, gostota akcijskega toka v notranjosti celice, j,, pa gostota trans-

membranskega toka. Za radij celice smo vzeli a. Če je p specifični upor notra-

njosti celice, lahko zapišemo zvezo med gostoto akcijskega toka in spremembo

transmembranskega potenciala vzdolž celice

0U/0x — — O Ta (3)

Z odvajanjem enačbe (3) dobimo

Če to vstavimo v enačbo (1), nastane modificirana Hodgkin-Huxleyeva tele-

grafska enačba, ki opisuje prevajanje električnega signala vzdolž celice

Če se akcijski potencial pri potovanju vzdolž celice ne popači in ne zmanjša,

mora imeti rešitev enačbe (5) obliko

U — ((x—v4b (6)

in ustreza valovni enačbi

O2U/Ox2 — v-? ]2U/0x? (7)

Enačba (5) dobi tedaj obliko

(a]2 p v?) ORU/0t? — c,, OU/0E A- gyalU — Uya) Br(U — Ux) £ galU— V) (8)

Reševanje te nelinearne enačbe (prevodnosti so odvisne od transmembran-

skega potenciala) je precej zapleteno, vendar je numerična obdelava pokazala
dobro u ujemanje med izmerjenimi in izračunanimi podatki (Sl. 2).

Ker je večinoma biološko tkivo razmeroma dober prevodnik, se tokovi

širijo tudi zunaj opazovane celice, po tkivu. Magnetna in električna polja, ki

spremljajo bioelektrično aktivnost, smemo obravnavati kot kvazistatična. Mer-

jenja so namreč pokazala, da je energijski delež signalov s frekvenco nad

1000 Hz zanemarljiv. V tem primeru zapišemo jakost električnega polja zunaj

opazovane celice kot gradient skalarnega potenciala

E-—Yg (9)
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Električno polje je konservativno, tokovi po tkivu pa disipativni. Disipacijo

krije razlika notranje energije zaradi neenake ionske koncentracije na obeh

straneh membran. Ta energija izvira od celičnega metabolizma.

Edini nekonservativni prispevek k celotnemu toku so torej ionski tokovi

v celičnih membranah. Celotno gostoto električnega toka v tkivu, ki ga opi-

šemo kot fiziološki prostorski prevodnik, lahko izrazimo kot

Če se omejimo le na zunanjost celice, ki prenaša električni signal, lahko tok

v notranjosti celice j, prištejemo k transmembranskim tokovom j,, in pri

računanju električnih potencialov in magnetnih polj v okolici celice upošte-

vamo vsoto teh tokov in tokov v notranjosti celice. Vse te tokove opišemo

kot efektivni tokovni izvir. Ker običajno opazujemo električne potenciale

in magnetno polje v veliki oddaljenosti od celice v primeri z njenimi preč-

nimi razsežnostmi, je dovolj, če v teh računih upoštevamo le akcijski tok,

torej tok v notranjosti celice (Sl. 3). Prispevek vsote dveh nasprotnih radialnih

tokov, ki tečeta navzven in navznoter, vsebuje namreč le oktupolne člene in

člene višjih redov, ki z oddaljenostjo zelo hitro pojemajo.

Do sedaj smo opisali eno celico, zdaj pa moramo zajeti vse, ki sodelujejo

pri bioelektrični aktivnosti. Označimo skupno gostoto tokov v vseh teh celi-

cah, torej vsoto tokov j,, z j?. Izraz za skupni tok v fiziološkem prostorskem

prevodniku je potem

j< —oV gt jP (11)

Zaradi ohranitve naboja je skupni tok solenoidalen V j — 0. V neomejenem,

homogenem, izotropnem prostorskem prevodniku dobimo zato električni po-

tencial kot rešitev Poissonove enačbe

O Ve — gi V jp (12)

Za magnetno polje dobimo iz Maxwellovih enačb V X B — u,j. Če vzamemo

rotor te enačbe, dobimo "W x V X B — ; V X j ali

Z(7.B) — V:B — — ugo V X Vg o go V X jp (13)

SI.3. Tokovi v depolarizacijskem delu aksona in njegovi okolici ter nadomestna

shema, pri kateri smo zanemarili vpliv transmembranskih tokov



Ker je magnetno polje solenoidalno, V B-—0, in je V X V gx—0, sledi iz

enačbe (13)

VEB—<—ym V X je (14)

Integralski rešitvi enačb (12) in (14) sta

p(r) < — (4zo)-! | R- V jpdsr R<r—r. (15)

B(r) — (u/4 7) | R-! V X jp dšr (16)

Pri tem vodi krajevni vektor r do točke, v kateri opazujemo električno in

magnetno polje, r' pa do točke v kateri so primarni tokovi. Po Helmholtzovem

izreku je vektorsko polje popolnoma definirano, če poznamo divergenco in

rotor. Načelno sta torej W jP in V X jP neodvisna, zato so tudi ustrezna elek-

trična in magnetna polja neodvisna. Seveda velja to le za homogen, izotropen,

neomejen prostorski prevodnik, kar pa navadno ni niti približno izpolnjeno.

Človeško telo je nehomogeno, V preprostem približku ga lahko obravnavamo

kot omejen prostorski prevodnik, sestavljen iz delov s konstantno električno

prevodnostjo. Ker se električna prevodnost na prehodu z enega področja na

drugo spreminja, se pojavi v enačbi (14 še dodatni člen

Rešitev enačbe je potem

B(r) — (4/4 7) | RV X jp ds r — (unj4 m) f RH VoX V pdšr (18)

V tem približku je V o različen od nič le na mejnih ploskvah med dvema

področjema z različno prevodnostjo. Zato lahko drugi člen izrazimo kot vsoto

ploskovnih integralov po teh mejah

B(r) — (uo/4 7) | RS V X jp dšr - (uo/4 m) X | R-Uo;ja —o) X dS;.2 (19)
i

V drugem členu te enačbe nastopa električni potencial, zato je umljivo, da

v tem primeru električni potenciali in magnetna polja niso več popolnoma

neodvisni med seboj. Podatki iz električnih in magnetnih merjenj se le de-

loma dopolnjujejo in seveda deloma prekrivajo. Biomagnetna merjenja zato

ne dajo vedno popolnoma novih informacij.

Primerjava med bioelektričnimi in biomagnetnimi merjenji pri študiju

bioelektrične aktivnosti v človeškem telesu

Cilj bioelektričnih in biomagnetnih merjenj je dobiti podatke o porazde-

litvi primarnih tokov v človeškem telesu. Z merjenjem magnetnih polj v oko-

lici in električnih potencialov na površini človeškega telesa poskušamo dolo-

čiti električne tokove znotraj telesa. Ker po učinku (električnih potencialih

in magnetnem polju) sklepamo o vzrokih (primarnih tokovih), imamo opraviti

z inverznim problemom. Ta problem ni vedno enolično rešljiv. Merjenje dveh

komponent magnetnega polja — tretjo dobimo iz pogoja V B — 0 — po vsem

prostoru v okolici telesa namreč ne da dovolj podatkov za enolično določitev

treh komponent tokovnega vektorja v notranjosti. To je res tudi, če dodamo

magnetnim merjenjem merjenje električnih potencialov na površini člove-

škega telesa. Zato je treba upoštevati tudi omejitve, ki izvirajo iz fizioloških
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in anatomskih podatkov. Ob tem se pojavi vprašanje, koliko podatkov o po-

razdelitvi primarnih tokov znotraj telesa lahko dobimo iz magnetnih in koliko

iz električnih merjenj. Možnosti električnih in magnetnih merjenj so omejene

s porazdelitvijo primarnih tokov. Vektorsko polje primarnih tokov lahko

vedno razstavimo na vsoto irotacionalnega in solenoidalnega polja

V poenostavljenem primeru neomejenega, homogenega in izotropnega pro-

storskega prevodnika podajata ustrezni električni potencial in magnetno polje

enačbi

gr) < — (4x0) PV je;dšriR — B(G) — (u/4m) 4 V X jp;dšr/R — (2h)

Okviren odgovor na prejšnje vprašanje je preprost: Irotacionalni del porazde-

litve primarnih tokov lahko študiramo z merjenji električnih potencialov,

solenoidalni del pa z merjenji magnetnih polj. V resnici ni čisto tako, ker

zaradi nehomogenosti in omejenosti fiziološkega prevodnika magnetna in elek-

irična merjenja ne dajo popolnoma neodvisnih rezultatov. Pri določanju po-

razdelitve tokov si zato pomagamo z modeli, ki upoštevajo fiziološke in ana-

tomske značilnosti človeškega telesa.

Porazdelitev primarnih tokov lahko podamo z vsoto ekvivalentnih tokov-

nih multipolnih momentov, ki povzročajo enako magnetno polje v okolici

in enake električne potenciale na površini telesa. Zaradi preprostosti vzemimo

homogen prostorski prevodnik V, porazdelitev primarnih tokov, ki nas za-

nima, pa naj bo od nič različna v omejenem delu V'-tega prevodnika. Upora-

bimo vektorski enačbi

V (jP/R) — RE V je -- je. V A/R)

7 X (jp/R) — RE V X jp - 7 (I/R) X je (22)

in upoštevamo, da sta prostorska integrala leve strani enačb (22) enaka nič.

Spremenimo ju v ploskovna integrala in integriramo po sklenjeni ploskvi

zunaj dosega primarnih tokov. Vstavimo to v enačbi (15) in (16) in dobimo

nov par enačb

g(r) — (4 o)-' (je. V (X/R) dsr'

B(r) — (10/4) [ jp X V d/R) dir (23)

1/R lahko razvijemo v vrsto po potencah r';r in ohranimo le člene do drugega

reda

VR <lWr—r <l/(fFPF—2r.r tr?) <

— Ml -r.r/r -(r.r)vri — river -..) (24)

Z operatorjem Y dobimo iz te enačbe

OV (GR) —r/rš - Zr.r)rs—r/iš-... (25)

Izraza za električni potencial in magnetno polje se spremenita v približku

drugega reda v

g(r) — dr o)-[fjP? dšr .r/rš - (jp. (8(r.r) r/r5 —r/B) dšr] — gi(r) £ gar)

(26)
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Br) — (u0/4 7) [[ JP dšr' X r/rš - (je X ((r.r") rjrš —r/m) dir] —

— B;(r) - B:(r) (27)

Z uvedbo ekvivalentnega tokovnega dipola p

— [je d3 r' (28)

izrazimo prispevke prvega reda k električnemu potencialu in magnetnemu

polju takole |

pi(r) — 4zo-ip.r/rs B;(r) — (40/4 7) p X r/rš (29)

Prispevka drugega reda pa lahko zapišemo v razviti obliki

ga(r) — (4 z o 15)-! [3 X yla,,, -- ax) - 3x zla,, A,;)

-- 3 y zla,yz -- A,y) b Azg(3 XE — 1?) -- a,,(5 y? —r?) t a,(3 z? —1r?)] (30)

Ba,(r) — (uy/4 z 15) [3 x z a,, - 3y za,y, - 3 zča,, —3XY A, —

— 3 Y? Ax — 3 Y ZA; Tr r?(a,. — a,,)]
Bs,/(r) — (uy/4 a 15) [3x a,. -3xya,. - 3X Za; — 3X Z Ay; —

— 3 Y Z dy; — 3 z? dog or rd(a,, — 4,:)] (31)

B3,(r) — (uo/4 JU 15) [3 XY dry S 3 y? Ag Tr 3 Z V A.; — 3 x? dy; —
— 3XYa,;j —3ZXA,, - TXa,; —a,,)]

Pri tem smo uvedli tenzor tokovnega kvadrupolnega momenta

Pri razvoju električnega potenciala in magnetnega polja smo se omejili

na člene drugega reda, ker prispevki ustreznih ekvivalentnih multipolnih

momentov višjih redov dovolj hitro padajo. To velja, če opazujemo električno

in magnetno polje v oddaljenosti, ki je večja od dimenzij dela prostora V',

kjer so primarni tokovi različni od nič. Magnetno polje in električni poten-

cial določa v približku prvega reda ekvivalentni tokovni dipol p. V prvem

redu lahko zato dobimo iz električnih in magnetnih merjenj le podatke o tem

tokovnem dipolu. V rezultatih obeh meritev se pojavijo le razlike zaradi ne-

homogenosti prevodnika. Razlika v količini podatkov, ki jih dobimo iz elek-

tričnih in magnetnih merjenj, pa se skriva v členih višjih redov. Za obe to-

kovni porazdelitvi (Sl. da, b) je dipolni prispevek enak nič, ustrezna tenzorja

tokovnega kvadrupolnega momenta pa sta |

YA

M di: a

| Ža

a b C

Sl.4. Tri tokovne porazdelitve, ki nimajo dipolnega člena



0 pd 0 0 0. 0

lag <|0 0. 0 laj] <|—pd 0. 0 (33)

0 0.0 0 0. 0

Enačbi (31) in (32) kažeta, da lahko takšni tokovni porazdelitvi zaznamo

z električnimi in magnetnimi merjenji. Vsota obeh prejšnjih tokovnih porazde-

litev pa da novo konfiguracijo (Sl. 4c). Tej porazdelitvi ustreza antisimetrični

tenzor

0 pd 9

la] <|—pd 0 0 (34)

0 0 0

Električno polje takega tokovnega kvadrupola je v približku drugega reda

enako nič in podatke o njem lahko dobimo samo iz magnetnih merjenj. Sploš-

no velja, da tokovne porazdelitve z ekvivalentnim tokovnim dipolom, enakim

nič, in antisimetričnim tenzorjem tokovnega kvadrupolnega momenta ne

moremo meriti električno. Poseben primer pa je čista simetrična radialna

tokovna porazdelitev (Si.5). Tenzor tokovnega kvadrupolnega momenta, ki

ustreza takšni porazdelitvi tokov, je

pd v 0

[a] — [0 pd 0 (35)

0 0 pd

I[akšna tokovna porazdelitev ne povzroča niti magnetnega niti električnega

polja in podatkov o njej ne moremo dobiti niti z električnimi niti z magnet-

nimi merjenji.

Zapis primarnih tokov z vsoto ekvivalentnih tokovnih multipolov daje

možnost, da vnaprej določimo, kateri podatki so dosegljivi z električnimi in

kateri z magnetnimi merjenji. Takšen zapis primarnih tokov pa omogoča tudi

preprostejšo primerjavo s fiziološkimi in anatomskimi modeli.

SI.5. Radialna tokovna porazdelitev SI. 6 Izvor »električne tišine«
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Preprost model na osnovi predpostavke, da je fiziološki prevodnik homo-

gen, je le zelo grob približek za razmere v človeškem telesu. V bolj realističnih

modelih je zato treba upoštevati nehomogeno zgradbo človeškega telesa, kar

pa lahko seveda zelo močno vpliva na rezultate električnih in magnetnih

merjenj. Trditev ilustrirajmo s posebnim primerom (Sl.6). Če je električni

upor v področju 2 veliko večji kot v področju 1, so električni potenciali v zu-

nanjem področju 3 lahko tako oslabljeni, da jih ni mogoče meriti. V klinični

praksi je ta težava pogosto pri opazovanju zarodkovega elektrokardiograma.

Če vmesna izolacijska plast preprečuje električna merjenja, so magnetna

merjenja lahko bolj učinkovita, ker takšna zgradba prostorskega prevodnika

ne vpliva na magnetne signale. Primerjava med elekitrokardiogramom in mag-

netokardiogramom zarodka je v tem primeru res pokazala prednost magnet-

nih merjenj.

Magnetna merjenja dajo v nekaterih primerih nove podatke, poleg tega

pa so popolnoma neinvazivna, celo dotik med telesom in merilnim instru-

mentom ni potreben. Frekvenčno merilno območje lahko pri magnetnih mer-

jenjih razširimo navzdol do enosmernih signalov. Tega pri električnih mer-

jenjih ne moremo storiti zaradi kontaktnih napetosti na elektrodah. Omeniti

je treba tudi prostorsko ločljivost, ki je pri magnetnih merjenjih boljša, ker

ni treba meriti razlike med vrednostmi na dveh mestih. Največja slabost

magnetnih merjenj pa je v tem, da so v primerjavi z električnimi merjenji

tehnično mnogo bolj zahtevna, ker moramo meriti izjemno šibka polja ob

veliko močnejših motilnih poljih.

Biomagnetna merjenja doživljajo izredno hiter razvoj. Rezultati iz zad-

njega desetletja, predvsem možnost študija prevodnega sistema v človeškem

srcu s fino strukturo magnetokardiogramov visoke ločljivosti in na področju

magnetoencefalografije, so takšni, da postajajo danes biomagnetna merjenja

že obetavna za klinično uporabo.
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NAVODILO AVTORJEM ZA PRIPRAVO ROKOPISA

Rokopis mora biti natipkan v dveh izvodih (drugi izvod je lahko kseroks kopija)

na belem papirju formata A4, z dvojnim razmikom in vsaj 2cm širokim robom

na vseh štirih straneh. V tekstu morajo biti vse besede, ki naj bodo postavljene

kurzivno, in vsi matematični simboli podčrtani z valovito črto. Besede in simboli,

ki morajo biti stavljeni polkrepko, pa podčrtani z ravno črto. Podrobnejša navodila

so v Obzorniku mat. fiz. 21 (1974) 62—64. Pri korekturah na krtačnih odtisih upo-

rabljajte dogovorjene oznake.
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ASTRONOMIJA V OSNOVNI ŠOLI

BORIS KHAM

A 95.10-a

Članek obravnava razloge za to, da v pouk fizike vključimo praktične vaje iz

astronomije. Podrobno navede pet vaj, ki jih lahko izpeljemo z osnovnošolci.

ASTRONOMY IN PRIMARY SCHOOL

In the article motives io include astronomical exercises in physics lessons are

presented. Five exercises are described that can be done by primary school pupils.

V preteklih letih smo v pouk osnovnošolske fizike vnesli obilo samostoj-

nega in eksperimentalnega dela učencev. Vendar se zdita pri poglavju Zemlja

in Osončje premalo poudarjeni opazovanje in merjenje v astronomiji. Učenci

Si sicer pridobijo nekaj teoretičnega znanja in spoznanj o astronomiji, prak-

tičnega občutka za merjenje pa ne. Sestavek navaja pet astronomskih vaj, ki

jih lahko vključimo v pouk fizike ali v fizikalni krožek. Vse sem večkrat prak-

tično izvedel z učenci osnovne šole Prežihov Voranc v Ljubljani in osnovne

šole Tomo Brejc v Kamniku. |

Opazovanje nebesnih objektov

Učenci spoznajo zvezdnato nebo in sami opazujejo in svoje ugotovitve pri-

merjajo z zvezdno karto. Opazujejo in skicirajo meglice, galaksije, planete

in Luno in svoje skice primerjajo s fotografskimi posnetki. Potrebujejo dalj-

nogled in zvezdno karto, na primer Presekovo ali Kunaverjevo. Že v razredu

poiščejo značilna ozvezdja in nekatere najbolj znane, dobro vidne objekte, npr.

M 31, M13, M4. Zvečer se odpravimo na plano, pozimi lahko že okoli 17h,

ter si ogledamo nekaj značilnih ozvezdij, Veliki voz, Mali voz, Kasiopejo,

Orion, in jih primerjamo s podobami na zvezdni karti. Potem ponovimo opa-

zovanje z daljnogledom. Učenci naj dalj časa opazujejo z daljnogledom. Opo-

zarjamo jih na značilnosti planetov in dvojnih zvezd.

Io je osnovna vaja, saj učenec le v naravi dojame razsežnost ozvezdij.

Skica v knjigi ne pove dovolj. Za vajo ni nujno potreben astronomski daljno-

gled, že z dobrim dvogledom vidimo kakšno meglico. Mimogrede lahko opo-

zorimo na značilnosti in zgradbo daljnogleda. Če se učenci malo potrudijo

in opazovanja zabeležijo, bodo laže razumeli stare narode in njihove astro-

nome, ki so s prostim očesom odkrili marsikatero zanimivost. Ob posebnih

nebesnih pojavih, na primer mrkih, organiziramo opazovanja.

Določitev smeri sever-jug in opoldanske višine Sonca

Učenci spoznajo, da lahko s preprosto palico določijo smer sever-jug, da

se opoldanska višina Sonca med letom spreminja, in iz tega sklepajo, da se

spreminja tudi deklinacija Sonca. Potrebujemo gnomon, uro in astronomske

efemeride. Gnomon je poljubno dolga, zgoraj ošiljena palica, ki jo zabodemo

pravokotno na vodoravno podlago. Okoli gnomona narišemo krog in opazu-

jemo, kdaj se senca palice dotakne kroga dopoldne in kdaj popoldne. Dotika-

lišči povežemo in poiščemo središče dobljene tetive. Ko povežemo središče
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tetive z gnomonom, dobimo smer se-

ver-jug. Višina Sonca je kot, pod kate-

rim padajo sončni žarki na Zemljo, in

jo določimo iz zveze tgh — V/T'. Pri tem

sta Z in / izmerjeni višina gnomona in

dolžina sence.

Vaja je zanimiva zato, ker dopolnju-

je poglavje Zemlja in Osončje [1]. Z njo

lahko pokažemo, kako se orientiramo

v naravi. Dolžino sence merimo vsak

dan točno opoldne. V razredu si nare-

dimo veliko razpredelnico in vanjo

sproti vpisujemo meritve. Tako učenci

sami opazijo, da se jeseni senca daljša

in se nato ob zimskem obratu začne

spet krajšati. Višino lahko izračunamo

v matematičnem krožku, kjer ne bo te-

Žav s trigonometričnimi funkcijami. Za-

nimivo je narisati višino Šonca in dol-

žnio sence v odvisnosti od časa. Prva

krivulja pada, druga pa se dviga, če

smo začeli jeseni (Sl.1 in 2).

Sl.1. Učenca osnovne šole Prežihov Vo-

ranc merita solarno konstanto s svin-

čeno ploščo, pritrjeno na teleskop

čift]

DATUM NA | | | | DATUMZA 1X. zalo VOST, FORE TI Biti H h i :1343 METIA ; UL sv. RJA 3X. IX ŽxU 261 tod SIH lčič HA
1984

SI. 2. Izmerjena dolžina sence / v odvisnosti od časa f (dolžina gnomona / 138 cm)

(levo) in izračunana višina Sonca / (desno)

Merjenje zornega kota Sonca in opazovanje njegove aktivnosti

Pri tej vaji učenci spoznajo površje Sonca in določijo njegovo aktivnost.

Potrebujejo astronomski daljnogled, zaslonko, zaslon in temno krpo ter astro-

nomske etemeride. Na zaslonu, ki je v senci, opazujemo sončno ploskvico in

skiciramo njegovo površje. Aktivnost Sonca določa Wolfovo število w —

-— 105 - p, v katerem je s število skupin peg in p število peg.



Zorni kot Sonca je kot, pod katerim vidimo premer Sonca z Zemlje. Za-

radi navideznega vrtenja neba opiše točka na Soncu v času t kot a — o t cos č.

Pri tem je kotna hitrost navideznega vrtenja neba wo — 15%/h — 15'/min in d

deklinacija središča Sonca, ki jo razberemo iz astronomskih efemerid. Na za-

slonu načrtamo dve pravokotnici, x in y. Čas t izmerimo takole: ko se slika

Sonca dotakne premice y na eni strani, pritisnemo na stoparico in jo usta-

vimo, ko se je dotakne na drugi strani. Med uro fizike opravimo dve ali tri

meritve in ocenimo zorni kot.

Če spremljajo aktivnost vsak dan, lahko učenci sami doživljajo, da se na

Soncu neprestano kaj dogaja. Drugi del vaje je namenjen samo spretnim opa-

zovalcem in merilcem in ga lahko podrobno izpeljemo pri fizikalnem krožku.

Učence najbolj preseneti dejstvo, da ima Sonce pege in da morajo biti po-

zorni in natančni, če želijo dobiti dobro meritev. Nalogo poglobimo z dodat-

nimi razmišljanji: Ali se zorni kot spreminja? Ali je Wolfovo število odvisno

od tega, kakšen daljnogled imamo?

Vajo lahko še popestrimo, če ocenimo premer Sonca 2 R, z zvezo 2 R;/a —

— 241/360, v kateri je r astronomska enota r — 1,5.108 km, to je srednja

oddaljenost Zemlje od Sonca, in a izmerjeni zorni kot. Učenci dobijo občutek

za velikost Sonca. Dobljeni rezultat primerjajo z že znanimi podatki, ocenijo

lahko relativno in absolutno napako in vse povežejo z obravnavanjem te snovi

pri fiziki in matematiki [2], [3]. Sami potem ocenijo, kako dobra je bila me-

ritev. V šolskem letu 1982/83 so učenci osnovne šole Prežihov Voranc merili

25-krat in dobili za zorni kot poprečno vrednost a — 0,52? in za premer Sonca

2 R, — 13,8.105 km.

Zorno polje teleskopa

Učenci spoznajo eno od karakteristik teleskopa. Naučijo se, da morajo biti

pri opazovanjih potrpežljivi in da z naglico nič ne dosežejo. Ugotovijo, da je

zorni kot teleskopa odvisen od povečave. Naučijo se uporabljati efemeride in

se spoznajo z ekvatorskim nebesnim koordinatnim sistemom. Z zornim po-

ljem teleskopa lahko ocenijo kote med nebesnimi telesi. Potrebujejo astro-

nomski daljnogled z več okularji, stoparico, zvezdno karto in astronomske

efemeride. Opazovalec s stoparico meri prehod zvezde preko sredine zornega

polja daljnogleda od pojava (A) do izginotja (B). Zorno polje določimo s ko-

tom, ki ga zajame daljnogled: g — o cos 8; tu je č izmerjeni čas prečkanja

zvezde.

Že merjenje časa pri različnih okularjih pove nekaj o zornem polju. Učen-

ci morajo paziti, da bo zvezda zares potovala po sredini zornega polja. Ob

vaji si lahko zastavimo vprašanja, kakšno povečavo kaže uporabiti pri opa-

zovanju planetov, Lune in kakšno pri opazovanju galaksij.

Ocena gostote svetiobnega toka s Sonca

Učenci spoznajo, da je Sonce izvir energije. Potrebujejo izolirano svinčeno

ploščo, termometer, stoparico in gnomon ali višinomer. Svinčeno ploščo, na

katero lovimo sončno svetlobo, počrnimo s sajami. Potem zasledujemo na-

raščanje temperature plošče, ki jo obseva sončna svetloba. Temperaturo me-

rimo z živosrebnim termometrom, ki ga vtaknemo v izvrtino v plošči. To
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dobro izoliramo, npr. s stiroporom, in preverimo izolacijo tako, da ploščo po-

ložimo v senco posebnega zaslona. Nato začnemo meriti: zasledujemo spre-

minjanje temperature v odvisnosti od časa in narišemo diagram. Potem dolo-

čimo strmino na mestu, kjer je krivulja najbolj enakomerno strma. Višino

Sonca določimo z gnomonom ali višinomerom. Gostoto svetlobnega toka izra-

čunamo takole: j — k dTjdt, koeficient k — m c/S vsebuje maso svinčene plo-

šče m, specifično toploto svinca c in površino počrnjene ploskvice S. V času

dt — ta —tj, se spremeni temperatura za dT — Ta — T..

Že na začetku povejmo, da je vaja zahtevna in primerna za dodatni pouk.

V sedmem razredu pri poglavju o toploti izpeljemo vajo z nekaj učenci tako,

da preverjamo, kako temperatura v senci zaslona ostaja konstantna, na soncu

raste in nato v senci zaslona počasi pada. Narišemo časovno odvisnost tempe-

rature in ocenimo toploto, ki jo je prejela plošča: O — mc AT. Razliko AT

odčitamo kar z grafa, ki ga lahko primerjamo s tistim, ki smo ga naredili,

ko smo zasledovali segrevanje vode [1]. Učencem s tem pokažemo, da se raz-

lične snovi različno segrevajo. Lahko pa nalogo popestrimo tako, da na soncu

istočasno segrevamo enaki količini vode in svinca.

Že ob tej meritvi lahko učencem zastavimo nekaj vprašanj. Pod kakšnim

kotom moramo ploščo nastaviti Soncu? Zakaj jo izoliramo? Zakaj jo počrni-

mo s sajami? Koliko časa naj merimo na soncu? Kaj vpliva na meritev? Vaja

tudi v preprosti obliki pokaže, da je Sonce lahko koristen vir energije. Na

rezultate se lahko spomnimo kasneje v sedmem razredu, ko govorimo o ener-

giji svetlobe [1]. Nalogo z učenci osmega razreda lahko poglobimo, če raču-

najo gostoto svetlobnega toka. Toplotni tok poznajo [lj] in zato jim ni težko

pojasniti enačbe j — P/S.

Naredimo veliko meritev pri različnih višinah Sonca in za vsako narišemo

diagram T(t). Če krivulja ni »lepa«, navadno zaradi atmosferskih motenj, me-

ritve ne upoštevamo. Pri tem zlasti osmošolci lahko poglabljajo znanje o funk-

cijah, saj večkrat slišimo kritike, da imajo pozneje težave s to snovjo.

Z dovolj prizadevnimi učenci lahko naredimo še korak naprej in ocenimo

gostoto svetlobnega toka, ki pade na vrh našega ozračja (»solarno konstanto«)
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jo, in ekstinkcijski koeficient zemeljskega ozračja. Svetlobni tok v ozračju

oslabi in je odvisen od višine Sonca. Opazovanja kažejo, da velja enačba

j — jgertsinh. v kateri je n — </1,08, < je ekstinkcijski koeficient in 4 višina

Sonca." Zapisano enačbo logaritmiramo in dobimo log j — log jo — njsin 4.

Nato narišemo log j kot funkcijo 1/sin 4 in skozi merske točke potegnemo

najboljšo premico. Z ekstrapolacijo do presečišča premice z ordinatno osjo

dobimo j, in s tem še s. Vprašamo se lahko tudi, kolikšno moč seva Sonce:

P — jo4 zr?. Leta 1981/82 so učenci o. š. Tomo Brejc v Kamniku ocenili |,

s 1260 W/ma.

Ne smemo pozabiti, da velja enačba j — m c AT/S At le približno. Upošte-

vati bi morali še sevanje plošče in okolice:

(1 —a)]S4Al — me MfT—T) -—- S(1—a o(TA— TO) At

Pri tem je a albedo in o Stefanova konstanta. Drugi člen na desni podaja raz-

liko med toplotnim tokom, ki ga plošča s temperaturo T oddaja okolici, in

tistim, s katerim okolica pri temperaturi T, obseva ploščo.

Astronomijo lahko vpeljemo tudi v četrtem in petem razredu, med šolo

v naravi. Ob jasnem večeru popeljemo učence na plano in jim razkažemo zna-

čilna ozvezdja in orientacijo po njih. Če imamo daljnogled, pogledamo Luno

in še kakšno zanimivost.

S prispevkom sem želel pokazati, kako lahko astronomske vaje vključimo

v redno šolsko delo ali v dodatni pouk. Izbral sem samo nekaj vaj, ki naj bi

nakazale pot od najlažje do najtežje. Vse sem z učenci naredil po večkrat,

včasih zelo uspešno, drugič pa tudi ne. Predvsem želim vzpodbuditi učitelje,

da bi z vajami učencem približali astronomijo.
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« Pri prehodu skozi zemeljsko ozračje svetloba zvezde oslabi. Vzemimo eno-

staven primer, da je naše ozračje homogena planparalelna plast z višino s <— 10 km

in poprečnim absorpcijskim koeficientom ,, neodvisnim od valovne dolžine svet-

lobe, in da ni loma. Tako je gostota svetlobnega toka ; zvezde na višini 4% nad ob-

zorjem j(h) < jo e-as!sinh, Tu smo z jo označili gostoto svetlobnega toka z zvezde na

vrhu zemeljskega ozračja (Sl. 4).

Iz definicije sija zvezde m — mo — 2,5 log j/j, sledi, da oslabitev svetlobe namesto

z razmerjem j/jo lahko izrazimo tudi z razliko sijev m — mo, torej m — ms <<
— 2,5 log e —as/sinh — 2 5 , s/'sin h .loge <— 1,08 v s/sin 4. Vpeljimo c < 1,08, s in do-

bimo m — mo < ejsinh. Oslabitev svetlobe zenitne zvezde pri prehodu skozi ze-
meljsko ozračje imenujemo ekstinkcijo. S sijem izrazimo ekstinkcijo takole:

m — mo <e<1,08ys. [4]
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Zapis poroča o 16. mednarodni fizikalni olimpiadi v Portorožu od 23. do 30.

junija 1985. Po uvodu z osnovnimi podatki o olimpiadah in udeležencih na tej

olimpiadi so navedene teoretične in eksperimentalne naloge in njihove rešitve.

Dodan je kratek pregled dogodkov na olimpiadi, pregled nagrad in pohval ter

vrstni red držav.

16th INTERNATIONAL PHYSICS OLYMPIAD

The |6th International Physics Olympiad is reported. Theoretical and experi-

mental exercises and their solutions are presented. A short outline of events is

given and the list of prize and diploma winners is guoted.

Uvod

Mednarodne fizikalne olimpiade v Portorožu in Kopru od 23. do 30. junija

1985 se je udeležilo 20 delegacij iz Avstrije, Bolgarije, Kanade, Kube, Češko-

slovaške, Zvezne republike Nemčije, Nemške demokratične republike, Fin-

ske, Velike Britanije, Madžarske, Islandije, Nizozemske, Norveške, Poljske,

Romunije, Sovjetske zveze, Švedske, Turčije, Vietnama in Jugoslavije; skupaj

99 tekmovalcev in 40 spremljevalcev. Francija, Grčija, Italija in Kitajska se

vabilu niso odzvale, pač pa sta Italija in Kitajska poslali opazovalca. Olim-

plada je vzbudila veliko zanimanje v ZDA, ki se do sedaj tega tekmovanja

niso udeleževale: letos so v Portorož poslale dva opazovalca. Udeležba je bila

rekordna po številu držav in po številu tekmovalcev.

O pripravah na olimpiado smo v Obzorniku že poročali [1]. Fizikalna olim-

piada je mednarodno tekmovanje srednješolcev v teoretičnem in eksperimen-

talnem znanju fizike. Naloge pripravi organizator tekmovanja in jih na večer

pred tekmovanjem predstavi mednarodni komisiji, ki jo sestavljajo vodje

delegacij. V diskusiji o predlogih, ki poteka vzporedno v angleščini in ru-

ščini, imajo vodje pravico naloge spremeniti ali zavrniti, ne morejo pa pred-

lagati novih ali spreminjati eksperimentalne opreme. Ko dosežejo soglasje

o nalogah, jih vodje prevedejo v jezike udeležencev. Za pregled in ocenje-

vanje izdelkov je zadolžen organizator, vodje pa imajo možnost, da predhodno

pregledajo ocene in dajo pripombe. Vodje to možnost običajno izkoristijo in

skupaj s popravljalci pregledajo skoraj vsak izdelek. Na ta način se tudi

izognejo napakam zaradi jezikovnih težav.

Fizikalne olimpiade imajo precejšen vpliv na raven pouka fizike v drža-

vah udeleženkah, še posebej tam, kjer imajo razvit sistem izbirnih tekmovanj.

Znanje tekmovalcev raste iz leta v leto. Tako danes na šolskih in regionalnih

tekmovanjih rešujejo naloge, ki so bile nekoč na olimpiadi. Zelo je napre-

dovala tudi oprema na eksperimentalnem delu tekmovanja; vzporedno z njo

pa raste zahteva po novih eksperimentalnih znanjih in spretnostih. To je

postalo še posebej očitno na olimpiadah v ZR Nemčiji in na Švedskem, kjer

so morali učenci delati z osciloskopi, laserji in razmeroma zahtevnimi elek-

tronskimi vezji.
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Pri pripravi nalog in eksperimentalne opreme za olimpiado v Portorožu

smo se zavedali pomena tekmovanja. Zato smo Želeli izbrati in pripraviti

naloge, ki bi

(1) obravnavale nova področja fizike,

(ii) zahtevale originalen pristop k reševanju, osnovan bolj na fizikalnem

razumevanju in intuiciji kot na računskih spretnostih,

(111) imele praktičen in ne zgolj akademski značaj,

(Iv) presegale raven državnih tekmovanj.

Pri eksperimentalni opremi smo želeli vključiti nove merilnike, ki jih doslej

še niso uporabili na olimpiadah. Pri prvi eksperimentalni nalogi (A) smo kot

del merilnega sistema uporabili računalnik, ki je dandanes že postal nepo-

grešljiv del eksperimentalne opreme. Ker so nekateri učenci nanj navajeni,

drugi pa ne, smo izbrali poskus, pri katerem je bilo meritev mogoče izvesti

s preprostimi ukazi. Bili smo prijetno presenečeni, saj so se vsi tekmovalci

hitro znašli in z računalnikom niso imeli težav. Pri drugi eksperimentalni

nalogi (B) smo pripravili merilnik za gostoto magnetnega polja. Naloga je

zahtevala veliko fizikalnega znanja, eksperimentalnih spretnosti in iznajdlji-

vosti.

V razmeroma kratkem času, ki so ga imeli tekmovalci na voljo za oba

poskusa, so nekateri pokazali precej eksperimentalne spretnosti in iznajdlji-

vosti. V celoti gledano pa so bili tekmovalci uspešnejši na teoretičnem delu

tekmovanja. Vsekakor uspeh na eksperimentalnem delu odraža raven fizi-

kalne izobrazbe v določeni državi, saj se da reševanja računskih nalog naučiti

tudi z individualnim delom. Zato ne preseneča uspeh Velike Britanije, ZR

Nemčije in Švedske, dežel, v katerih posvečajo veliko pozornost prav ekspe-

rimentalni izobrazbi.

Naloge

1. Mlad radioamater vzdržuje radijsko zvezo z dekletoma v dveh mestih.

Antenski sistem namesti tako, da sprejema dekle v mestu A najmočnejši

signal, ko dekle v mestu B ne sprejema signala, in obratno. Sistem sestavljata

navpični paličasti anteni, ki sevata v vodoravni ravnini enakomerno v vseh

smereh.

a) Poišči razmik med palicama, orientacijo sistema in fazno razliko med

električnima signaloma, priključenima na anteni, v primeru, ko je razmik

med palicama najmanjši.

b) Poišči številsko rešitev, če deluje oddajnik pri frekvenci 27 MHz in ga

postavi fant pri Portorožu. Po zemljevidu je kot med smerjo proti severu

in smerjo proti mestu A (Koper) 72? in med smerjo proti severu in smerjo

proti mestu B (Buje) 1579, |

2. Na palici v obliki kvadra z robovi a, b, c (a » b >» c), iz polprevodnika

InSb teče tok 7 vzporedno z robom a. Palica je v zunanjem magnetnem polju

z gostoto B, ki je vzporedna z robom c. Magnetno polje toka Z smemo zane-

mariti. Nosilci naboja so elektroni. Povprečna hitrost elektronov v polpre-

vodniku je v — y E, če nastopa le električno polje z jakostjo £. Koeficient ,,

imenujemo gibljivost. Če nastopa še magnetno polje, pa električno polje ni

več vzporedno z električnim tokom. To je Hallov pojav.

a) Določi velikost in smer jakosti električnega polja, ki poganja po palici

tok [.



b) Izračunaj razliko električnega potenciala na nasprotnih mejnih plosk-

vah v dveh točkah v smeri roba Db.

c) Poišči analitični izraz za enosmerno komponento potencialne razlike iz

vprašanja b), če električni tok in gostota magnetnega polja sinusno nihata

takole: / — /5sin of in B — B,sin(ot - 6). Č

d) Zamisli si in pojasni načrt za električno vezje, s katerim na osnovi re-

zultata iz vprašanja c) izmerimo električno moč, ki jo rabi naprava, priklju-

čena na izmenično napetost. |

V ImnSb sta gibljivost elektronov 7,8 m?/Vs in gostota elektronov 2,5.

. 1022 m-3, tok / meri 1,0A, gostota magnetnega polja BO0,10T, rob b 1,0 cm,

rob cl 0: mm. Osnovni naboj je 1,6.10-9 As,
3. V okviru vesoljskega raziskovalnega programa presojajo dva načina za

izstrelitev vesoljske sonde iz Osončja. Po načinu l izstrelijo sondo z dovolj

veliko hitrostjo, da ubeži iz Osončja naravnost. Po načinu 2 pa naj se sonda

približa enemu od zunanjih planetov, ki naj ji spremeni smer gibanja in ji

da hitrost, potrebno, da ubeži iz Osončja. Privzemi, da se sonda giblje samo

v gravitacijskem polju planeta ali Sonca, pač glede na to, katero od obeh je

močnejše. |

a) Določi najmanjšo hitrost in njeno smer glede na gibanje Zemlje, ki naj

jo doseže sonda po načinu 1. x

b) Naj izstrelijo sondo v smeri iz vprašanja (a), a z drugo hitrostjo. Do-

loči hitrost sonde, ko križa Marsov tir, to je njeno vzporedno in pravokotno

komponento glede na tir. Marsa ni v bližini, ko sonda križa njegov tir.

c) Naj sonda vstopi v gravitacijsko polje Marsa. Poišči najmanjšo hitrost,

s katero moramo izstreliti sondo glede na Zemljo, da bo ubežala iz Osončja.

Namig: Iz odgovora na vprašanje (a) poznaš najugodnejšo velikost hitrosti

in smer, da ubeži sonda iz Osončja naravnost, potem ko zapusti gravitacijsko

polje Marsa. (Natančne lege Marsa med srečanjem s sondo ni treba poznati.)

Poišči zvezo med to hitrostjo in komponentama hitrosti, preden vstopi sonda

v gravitacijsko polje Marsa, ki si ju določil pri vprašanju (b). Kaj lahko poveš

o ohranitvi energije sonde?

d) Oceni največji relativni prihranek energije pri načinu 2 glede na na-

čin 1. | | |

Privzemi, da se gibljejo planeti okoli Sonca po krogih v isti smeri in v isti

ravnini. Zanemari zračni upor, vrtenje Zemlje okoli lastne osi in energijo,

ki je potrebna, da sonda ubeži iz gravitacijskega polja Zemlje. Hitrost Zemlje

okoli Sonca meri 30 km;s, razmerje oddaljenosti Zemlje in Marsa od Sonca

pa 2/3.

A. Z asleduj pospešeno in pojemajoče vrtenje medeninaste valjaste plošče,
ki jo poganja električni motor na izmenični tok. Iz merjenih časov za pol

vrtljaja nariši zasuk, kotno hitrost in kotni pospešek plošče v odvisnosti od

časa. |

Določi navor in moč motorja v odvisnosti od kotne hitrosti.
Potrebščine: 1. električni motor za izmenično napetost z medeninasto ploščo,

2. indukcijsko tipalo,

3. večkanalna stoparica. |

Navodilo: Indukcijsko tipalo zazna nastavek, pritrjen na plošči, ko se mu

kateri od obeh približa bolj kot na 0,5 mm, in odda signal stoparici. Kot sto-



parica je programiran računalnik, ki zabeleži trenutek, ko tipalo zazna bliža-

joči se nastavek, in ga shrani v spomin. Stoparico sprožiš s pritiskom na eno

od naslednjih tipk:

5 — merjenje.

Merjenje se ne prične takoj. Stoparica čaka, dokler ne izbereš števila

meritev, to je števila zaporednih prehodov nastavka,

3 — 30 meritev,

6 — 60 meritev.

Na vsakega od teh ukazov se začne merjenje. Ko je merjenje končano,

pokaže računalnik izide grafično. Na navpično os nanese časovni razmik

med zaporednima zaznavama nastavka in na vodoravno zaporedno šte-

vilko zasuka.

1 — pokaže izide s preglednico.

Prvi stolpec podaja zaporedno številko zaznav, drugi čas od začetka

merjenja in tretji časovni razmik med zaporednima zaznavama.

Za primer 60 meritev:

8 — pokaže prvo stran preglednice,

2 — pokaže drugo stran preglednice,

4 — pokaže izide grafično.

Merjenje lahko prekineš, preden je doseženo predpisano število zaznav,

s tem, da pritisneš katerokoli tipko in poskrbiš, da se plošča zasuče še za pol

vrtljaja.

Motor poganja izmenična napetost z efektivno vrednostjo 25 V. Priključiš

ga s stikalom na podstavku. Včasih je morda treba ploščo rahlo pognati ali

udariti po podstavku, da se plošča začne vrteti. — Vztrajnostni moment vrte-
DOC0O go rjolo Mori (140 - 05) .10—6 kg m?.čega SC UACia HiCKTi jav,Uu

B. Določi lego središča magnetov in njihovo orientacijo. Magneti so skriti

v črno pobarvanem kvadru. Koordinate x, y in z meri od rdečega ogla (Sl.2).

Določi komponento z vektorja gostote magnetnega polja B v ravnini x,y pri

z — 0 z merilnim sistemom, ki si ga poprej umeril. Poišči največjo gostoto B

v polju dodatnega magneta. Oznaki polov na magnetu razloži sl.l.

Potrebščine: |. trajni magnet, kakršni so skriti magneti,

2. indukcijska tuljava, 1400 navojev, upor 230 ohm,

3. dve tuljavi za ustvarjanje polja s po 8800 ovoji in uporom

990 ohm,

4. črno pobarvan kvader s skritimi magneti,

5. voltmeter (priporočeni obsegi 1 V, 3 V, 10 V),

6. elektronsko vezje (priporočena napetost 24 V),

71. ampermeter,

8. spremenljivi upornik z uporom 3,3 kohm,

9. spremenljivi stabilizirani napetostni izvir 0—25 V z omeje-

valnikom toka,

10. žice,

11. luknjasta plošča za podstavek,

12. gumijasti obročki, na primer za pritrditev tuljav,

13. zobotrebci,

14. ravnilo,

15. nit.
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Navodilo: Magnete smeš iskati le tako, da ne poškoduješ kvadra.

Končno poročilo naj vsebuje rezultate, enačbe, diagrame in risbe. Slednje

naj nadomestijo pisane pripombe, če je le mogoče.

ani

B| sever — moder 
y,

B | jug — rdeč |

Slika | Slika 2

Ustrezno rabo merilnika inducirane napetosti kaže sl. 3. Merilnik reagira

na magnetno polje. Največja napetost je sorazmerna s spremembo magnet-

nega pretoka.

Spremenljivi stabilizirani napetostni izvir priključiš ali izključiš s tipkov-

nim stikalom levo spodaj ON (1) ali OFE (0). Z levim gumbom (U) z vrtenjem

v smislu urnega kazalca večaš izhodno napetost. Priporočena napetost je 24 V.

Zato naj bo preklopnik v legi 12 V—25 V. Z vgrajenim instrumentom izmeriš

izhodno napetost U ali izhodni tok 7, glede na lego ustreznega preklopnika

(V, A). Da dobiš izhodno napetost, mora biti desno stikalo v legi »VKLOP«.

Z desnim gumbom (l) omejiš tok pod nastavljeno vrednost. Če ga zasučeš do

kraja v smislu urnega kazalca, zmore izvir največ 1,5 A. — Indukcijska kon-

stanta meri ,0 — 1,2.10- Vs/Am.

Slika 3. 1 — gumb za vrnitev v začetno lego

0 — potenciometer za nastavitev ničle

Rešitve nalog

1. a) Električna signala v antenah | in 2 zapišimo kot E; — E,cosot in

E, — E,cos(o t -- 8). Pogoj za ojačenje v smeri 3, (sl. 4) zapišemo kot

(277 a/)) sin 3, — č — 27 N

pogoj za oslabitev v smeri Jp pa kot

N in N' sta poljubni celi števili.



Kota 3, in 3p povezuje enačba: 3, —

—B-— 0, pri tem je kot g dan.

Zdaj je treba poiskati parametre a, 94,

95, 0,N in N", ki zadoščajo zapisanim enač-

bam, tako da bo a najmanjši.

Najprej se znebimo 8 tako, da od prve

enačbe odštejemo drugo

a sin 9, —asin $p — 2(N —N' — 3)

Z, adicijskim izrekom za sinus in zvezo

dg — da — po dobimo

Slika 4 ža COS (8, — šp) sinšg < AXN—N-— 3

a — /N—N— ij 2cos(0, — ž p)sinš g

Izraz postane najmanjši, ko je imenovalec največji, torej ko velja

cos(], —4g)<1 in d, <šg

števec pa najmanjši: N—N' -— 1.

Rešitev je

acdj4dsinšo, da —$g, dg— —šygy Ii de—ša—2aN (61.)

Če privzamemo, da je N — 0, ne izgubimo nobene fizikalno zanimive re-

šitve.

b) Valovna dolžina je 3) — c/v — 11,1 m in kot med smerema proti A in B

meri pg — 157% — 721 — 850, Najmanjša razdalja med antenama je a <— 4,1 m,

simetrala zveznice anten pa tvori s smerjo proti severu kot 729 -- 42,59 —

— 114,59, (2 t.)

2. a) Najprej izračunamo hitrost elektronov iz znanega toka [I— jS.-—

— negvbc

v — l/ne, b c — 25 m/s

Komponenti jakosti električnega polja izračunamo iz hitrosti elektronov.

Komponenta v smeri toka meri



Komponenta v smeri roba b je enaka Lorentzovi sili na elektron, deljeni

z osnovnim nabojem

Velikost jakosti električnega polja je

— (Ej? Ej"): — 4,06 V/m | (0,5t)

Njeno smer kaže sl.5. Smer hitrosti elektronov je nasprotna smeri elek-

tričnega toka.

b) Napetost meri Ujy — £; b — 25mvV. lt.)

c) Napetost Ug je v tem primeru odvisna od časa Uj — / Bb/ne,b c —

— (1, Bo/n e,c) sin otsin(wt - 8). Njena enosmerna komponenta je enaka

GA By/2 n ep c) cos ča. (31.)
d) Možno vezje kaže sl. 6.

3." a) Da sonda zapusti Osončje naravnost, mora biti vsota njene kinetične

in potencialne energije v gravitacijskem polju Sonca pozitivna

m vač/2 —G m MJRg >0

m je masa sonde, v, njena hitrost glede na Sonce, M masa Sonca, R; razdalja

Zemlje od Sonca in G gravitacijska konstanta. Uporabimo izraz za hitrost

kroženja Zemlje okoli Sonca v; — (G M/R,)": in tako izločimo G in M iz po-

goja:

Naj ima sonda pri izstrelitvi z Zemlje hitrost v, in naj bo 9 kot med vp

in v, (Sl. 7). Tedaj iz zvez v, — v," -- vp in vy? — 2vp? sledi

v, 2 - Žv, Vp COS V — vp? — ali '— vc — vg(—cos 9 - (1 - cos? 3)""]

Slika 7 Slika 8

% Rešitev ponuja odgovor na vprašanje: 113 — Ali lahko vesoljska ladja, ki se

giblje po eliptičnem tiru okoli Sonca, zaradi srečanja s kakim planetom brez upo-

rabe motorjev pobegne iz Osončja?, ki ga je postavil T. Pisanski (Obzornik mat.
fiz. 25 (1978) 169. (Op. ur.).
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b) Naj bo v, hitrost sonde glede na Zemljo in v, njena hitrost glede na

Sonce. Iz rešitve (a) vemo, da v najugodnejšem primeru velja v, — v;' - vy.

Iz ohranitve vrtilne količine sonde

m v, Rp < MVy Ry (11)

in ohranitve energije

m v,?/2 — G m MJRy — mivjji -- vj?)/2— Gm M/Ry (1t.)

dobimo za eno komponento hitrosti (Sl.8) v, < (v, - vg)r in za drugo

vi — [ve - vp)? (l — ra) — 2vp?(1 — r)]". Pri tem smo vpeljali r — Rz/Ry.
(1 t.)

c) Najmanjša hitrost sonde glede na Mars, da zapusti sonda Osončje na-

ravnost, je v;' — vy(Y2—1 v smeri vzporedno z Marsovim tirom (vy je hi-
trost Marsa okoli Sonca). Mars ima potemtakem nalogo, da spremeni smer

in velikost hitrosti sonde tako, da ima sonda potem, ko zapusti Marsovo

gravitacijsko polje, hitrost v,". (1 t.)

V Marsovem opazovalnem sistemu se energija sonde ohranja. To ne velja

v sončnem opazovalnem sistemu, v katerem srečanje opišemo s prožnim

trkom med sondo in Marsom; pri tem se ohranita skupna polna energija in

gibalna količina. Hitrost sonde pred vstopom v Marsovo gravitacijsko polje

je torej v Marsovem opazovalnem sistemu enaka hitrosti, s katero sonda

zapusti njegovo gravitacijsko polje. Komponenti hitrosti pri vstopu sta:
PA

v," — v, in vi" — vj — vy, torej velja

Z izrazoma za v, in v, iz rešitve b), lahko poiščemo zvezo med hitrostjo

izstrelitve z Zemlje v,' in hitrostjo v;', v," — vy(V 2 — h

(vo' -t vp)? (1 — r?) — 2vp?(1 —rn) t vy?

(vo vp)? re — 2vylvy' £ Vr) r — vy?(3 —2 2)

Hitrost kroženja Marsa okoli Sonca je vy — (G M/R,,)": — r" vp, tako da

lahko enačbo za v," prepišemo v obliko

(vy -- vp)? — 2F'i: vglv - vg) £ (2V2r—2) vi? — 0 (1)

dO- Da 20r

IG VE

20 10:

101

ha Lup
4, l i ra Ku pa

1 2 3 ds H 1 2

Sl.9. Časovna odvisnost zasuka Sl. 10. Časovna odvisnost kotne hitrosti
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Njena smiselna rešitev je

vp — VE[FR—I £ (rš 4 2—2Y/2r)"] — 5,5 km/s (1t)

Relativni prihranek energije meri

(W, NU W)/W, — (v? — vp'2)/v,'? — 0,80 (1 t.)

W, je energija potrebna za izstrelitev sonde z Zemlje po načinu 1, W, pa

po načinu 2.

A Časovno odvisnost zasuka pri pospeševanju diska kaže Sl.9. Kotno hi-

trost diska izračunamo takole

oli) — a/(t,g —L)

ustrezni čas vzamemo na sredini intervala (t;,f;,,), se pravi tf — 3(f;,, 2;).

Izračunane kotne hitrosti kažeta tabela 1 in Sl.10.

Iz dolžine časovnih intervalov za pol obrata pri enakomernem vrtenju

lahko ugotovimo, da zobca nista postavljena povsem simetrično. To sistema-

tično napako lahko pri računu kotne hitrosti zanemarimo, moramo pa jo

upoštevati pri računanju kotnega pospeška. Napaki se izognemo, če računamo

s časovnimi intervali za en obrat

alt) — do; At;

kjer sta

dt; — tojja — la; — A; — Žari (taj, 3 — boija) — žar (teja — bei)

in t;' — taj,,. Časovno odvisnost kotne- h

ga pospeška kažeta tabela 1 in Sl. 11.

Navor M in moč P, ki sta potrebna | l |
za pogon diska (koristni navor in ko- ' " j

ristno moč), izračunamo iz zvez M(t) —

— a(t) in P(t) < M(b) o(£). Vztrajnostni

moment diska, J — 14,0 -05). 2" ua
.10-5 kg m?, je dan. Ustrezno kotno hi- | oi

trost razberemo z interpolacijo s Sl. 10. | j

S tem diagramom tudi določimo odvis- H zo ; ea adi

nost navora IA IMoCI od kotne hitrosti SI.11. Časovna odvisnost kotnega po-
(SI. 12 in 13). speška

d0-

T0'Nm

JO

zOr

10

m zo 36 | lar. 0 mo

Sl. 12. Koristni navor (polna črta) in Sl. 13. Koristna moč (polna črta), polna

polni navor (črtkano) v odvisnosti od moč (črtkano) in izgube moči zaradi

kotne hitrosti trenja (črtica in pika) v odvisnosti od

kotne hitrosti
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Tabela 1. Merski rezultati pri nalogi A

i t At Na t? w 4

ms ms rd ms sT! sT?

0,0 0,0 | .
212,0 5,18

NA 1156, 3 8,60

| | 1798,6 11,40

UM 22871,2 14, 36

Na 2689, 6 17,46
10 2719,5 179,9 28,27 2859,4 19,66

li 2939,3 > 159,8 31,42 3008, 6 22,65 18,22

12 3078,0 138,7 34,56 ;139,9 25,38

13 3201,8 123,8 31,10 3256,6 28,66 25,46

14 3311,4 109,6 yo, 84

15 3412,1 100,7 43,98 3301,€ zi, GO 26,89
3458,2 8 34,11

16 3504,2 92,1 47,12 z5uT, 8 36,07

17 3591, 3 87,1 50, 27 3632,4 38. 27 21,72

18 3673,4 82,1 53,41

19 3153,5 80,1 56,55 2Ti3,o 39, ZZ 4,76
3192,8 39,97

(NE 3952,7 39,22

4112, 39,67

4272,4 39,42

26 4312,2 19,17 78,54

Polni navor in polno moč motorja do-

bimo tako, da koristnemu navoru pri-

ka štejemo navor trenja in pri moči upo-

števamo ustrezno izgubo moči. Z mer-

no jenjem kotne hitrosti med ustavljanjem
diska (Sl. 14) ob izključenem motorju

lahko določimo navor trenja. Je približ-

z ; s . ——- no konstanten in meri: M' — 311 1: 0,3).

SI. 14. Časovna odvisnost kotne hitrosti :19" Nm. Polni navor in polno moč ka-
pri zaviranju žeta Sl. 12 in 13.
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Shema točkovanja rešitve:

1. Ocena napak 1t.

2. Graf za časovno odvisnost kota zasuka 11.

3. Graf kotne hitrosti in pospeška 3t.

4. Pravilna izbira časov za kotno hitrost 1 t.

5. Koristni navor kot funkcija kotne hitrosti 2t.

(samo časovna odvisnost navora 1 ft.)

6. Koristna moč kot funkcija kotne hitrosti l t.

7. Določitev izgub zaradi trenja it.

B Dva trajna magneta v obliki kvadra z robovi 50 mm, 20 mm in 8 mm sta

skrita v bloku iz stiropora z dimenzijami 50 cm, 31cm in 4,0 cm. Stranice

magnetov so vzporedne s stranicami bloka. Eden od magnetov (A) je postav-

ljen tako, da vektor gostote magnetnega polja B (Sl.1) kaže v smeri osi z,

drugi magnet (B) pa tako, da kaže B v smeri osi x ali y (Sl. 15).

Nea Va ZNEYNo se — —
Vili A

7) A (AEERAA WE
SI. 15. Magneta v bloku (tipična razporeditev) SI. 16. Navidezna magneta na

mestu magneta B

Lego in orientacijo magnetov določimo tako, da opazujemo silo na do-

datni magnet. To najbolje naredimo tako, da dodatni magnet obesimo na

vrvico in ga premikamo nad opazovano površino. Če dodatni magnet obesimo

v vodoravni položaj (ko je njegovo magnetno polje vzporedno z osjo z), ugo-

tovimo tri področja močnih sil, kar nas navede na misel, da so skriti trije

magneti. Dve od teh področij, eno s privlačno silo (področje P na Sl.16) in

drugo z odbojno silo (R), sta blizu skupaj.

Če raziščemo razmere na drugi strani bloka, opazimo, da je v področju

P' sila prav tako privlačna, v področju R' pa odbojna. To je v nasprotju

s predvideno postavitvijo magnetov (Sl.16), ustreza pa polju enega magneta

(SI. 15).

Globino magnetov določimo z merjenjem komponente gostote magnetnega

polja B, v smeri osi z na površini bloka. Izmerjeno vrednost primerjamo

z vrednostjo v diagramu odvisnosti B, od oddaljenosti do površine dodatnega

magneta (Sl.18). Meritev naredimo tako, da indukcijsko tuljavico merilnega

sistema premaknemo iz točke, v kateri merimo gostoto magnetnega polja,

v razdaljo, v kateri magnetno polje praktično pade na nič, in odčitamo naj-

večjo napetost na voltmetru.

Absolutno pa umerimo merilni sistem z magnetnim poljem z znano gostoto.

Najugodneje je, če izberemo magnetno polje v reži med dvema tuljavama.

Meritev shematično kaže Sl. 17.



Gostoto magnetnega polja v reži med tuljavama izračunamo takole

B — wNIj/(2l - d)

N je število ovojev ene tuljave, / njena dolžina, d širina reže in 7 tok skozi

ampermeter. Merimo največjo napetost U, ko indukcijsko tuljavico vzamemo

SE
24V DC

O)

| B

TE
O co 10 20 30 40 50 mm Va

Sl.17. Umeritev merilnega sistema SI. 18. Pojemanje gostote magnetnega

| polja z razdaljo od sredine osnovne

ploskve magneta

iz reže. Občutljivost merilnega sistema določimo iz diagrama, v katerem na

abscisno os nanašamo napetost U, na ordinatno os pa gostoto magnetnega

polja B:

B/U — 0,020 T/V

Največja gostota magnetnega polja meri 0,21 T.

(Natančnejši račun magnetnega polja v reži pokaže, da je resnična vred-

nost le 609/5 zgornje vrednosti. Seveda pa tak račun presega zahtevnost na-

loge.)

Shema točkovanja:

1. Določitev lege v x, y ravnini (ct 1 cm) 11.

2. Določitev orientacije 1t.

3. Globina magnetov (-t 4 mm) 2t.

4. Umeritev (-- 50 9/6) 3t.

5. Slika magnetnega polja 2t.

6. Določitev največje gostote (-£ 50 9/0) 1t.

Kratek pregled dogodkov

Večina delegacij je prispela v Portorož v nedeljo, 23. junija. Vodje dele-

gacij so bili nastanjeni v depandansi hotela Palace, tekmovalci pa v hotelu

Lucija. Uradni začetek olimpiade je bil v ponedeljek v portoroškem Avdito-

riju. Slavnostni govorniki so bili A. Moljk, predsednik Organizacijskega od-

bora, L. Silverberg, generalni sekretar lanskoletne olimpiade na Švedskem,

podpredsednik piranske občine in L. Baban, predstavnik Zveznega izvršnega

sveta, ki je uradno odprl olimpiado. Sledil je kratek koncert.
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Sestanek mednarodne komisije za izbiro teoretičnih nalog se je začel ob

17. uri. Med odmorom so člani komisije dobili hladno večerjo, saj zaradi taj-

nosti nalog niso smeli zapustiti prostorov, v katerih je potekala razprava.

Razpravo in dokončno oblikovanje nalog so končali ob 22. uri. Po tem so

vodje delegacij prevedli naloge v svoj jezik in jih natipkali. Ob dveh zjutraj

je bila večina besedil pripravljena za fotokopiranje.

Teoretični del tekmovanja je potekal v dveh dvoranah, v hotelu Metropol

in v Avditoriju. 'Fekmovalci so začeli z reševanjem ob 8. uri in končali ob

13. uri. Popoldne, ko so se tekmovalci kopali, so vodje delegacij razpravljali

o novem dogovoru o vsebini tekmovanj. Generalni sekretar fizikalnih olim-

piad, Poljak W. Gorzkowski, je skupaj s člani organizacijskega odbora pri-

pravil na podlagi dosedanjega programa nov predlog, v katerega so vključili

tudi nekatera poglavja sodobne fizike. Večina vodij je menila, da je program

preobsežen in da ga je potrebno bistveno skrčiti, a kljub temu obdržati ne-

katera nova poglavja. Izvoljena je bila manjša delovna skupina z nalogo, da

do petka zvečer pripravi skrajšano inačico programa. Tretji dan je zaklju-

čila Dubravka ITomšič-Srebotnjak s klavirskim recitalom v Avditoriju.

V sredo dopoldne so gostje obiskali Postojnsko jamo. Razprava o pred-

logih za eksperimentalne naloge se je začela po večerji. Ugovorov proti raču-

nalniku ni bilo: vsi so se zavedali, da danes resno eksperimentiranje brez

računalnika ni mogoče. Bilo pa je živahno, saj je vsakdo želel sam preiskusiti

eksperimentalno opremo. Vseeno se razprava ni preveč razvlekla in ob enih

ponoči je večina vodij končala s prevajanjem in tipkanjem.

Tekmovanje v reševanju eksperimentalnih nalog je potekalo v 14 učilnicah

Srednje naravoslovne in pedagoške šole v Kopru. Začelo se je ob 9. uri in

irajalo s polurnim odmorom do 15. ure. Doslej še nikdar v Jugoslaviji ni bilo

na enem mestu zbrane toliko šolske eksperimentalne in računalniške opreme.

Kljub temu je tekmovanje minilo brez kakršnih koli zapletov, za kar gre

zasluga predvsem študentom fizike, profesorjem fizike s koprske šole in so-

delavcem ISKRE, ki so opremo temeljito preskusili v dneh pred tekmo-

vanjem.

Popoldne so vodje zvedeli za preliminarne ocene svojih tekmovalcev na

teoretičnem delu. Nato so se o ocenjevanju pogovorili s člani komisije, ki je

pregledovala izdelke. Diskusija je bila zelo živahna in je trajala do polnoči,

vendar je potekala na visoki strokovni ravni in v prijateljskem vzdušju. Naši

učitelji fizike, ki so sodelovali v komisiji za popravljanje, so tako imeli prilož-

nost, da so se neposredno seznanili z različnimi pogledi na pouk fizike v svetu.

Piknik, ki je bil naslednji dan v Lipici, je bil prijetna sprostitev za vse

udeležence. Posebno zabaven je bil tek v vrečah, v katerem so nastopili tudi

vodje delegacij. Generalni sekretar fizikalnih olimpiad se je v razburljivem

finalu vrgel čez ciljno črto, a je bil vodja sovjetske delegacije le hitrejši.

Zvečer je bilo nadaljevanje razprave o novem programu tekmovanj. Novi

program teoretičnega dela tekmovanja so hitro sprejeli, delovna skupina pa

je dobila nalogo, da pripravi tudi program za eksperimentalni del tekmo-

vanja.

Razprava o ocenjevanju eksperimentalnih nalog je potekala v soboto do-

poldne. Po kosilu se je sestala mednarodna komisija in potrdila končne re-

zultate. Vodje delegacij so ob tem prirediteljem izrekli priznanje za visoko

strokovno raven prireditve in za prijetno bivanje v Portorožu.
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Zaključna slovesnost se je odvijala popoldne v Avditoriju. O olimpiadi

so govorili A. Moljk in E. Vrenko, predsednik Pokroviteljskega sveta olim-

piade in predsednik Republiškega komiteja za raziskovalno dejavnost in teh-

nologijo, ter C. Isenberg, organizator naslednje olimpiade v Veliki Britaniji.

Izvedeli smo, da imajo organizatorji tudi tam velike težave z zbiranjem de-

narja, zato še ni gotovo, če olimpiada drugo leto sploh bo. Po svečani pode-

litvi nagrad in priznanj je nastopila folklorna skupina.

Zvečer smo nad portoroškimi strehami lahko opazili rubinast žarek —

prva nagrada, Iskrin helijsko-neonski laser, je uspešno prestala prvo pre-

skušanje.

Delegacije so zapustile Portorož v nedeljo, 30. junija, v upanju, da se bodo

ponovno srečali drugo leto v Veliki Britaniji.

Pregled nagrad in pohval

Prva nagrada: Roy Badami (V. Britanija), Viktor Barzykin, Georgij Grigorev,

Taras Ivanenko (vsi SZ), Patrik Španel (ČSSR).

Druga nagrada: Norbert Bollow (ZRN), Zoltan Egyed (Madžarska), David Mac-

kay (V. Britanija), Dan Przzol (Romunija), Peter Schupp (ZRN), Jurij Žestkov (SZ).

Tretja nagrada: Phons Bloemen (Nizozemska), Oleg Čerp (SZ), Igor Djokovič

(Jugoslavija), Anthony Duell (V. Britanija), Richard Green (V. Britanija), Reiner

Hippmann (ZRN), Antal Jakovac (Madžarska), Mathias Ketzel (NDR), Ovidiu Klo-

cea (Romunija), Jane Kondev (Jugoslavija), Mirostaw Lis (Poljska), Jan Lužny

(ČSSR), Katalin Malureanu (Romunija), Thomas Palm (Švedska), Olaf Wendt

(ZRN), Marcin Wolter (Poljska), Peter Zegelaar (Nizozemska).

Pohvala: Lars Aronsson (Švedska), Nicholas Bateman (Kanada), Dobrin Bosev

(Bolgarija), Mathias Drochner (NDR), Jari-Pekka Ikonen (Finska), Henrik Jurk-

schat, Thomas Klotz (oba NDR), Stefan Komilev, Nikolaj Mečkov (oba Bolgarija),

Ivo Myslivec (ČSSR), Kristian Mihai Neasu (Romunija), Akos Nemeth-Buhin (Ma-

džarska), Jeroen Nijhof (Nizozemska), Nguyen Ninh Khang (Vietnam), Veikko

Punkka (Finska), Jens-Uwe Sachse (NDR), Jorg Schwelberger (Avstrija), Przemy-

staw Siemion (Poljska), Torbjorn Soderberg (Švedska), Harun H. Solak (Turčija),

Hakan Svensson (Švedska), Ralf Vandenhouten (ZRN), Veli-Pekka Viitanen (Fin-

ska), Jacek Wojcik (Poljska), Phan Xuan Hai (Vietnam).

Posebne nagrade:

Najvišje število doseženih točk Patrik Španel (ČSSR)
Najboljša rešitev teoretične naloge Taras Ivanenko (SZ)
Najboljša rešitev eksperimentalne naloge David Mackay (VB)

Najmlajši udeleženec Viktor Barzykin (SZ)

Najboljša udeleženca iz novih držav Nicholas Bateman (Kanada)
Harun Solak (Turčija)

Najbolj humoristična rešitev Lars Aronsson (Švedska)

Vrstni red držav

Teoretični del (maksimalno število točk 150): 1. Sovjetska zveza 121 točk, 2. ZR

Nemčija 99,5, 3. Velika Britanija 94,5, 4. Romunija 90,5, 5. Češkoslovaška 83,5, 6. DR

Nemčija 79,5, 7. Madžarska 77, 8. Poljska 75,5, 9. Vietnam 74,5, 10. Jugoslavija 70,

11. Nizozemska 68,>, 12. Švedska 67,5, 13. Bolgarija 67, 14. Finska 52, 15. Turčija

51,5, 16. Avstrija 43, 17. Norveška 27, 18. Islandija 21,5, 19. Kanada 26, 20. Kuba 25,5.

Eksperimentalni del (100): 1. Velika Britanija 61, 2. ZR Nemčija 58, 3.—4. Šved-

ska in Sovjetska zveza 55,5, 5. Nizozemska 54,5, 6. Romunija 51, 7. DR Nemčija 48,5,

8. Češkoslovaška 47, 9.—10. Bolgarija in Poljska 43,5, 11. Kanada 40, 12. Jugoslavija

38,5, 13. Finska 37,5, 14.—15. Avstrija in Madžarska 36,5, 16. Norveška 34, 17. Turčija

32,5, 18. Vietnam 29, 19. Islandija 22,5, 20. Kuba 18,5.
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Skupaj (250): 1. Sovjetska zveza 176,5 2. ZR Nemčija 157,5, 3. Velika Britanija

155,5, 4. Romunija 141,5, 5. Češkoslovaška 130,5, 6. DR Nemčija 128, 7.—8. Nizozem-

ska in Švedska 123, 9. Poljska 119, 10. Madžarska 113,5, 11. Bolgarija 110,5, 12. Ju-
goslavija 108,5, 13. Vietnam 103,5, 14. Finska 89,5, 15. Turčija 84, 16. Avstrija 79,5,

17. Kanada 66, 18. Norveška 61, 19. Tsland 44, 20. Kuba 44.

Pregled nagrad in pohval po državah (prva/druga/tretja/ pohvala):

Sovjetska zveza (3, 1, 1, —), V. Britanija (1, 1, 2, —, ČSSR (1,0, 1, 1), ZR Nem-

čija (0, 2, 2, 1), Romunija (0, 1, 2, 1), Madžarska (0, 1, 1, b, Poljska (0, 0, 2, 2), Nizo-

zemska (0, 0, 2, 1), Jugoslavija (0, 0, 2, 0), DR Nemčija (0,0, 1, 4), Švedska (0, 0, 1, 3),

Bolgarija (0, 0, 0, 3), Finska (0, 0, 0, 3), Vietnam (0, 0, 0, 2), Avstrija (0, 0, 0, 1),

Kanada (0, 0, 0, 1), Turčija (0, 0, 0, D), Kuba (0), Islandija (0), Norveška (0).

Sl. 19. Uspeh pri teoretičnih (1, 2, 3) in eksperimentalnih (A, B) nalogah. Na vodo-

ravni osli so nanešene točke, na navpični pa število tekmovalcev, ki so dosegli

določeno število točk

Sl. 20. Slika sveta, ki je Švedu Larsu

Aronssonu prinesla nagrado za najbolj hu-

moristično rešitev. Pri tretji nalogi je pod

njo napisal: »Naloga gradi na napačni sliki

sveta in je zato ni mogoče rešiti... poleg

tega pa imam še premalo časa«
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EKSPERIMENTALNA OPREMA

ZA FIZIKALNO OLIMPIADO

TOMAŽ SKULJ

A 06.90

Zapis poroča o izbiri in pripravi računalnikov in opreme, ki jo je za olimpiado

dala na voljo Iskra.

APPARATUS FOR PHYSICS OLYMPIAD

. ln the contribution the selecting and providing of computors and eguipment

for the Physics Olympiad, supplied by the firm Iskra, is described.

Priprava in izvedba eksperimentalnih nalog je bil eden od največjih izzi-

vov za organizatorje olimpiade. Jeseni 1984 so se načrtovalci nalog na oddel-

ku za fiziko Fakultete za naravoslovje in tehnologijo skupaj s sodelavci Iskre

okvirno odločili za dva poskusa. Prvi z računalnikom naj bi imel dva nape-

tostna izvira, enosmernega za napajanje induktivnega tipala in izmeničnega

za napajanje motorčka. Pri drugem poskusu naj bi zadostoval enosmerni na-

petostni izvir za napajanje elektronskega balističnega integratorja in za po:

V

O

?
vtičnica

luč d 220V. | A

vhod

Sl. 1. Napeljava na delovna mesta za eksperimentalno nalogo A. S pikčasto črto je

nakazana napeljava za napajanje motorčka (24 V)

O)
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ganjanje toka skozi tuljavici. Tok skozi tuljavici naj bi uravnavali z drsnim

upornikom in merili s šolskim ampermetrom. Napetost na izhodu balistič-

nega integratorja — na njegov vhod je priključena tuljavica za merjenje

gostote magnetnega polja — pa bi merili s šolskim voltmetrom. Pri obeh po-

skusih naj bi pritrdili elemente na električne vezavne plošče z luknjami.

Zaradi nevarnosti, da bi se kaj pokvarilo, bi bilo treba pripraviti vsaj

10 %/« rezervne opreme. Največ preglavic je delal računalnik. Ko je bilo jasno,

da ne bo mogoče zagotoviti predvidenih 70 računalnikov HR 84, je priskočila

na pomoč lskra Delta s posebej za ta namen opremljenimi računalniki

Partner. |

To, da so morale biti priprave tajne, je otežkočalo odločanje v Iskri. Na-

posled pa so njene delovne organizacije Industrija merilne elektronike Hor-

jul, industrija merilno-regulacijske in stikalne tehnike — Kibernetika Kranj

s Tovarno merilnih instrumentov Otoče, Tovarno mehanizmov Lipnica, To-

varno stikal Kranj in Tovarno števcev Kranj, Industrija elementov za elek-

troniko Ljubljana s Tovarno industrijske elektronike Kostanjevica na Krki,

Tovarno merilnih materialov, Tovarno polprevodnikov Trbovlje, Tovarno po-

tenciometrov in uporov Šentjernej in industrija kondenzatorjev Semič po-

skrbele, da je bila vsa želena oprema na voljo ob pravem času. To je bil velik

uspeh, saj je bil dokončen seznam opreme znan šele mesec pred olimpiado.

Sodelavci oddelka za fiziko so že v Ljubljani sestavili opremo za obe eks-

perimentalni nalogi. Večkrat so ponovili oba poskusa, tako da je bilo mogoče

ugotoviti težave, še preden so ju postavili v večjem številu. Na Srednji nara-

voslovno-matematični in pedagoški šoli v Kopru so teden dni pred tekmo-

vanjem sodelavci šole in oddelka za fiziko, študenti fizike in sodelavci Iskre

pripravili po en prostor za nalogi A in B. Šele pozneje so pripravili še 12 ta-

kih prostorov.

Na šoli sta le dve učilnici za fiziko z električno napeljavo na delovnih

mestih, vse druge učilnice imajo samo po dve vtičnici. Tudi v teh učilnicah

seo

računalnik

Z 2h V«

| napetostni

izvir
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je bilo treba zagotoviti varno in zanesljivo napeljavo. Prav napeljava v drugih

učilnicah je povzročala največ preglavic.

Nazadnje smo se dogovorili, da bo najprej reševala polovica tekmovalcev

nalogo A in druga polovica nalogo B, nato pa se bosta skupini zamenjali.

Tako je bilo treba v celoti pripraviti 7 učilnic s po 8 delovnimi mesti s po-

skusom A in prav toliko s poskusom B. Po en poskus v vsaki učilnici je bil

v rezervi. V skadišču v telovadnici je bila v rezervi še oprema za po šest po-

skusov vsake vrste. Posebej smo poskrbeli, da so bila delovna mesta kolikor

mogoče enakovredna.

Pri nalogi z računalnikom je bila napeljava najbolj zapletena. Na vsakem

delovnem mestu sta morala biti dva priključka za 220 V za računalnik in za

malonapetostni enosmerni izvir. Za napajanje motorčkov pa je bilo treba

pripraviti še izmenični izvir za 24 V. Ker smo se bali, da bi delo z merilniki

in vklapljanje in izklapljanje napetostnih izvirov in motorčka povzročalo

motnje na računalniku, je bile treba tega priključiti ločeno. Odločili smo se,

da priključimo napetostne izvire na napeljavo za luči. Pri nalogi B je bila

napeljava nekoliko preprostejša.

Urejanje prostorov in napeljave in postavljanje opreme je trajalo 5 dni.

Zanesljivo je mogoče trditi, da pri nas doslej še nikdar ni bilo zbrane toliko

računalniške in merilne opreme na enem mestu. Med preskušanjem se je

220V.

vtičnica
0...

220Vw () ()

| |
vhod

Sl. 3. Napeljava na delovna mesta za eksperimentalno nalogo B
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pojavilo nekaj napak na računalnikih Partner in se je pokvaril en napetostni

izvir. SŠpretna serviserja Iskre Delte sta napake na računalnikih hitro popra-

vila. To so bile vse težave. Dan pred eksperimentalnim tekmovanjem je bila

nekaj ur priključena vsa oprema z računalniki vred. Pri tem se niso pokazale

nobene pomanjkljivosti. Tako je bilo skoraj brez skrbi počakati na tekmo-

valce. Med tekmovanjem je v vsakem prostoru nadzoroval delo študent fizike,

[

Sl.4. Vezje in risba za eksperimentalno nalogo B

v pripravljenosti pa so bili sodelavci šole, oddelka za fiziko in dva serviserja

računalnikov. O množičnem eksperimentiranju, pri katerem bi lahko prišlo

po nesreči do poškodb, požara ali okvar na električnem omrežju, smo obve-

stili zdravstveni dom, gasilce in elektrodistribucijsko podjetje. Medtem ko so

dopoldne delali oba poskusa udeleženci olimpiade, so popoldne delali poskus

z računalnikom mladi jugoslovanski fiziki. K sreči ni prišlo do nobenih za-

pletljajev.

Za brezhiben in uspešen potek eksperimentalnega dela Mednarodne fizi-

kalne olimpiade gre zahvala sodelavcem koprske šole in oddelka za fiziko,

študentom fizike in sodelavcem Iskre. Posebej je treba omeniti Braneta Pok-

larja in Cirila Memona s koprske šole ter študenta fizike Toneta Verbovška

in Matjaža Kalužo, ki so nosili največje breme.

UI1



UTRINEK

NIELS BOHR KOT ČLOVEK

Malo so se mu posmehovali, ker ga pogosto niso razumeli, skoraj brez-

mejno so ga občudovali in brezmejno so ga imeli radi.

sk

Bohr si je v družbi sodelavcev ogledal film z Divjega zahoda. Nekdo se je

pritožil nad tem, da nazadnje Zli vedno zgubi, ker Dobri hitreje strelja. Bohr

je rekel: »Ampak Zli mora zaradi slabe vesti premagati prag četrtine sekunde.

Dobri ima mirno vest in strelja takoj, ko je potrebno.« Domenili so se za

poskus in kupili dve otroški pištoli. Bohr in na primer Gamov sta si sedela

nasproti. Bohr je moral seveda igrati Dobrega in je smel potegniti pištolo

šele, ko je videl potegniti nasprotnika. Poskusili so večkrat in vsakokrat je

Bohr ustrelil drugega.
se

Če Bohr govori, so pravili, pozabi na pravila akustike, slovnice in logike.

Tiho, jecljaje, s ponavljanji, ko pripoveduje, kar Že vsi vedo, a ko pove kaj

zares pomembnega, si da celo roko pred usta. Če pa je imel referat kdo drug,

na primer Heisenberg, Dirac, Pauli, ga je prekinil Bohr z vprašanjem, zavitim

v sladkorni preliv svojega razorožujoče prijaznega načina govorjenja: »To je

zelo zelo zanimivo.« »Midva se precej bolj strinjava, kot si mislite...« »Me-

nim... ne da bi kritiziral, samo da bi se poučil... moram reči, moram reči.«

Pri zelo neumnih ljudeh pa je obupano rekel samo še: »Oh, zelo zelo.«

C. F. von Weizsacker, Niels Bohr, Phys. Bl. 41 (1985) 308.

Izbral in prevedel Janez Strnad

NOVE KNJIGE

High-energy ion-atom collisions: Proc. 2. workshop High-energy Ion-atom col-

lision processes, Debrecen, August 27—28, 1984 ed. C. Berenyi, G. Hock, Budapest,

Akademiai Kiado 1985, 306 str., 24 cm.

Knjiga je zbornik z lanskoletnega mednarodnega srečanja o atomski fiziki vi-

sokih energij. Po koristnem običaju, ki se je utrdil v zadnjem desetletju, prinaša

zbornik le vabljena predavanja, torej obsežnejše tekste, ki podajajo pregled posa-

meznih ožjih področij. Tako je bralcu prihranjeno prekopavanje skozi obilico zelo

specializiranih prispevkov, celota postane bolj berljiva in laže doumljiva tudi za

nespecialista. Pričujoči zbornik je imel pri tem še posebno srečo, saj so se najbolj

znana imena področja — B. Crasemann, K. Taulbjerg, I. Sellin, T. Mukoyama in

drugi — zelo potrudili in prispevali resnično široko pregledne članke. Obseg knjige

je najbolje podan z naslovi poglavij: Coulombska ionizacija (lahki izstrelki), Vzpo-

reditveni učinki (alignment), Večelektronske korelacije, Večkratna ionizacija (težki

izstrelki), Sevalni prehodi z notranjih lupin, Zajetje elektronov, Izbitje elektronov

v smeri curka, Interakcije ion-trdna snov. Knjigo priporočam vsakomur, ki bi se
želel seznaniti z novejšimi dosežki v eksperimentalni atomski fiziki in z njo pove-

zani teoriji.

Alojz Kodre
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BOHR N., Atomphysik und menschliche Erkenntnis. Aufsatze und Vortrage aus

den Jahren 1930 bis 1961. Mit einem Vorwort zur Neuausgabe von Karl von Meyenn.
Eriedr. Vieweg 8: Sohn, Braunschweig, Wiesbaden 1985, 160 str. (Facetten der Phy-

sik 20).

Ob stoletnici Bohrovega rojstva je izšla knjižica z desetimi Bohrovimi sestavki

za širšo javnost. Nekatere izmed njih je izdal pri isti založbi leta 1958 Bohr sam,

druge pa leta 1966 njegov sin Aage Bohr. Sestavki so razvrščeni po času prvega

izida. Teorija atomov in opisovanje narave je zapis predavanja skandinavskim na-

ravoslovcem leta 1929. Biologija in atomska fizika je zapis predavanja na medna-

rodnem kongresu za fiziko in biologijo v spomin na Luigija Galvanija leta 1937.

Spoznavno teorijska vprašanja v fiziki in ljudske kulture je zapis predavanja na

mednarodnem kongresu za antropologijo in etnologijo leta 1938. Diskusijo z Fin-

steinom o spoznavnoteortjskih vprašanjih v atomski fiziki je Bohr napisal za zbor-

nik Albert Einstetn kot filozof in naravoslovec, ki ga je izdal P.A. Schilpp leta 1949.

Fizika in problemi življenja so leta 1957 predelani zapis predavanja v danskem
medicinskem društvu iz leta 1949. Enotnost znanja je zapis predavanja na simpo-

ziju s tem naslovom ob dvestoletnici univerze Columbia leta 1954. Atomi in člo-

veško spoznanje so zapis predavanja na zasedanju Kraljeve danske akademije zna-

nosti leta 1955. Atormnska fizika in filozofija — kavzalnost in komplementarnost je

Bohrov prispevek za zbornik Filozofija sredi stoletja, ki jo je izdal R. Klibansky

v čast Maxu Plancku leta 1958. Rutherfordovo spominsko predavanje 1958: Spomini
na začetnika jedrske fizike in na razvoj, ki ga je sprožilo njegovo delo je zapis

predavanja v Fizikalnem društvu v Londonu. Bohr ga je dokončno oblikoval leta

1961, leto dni pred svojo smrtjo. Nastanek kvantne mehanike je Bohrov prispevek

k zborniku Wermer Heisenberg in fizika našega časa iz leta 1961.

Deset sestavkov dobro kaže na Bohrov široki krog zanimanja. Šestavki, ki so

jih pomagali izdelati Bohrovi sodelavci in učenci, so zanimivi tudi z zgodovinskega

vidika. Niso prezahtevni in še dandanes delujejo sveže, čeprav je razvo] že obšel

nekatere zamisli iz njih. Zato je mogoče knjižico toplo priporočiti tudi slovenskim

bralcem.

Janez Strnad

FRANKS F., Polywasser, Betrug oder irrtum in der Wissenschaft. Friedr. Vie-

weg 8 Sohn, Braunschweig, Wiesbaden 1984, 152 str. (Facetten der Physik 17).

Knjižica je prevod angleškega originala, ki je izšel leta 1981. PF. Franks poroča

o polivodi, domnevni polimerni obliki vode, ki naj bi nastala, ko se voda izloča iz

pare v steklenih kapilarah.

Na začetku šestdesetih let je zadeva, ki je prišla iz SZ, povzročila precej vzne-

mirjenja. Po daljšem času so se vneli zanjo tudi na Zahodu in potrebovali štiri leta,

veliko znanstvenih člankov in nekaj znanstvenih sestankov, preden so ugotovili,

da gre za raztopino soli, predvsem silicijevih, v vodi. O tem je poročal tudi

Obzornik."

Franks se sicer dve desetletji ukvarja z vodo, a »odkritja« v zvezi s polivodo je
zasledoval kot nepristranski opazovalec, ne da bi o njej objavil kak članek. Prija.
telji so ga svarili pred pisanjem poročila, češ da je bolje na vse skupaj čimprej

pozabiti, da bodo poročilo sociologi uporabljali kot orožje proti raziskovanju, da

bodo raziskovalne skupnosti zaradi njega zmanjšale podporo za raziskovanje in da

bo sploh sejalo nezaupanje do naravoslovcev.

Franks je sodil, da je mogoče dobiti boljše razloge proti znanosti in naravo-

slovju kot zgodbo o polivodi, da pa je zanimivo pogledati senčne strani razisko-
vanja. V tem pogledu predstavlja zgodba o polivodi zares poučen droben zgled.

Bere se kot detektivka, iz katere pa je mogoče izvedeti to in ono o raziskovanju.

Franks mu drži zrcalo in podoba v zrcalu utegne delovati zdravilno na tiste, ki ga

preveč kujejo v zvezde. Očitno malo raziskovalcev posnema skromnost Michaela

Faradaya, ki je izrazil upanje, da petdeset let po njegovi smrti nič, kar je napisal,

ne bo več veljalo za pravilno. Po vsem tem se zdi, da knjižice ni treba posebej

priporočati.

Janez Strnad

" J. Strnad, »Amornalna« voda in »polivoda«, Obzornik mat. fiz. 17 (1970) 158.
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DOMAČE VESTI

31. OBČNI ZBOR DRUSTVA

Za 37. občni zbor društva smo si izbrali slikovito Skofjo Loko. V petek,

18. oktobra popoldne, smo na strokovnem delu občnega zbora poslušali dve

predavanji matematično-računajniške narave. Matjaž Omladič je govoril o na-

črtovanju z računalnikom, Tomo Pisanski pa o naključnosti na računalniku.

Predavanji sta bili zanimivi za vse člane društva, za učitelje in tudi za tiste,

ki niso zaposleni v šolah. Vsi smo tudi prisluhnili razlagi Bojana Gollija in

Andreja Likarja o eksperimentalnih nalogah na fizikalni olimpiadi v Porto-

rožu. Naloge so bile domiselne in zahtevne; v opremo, potrebno za poskus,

je bil prvič vključen računalnik.

Za ta občni zbor smo načrtovali okroglo mizo o materialnem položaju

pouka matematike in fizike na šolah. Vendar je nismo priredili, ker ni bilo

v pravem času odziva podružnic, ki naj bi poskrbele za uvodne prispevke.

Če sodimo po družabnem večeru, to vprašanje člane društva močno vzne-

mirja, saj se niso sprostili tako kot prejšnja leta.

V soboto, 19. oktobra, je občni zbor

imenoval dva častna člana društva:

prof. dr. Antona Peterlina in prof. Iva-

na Štalca. Priznanje za delo z mladimi

je letos prejela Anita Fakin, učiteljica

matematike in fizike na Osnovni šoli

IX. korpus NOVJ v Novi Gorici. Njeni

učenci se uvrščajo ne samo na repub-

Huška, ampak tudi na zvezna tekmova-

nja; od vsega začetka uspešno priprav-

lja področno tekmovanje fizikov —

osnovnošolcev.

Na občnem zboru je Društvo mate-

matikov, fizikov in astronomov SRS

prejelo priznanje gibanja Znanost mladini za delo z mladimi na področju

računalništva in za izvedbo tekmovanj.

Letošnja dejavnost društva je bila zaradi organizacije mednarodne fizi-

kalne olimpiade junija v Portorožu zelo razgibana. Vsemu organizacijskemu

odboru in še posebej Antonu Moljku, Bojanu Golliju, Aljoši Žerjalu, Daniju

Tancerju s sodelavci iz VTOZD Fizika, ISKRE in s člani podružnice Koper

je društvo izreklo priznanje, ker je po njihovi zaslugi olimpiada v vseh po-

gledih uspela. Izbira računskih kot eksperimentalnih nalog, ki so bile pri-

merno zahtevne in sodobne, je znova potrdila strokovni ugled slovenske in

jugoslovanske fizike. Na eni izmed obeh tekmovalnih eksperimentalnih nalog

Je merilo svoje znanje tudi 50 srednješolcev iz vse Jugoslavije. V vseh jugo-

slovanskih strokovnih listih za mladino so fizikalna olimpiada in z njo pove-

zane prireditve našle odmevno mesto.

Tudi v drugih dejavnostih nismo počivali. Komisije za popularizacijo ma-

tematike in fizike v osnovnih in srednjih šolah nastavljajo čedalje večje šte-

vilo tekmovalcev. Za srednješolce so bila šolska tekmovanja organizirana

v dveh etapah: najprej so se pomerili v znanju učenci vseh usmeritev razen
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naravoslovno-matematične, v drugi etapi težje naloge učenci naravoslovno-

matematične usmeritve in najboljši tekmovalci iz prve etape. Tudi na zveznih

tekmovanjih so se slovenski tekmovalci dobro uvrstili: srednješolec Roman

Drnovšek iz Ljubljane se je udeležil matematične olimpiade na Finskem, Mičo

Mrkaič iz Kranja pa fizikalne olimpiade v Portorožu.

Pedagoška komisija je organizirala fizikalni seminar Osnovni delci. Zani-

manje za te seminarje je še vedno veliko, kar potrjuje 120 udeležencev. Me-

sečni sestanki aktiva učiteljev matematike in fizike so v tem letu zamrli.

Komisija za tisk uspešno skrbi za izdajanje strokovnih knjig in revij,

čeprav finančne težave niso manjše kot lani. Zbirka SIGMA je novembra 1984

dobila Trubarjevo priznanje za izdajanje strokovnih knjig za mladino.

Podružnice so uspešno delovale. Njihovi člani so organizirali področna

tekmovanja iz matematike in fizike za osnovnošolce ter predavanja za uči-

ielje matematike in fizike.

Finančno poslovanje društva je letos potekalo tako kot prejšnja leta: iz

rok v usta, vendar brez hujših težav za redno dejavnost. Za zdaj še niso po-

krili vseh stroškov fizikalne olimpiade.

Nerešen problem pa je ureditev Plemljeve hiše na Bledu. Letos je bilo

nekaj več nočitev, vendar s to dejavnostjo ne bomo dobili dovolj denarja za

potrebno popravilo strehe.

Na občnem zboru je bil izvoljen upravni odbor društva: predsednik Janez

Strnad, podpredsednica Martina Koman, tajnik Janez Krušič, blagajničarka

Helena Velikonja, sekretarji komisij za popularizacijo matematike v osnovni

šoli Aleksander Potočnik, fizike v onovni šoli Boris Kham in Jože Kotnik,

matematike v srednji šoli Darjo Felda, fizike v srednji šoli Iztok Kukman,

sekretarka komisije za pedagoško dejavnost Nada Razpet, sekretarka sekcije

za uporabno matematiko Jana Jamšek, sekretarja sekcije za uporabno fiziko

Zvone Trontelj in Marko Valič. Upravni odbor ljubljanske podružnice — ko-

misije za tisk: predsednik Peter Petek, sekretar, računovodja in urednik

Ciril Velkovrh, blagajnik Janez Markelj; odgovorni uredniki so: za zbirko

matematika-fizika Jože Vrabec, za SIGMO Ivan Vidav, za Obzornik Janez

Strnad, za Presek Edvard Kramar.
Martina Koman

ČASTNI ČLANI DRUŠTVA V LETU 1985

Na 37. občnem zboru v Škofji koki je Društvo matematikov, fizikov in

astronomov SR Slovenije imenovalo za častna člana Antona Peterlina in Ivana

Štalca. Profesor Peterlin se zbora ni udeležil, ker bi bila pot iz Združenih

držav predolga. Objavljamo obe utemeljitvi. Prvo je prispeval prof. dr. Peter

Gosar in jo objavljamo skrajšano. Druga je sestavljena iz odlomkov, ki so jo

pripravili bivši učenci in sodelavci profesorja Štalca.

Uredniški odbor se v imenu bralcev Obzornika za matematiko in fiziko

pridružuje iskrenim čestitkam. Janez Strnad, Ciril Velkovrh

6. Akademik profesor dr. Anton Peterlin je bil rojen 25. septembra 1908

v Ljubljani. Diplomiral je leta 1930 iz matematike na filozofski fakulteti

v Ljubljani. Po diplomi je bil asistent na fizikalnem inštitutu tehniške fakul-

tete. Leta 1937 je odšel na strokovno izpopolnjevanje na matematično-naravo-

slovno fakulteto v Berlin in bil tar naslednje leto promoviran z odličnim
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uspehom za doktorja naravoslovnih ved. Leta 1939 je bil izvoljen za docenta

za fiziko na tehniški fakulteti univerze v Ljubljani. Za izrednega profesorja

je bil imenovan leta 1945, za rednega pa 1947. ieta 1947 ga je Slovenska aka-

demija znanosti in umetnosti izvolila za dopisnega člana in dve leti kasneje

za rednega člana. Leta 1960 je prevzel mesto profesorja in predstojnika fizi-

kalnega inštituta na tehniški visoki šoli v Munchnu, leta 1961 pa je postal

prvi direktor Dreyfusovega laboratorija v Durhamu v Severni Karolini v ZDA.

Io znanstveno ustanovo je vodil zelo uspešno 12 let. Leta 1973 je prešel na

Državni urad za standarde v Washingtonu kot namestnik direktorja na od-

delku za polimere. Od leta 1975 dalje je bil tudi gostujoči profesor na univerzi

v Clevelandu.

A. Peterlin je organiziral fizikalni inštitut pri Akademiji znanosti in umet-

nosti, ko je bil leta 1949 ustanovljen. Inštitut se je kasneje preimenoval

v Institut Jožef Stefan. Njegova zasluga je, da smo se Slovenci, do tedaj brez

ustrezne znanstvene tradicije, vključili v mednarodni svet fizikalnih in drugih

naravoslovnih znanosti.

A. Peterlin je začel svoje znanstveno delo z raziskovanjem sipanja rent-

genske svetlobe v kapljevinah, nato pa je prešel na področje polimernih raz-

topin in se posvetil lastnostim tekočih in trdnih polimernih sistemov. V fiziki

polimernih raztopin je najbolj znan po raziskavah viskoznosti, strujne in

akustične dvolomnosti, osmoznega tlaka, sedimentacije, dielektrične polari-

zacije in sipanja svetlobe. V fiziki polimernih kristalov pa je obravnaval

plastično deformacijo, mehanizem zloma, termodinamiko, kristalizacijo, mor-

fologijo ter jedrsko in elektronsko magnetno resonanco. Ukvarjal se je tudi

s transportnimi lastnostmi polimernih membran. Znanstveni opus A. Peterlina

obsega približno 400 razprav. Skupaj s H.A. Stuartom je napisal monografijo

o dvojnem lomu.

A. Peterlin je član številnih strokovnih združenj. Za znanstveno delo je

dobil leta 1950 red dela I. stopnje in leta 1935 Prešernovo nagrado. Leta 1970

so mu podelili Binghamovo medaljo ameriškega reološkega društva in leta

1972 Fordovo nagrado ameriškega fizikalnega društva. Leta 1983 je prejel

Kidričevo nagrado za življenjsko delo.

A. Peterlin se je posvečal tudi popularizaciji znanosti. V letih od 1935 do

1937 je urejal Tehniko in gospodarstvo, v letih od 1945 do 1947 pa Proteus.

V domačih časopisih in revijah je objavil okoli 80 poljudnoznanstvenih član-

kov.

Znanstveno delo A. Peterlina je izjemno po kakovosti in po obsegu in nje-

gove zasluge za razvoj in uveljavitev slovenske fizike doma in v svetu so ne-

precenljive.

1. Profesor ivan Štalec je bil rojen 23. decembra 1910 v Dolenji vasi nad

Skofjo Loko. Po klasični gimnaziji v Kranju se je leta 1930 vpisal na filo-

zofsko fakulteto v Ljubljani in leta 1934 diplomiral iz matematike in fizike.

Ta dva predmeta je poučeval nad 40 let na gimnazijah v.Murski Soboti,

Irbovljah in v Ljubljani. Ves čas je veljal za zelo dobrega učitelja. Učence je

navajal k rednemu in trdemu delu in bil pri ocenjevanju strog in pravičen.

S tem je pripravil zanesljivo matematično in fizikalno osnovo številnim mate-

matikom, fizikom in tehnikom. V letih 1949-51 je bil pomožni inšpektor za

matematiko in fiziko za trboveljski in celjski okraj ter ljubljansko okolico.

Nekaj časa je poučeval metodiko pouka fizike na Pedagoški akademiji v Ljub-
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TOPOLOGY AND ITS APPLICATIONS

Prvi mednarodni kongres Topology and Its Applications je bil 1968. leta

v Hercegnovem [1], drugega smo imeli 1972. leta v Budvi [2] in tretjega 1977.

leta v Beogradu [3]. Od 30. 9. do 5. 10. 1985 je v Dubrovniku potekal četrti

kongres z istim naslovom. Organiziralo ga je Društvo matematikov, fizikov

in astronomov Jugoslavije, v pripravljalnem odboru pa so bili D. Adnadjevič

in M. Mrševič iz Beograda, J. Vrabec iz Ljubljane ter I. Ivanšič in S. Marde-

šič iz Zagreba.

Kongresa se je udeležilo okoli sto topologov: iz Avstrije (1), Brazilije (2),

Češkoslovaške (4), Finske (1), Francije (1), Grčije (3), Italije (24), Izraela (1),

Jugoslavije (38), Madžarske (3), Nizozemske (1), Nove Zelandije (2), Španije

(2), Turčije (4), Velike Britanije (4), ZDA (7) in ZRN (3). Iz Slovenije smo

prišli: M. Cencelj (Iskra Telematika), N. Mramor-Kosta (Fakulteta za elektro-

tehniko), D. Repovš (Fakulteta za naravoslovje in tehnologijo) z referatom

Peripheral acyclicity in 3-manifolds, J. Šrekl (Fakulteta za strojništvo) in

J. Vrabec (Fakulteta za naravoslovje in tehnologijo).

Predavanja na kongresu so potekala v dveh ločenih sekcijah: a) za splošno

topologijo in b) za algebraično in geometrično topologijo. Prva dva dneva so

bila dopoldne in popoldne, zadnja dva pa le zjutraj. Skupno je bilo predstav-

ljenih 39 referatov v sekciji a) in 30 v sekciji b). Vsa predavanja so bila

v Meduniverzitetnem centru za podiplomske študije (TUC) v Dubrovniku.

Tretji dan kongresa so si udeleženci lahko ogledali staro mesto, četrti dan

zvečer pa je bil organiziran komorni koncert v prostorih tamkajšnje glasbene

šole (J. Foy, W. Jaworowski in I. Brandjolica). Po končanem kongresu sta bila

pripravljena dva enodnevna izleta — prvi na Korčulo in drugi v Mostar.

Srečanje v Dubrovniku je bilo predvsem priložnost za domače topologe,

da pridejo v stik s kolegi iz tujine in izmenjajo izkušnje in rezultate svojega

raziskovalnega dela. Kljub odsotnosti nekaterih pomembnih držav (predvsem

Poljske in Sovjetske zveze) je v tem pogledu kongres uspel.

Dušan Repovš

BURDE G., Zieschang, Knots. — Berlin : Walter de Gruyter, 1985, 399 -- X str. —

(De Gruyter studies in mathematics ; 5).

Z vozli imamo posla vsepovsod, brez njih si še čevljev ne obujemo; njihovo po-

znavanje cenijo taborniki, mornarji, čarovniki, da o matematikih niti ne govorimo.

Pričujoče delo sta sestavila znana mojstra s tega področja; obravnavata klasično

teorijo vozlov v trirazsežnem prostoru. Delo ne ponavlja tega, kar poznamo iz

drugih (ne preštevilnih) knjig (Fox, Rolfsen), temveč daje alternativne prikaze.

Za nekaj uvodnih poglavij (Vozli in izotopije — Seifertove ploskve vozlov —

Grupe vozlov) zadošča poznavanje in obvladovanje osnov algebrske topologije. Tudi

nekaj drugih poglavij je mogoče nekako razumeti s tem osnovnim znanjem, toda

pisca opozorita študirajočega bralca, naj se pred nadaljevanjem seznani s temelj-

nimi izreki teorije trirazsežnih mnogoterosti; za to delo navajata tudi vire. Velik

napredek v razumevanju trirazsežnostnih mnogoterosti in vozlov je namreč omo-

gočilo ravno uspešno delo matematikov v zadnjih dveh desetletjih (Bing, Moise,

Waldhausen, Fox, Stallings, Jaco, predvsem pa Papakyriakopoulos).

Sveže je prikazan pomen cikličnih krovov in vloga spletov. V dodatkih so ko-

ristni napotki in opombe ter tabele invariant vozlov.

Obširna literatura je upoštevana do letos (1985). Enote imajo kot dodatno infor-

macijo navedena področja.

Menim, da bo to delo spodbudilo zanimanje za študij povezav med geometrij-

skimi sistemi in nizkodimenzionalno topologijo. Posredno pa tudi za korektnejši

pouk analize, Ivan Pucelj
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OBVESTILO NAROČNIKOM

V tem koledarskem letu nameravamo pohiteti in čim prej izdati vseh

šest številk Obzornika za matematiko in fiziko, da bi tiskarski stroški

nekoliko manj narasli. Zato vas lepo prosimo, da po položnici v tej šte-

vilki čim prej nakažete naročnino za Obzornik, člani pa s tem tudi čla-

narino za Društvo matematikov, fizikov in astronomov SR Slovenije.

Oboje je letos poskočilo kar na 1500.— din, pa še to pokrije le del stro-

škov. Upamo, da boste kljub temu ostali zvesti Društvu in da boste

s pravočasnim plačilom omogočili redno izhajanje Obzornika.

Janez Strnad, Ciril Velkovrh

V. SEMINAR IZ UPORABNE MATEMATIKE

Ljubljana, 2.—5. IX. 1986

PRIJAVA
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VABILO K SODELOVANJU

Računalniške krožke Inštituta Jožef Stefan, ki jih je doslej obiskovalo že več
kot 3000 udeležencev, želimo razširiti in obogatiti. Zato vabimo k sodelovanju
vse, ki želijo posredovati širšemu krogu:
— svoje znanje in izkušnje z različnih področij s pomočjo hišnega raču-

nalnika;

— možnosti uporabe hišnega računalnika na kateremkoli področju;

— svoje zamisli in nove rešitve s pomočjo računalnika ZX Spectrum.

Vabimo vas, da predloge s kratkim življenjepisom in opisom področja, na ka-

terem želite posredovati znanje, pošljete na naslov Inštitut »Jožef Stefan«,

Odsek za uporabno matematiko, Zoran Radalj, Jamova 39, 61111 Ljubljana.
Izbrane teme bomo vključili v program naših računalniških krožkov, avtorji

pa bodo to snov predavali. Lahko pa se dogovorimo tudi za kakšno drugačno

obliko sodelovanja.

Marko Batista

VABILO K UDELEŽBI

Inštitut za matematiko, fiziko in mehaniko organizira

V. SEMINAR IZ UPORABNE MATEMATIKE

Prejšnji seminarji so bili v Zagrebu (leta 1980, 20 udeležencev), v Ljubljani

(1981, 30), v Novem Sadu (1982, 45) in v Splitu (1984, 90). Od drugega semi-

narja dalje izhaja Zbornik, od četrtega dalje pa so referati v Zborniku napi-

sani v tujem jeziku in recenzirani po merilih za objavljanje člankov v znan-

stvenih revijah.

Srečanje bo v Ljubljani od 2. do 5. septembra 1986. Organizacijski odbor

sestavljajo: prof. dr. Ibrahim Aganovič (Zagreb), prof. dr. Zvonimir Bohte

(Ljubljana) — predsednik, prof. dr. Dragoslav Herceg (Novi Sad), prof. dr.

Gradimir Milovanovič (Niš), asistent Marko Petkovšek (Ljubljana) — tajnik,

prof. dr. Gabrijel Tomšič (Ljubljana) in prof. dr. Božo Vrdoljak (Split).

Referati na seminarju bodo razvrščeni po sekcijah:

klasična uporabna matematika,

numerična analiza,

računalniška matematika,

matematična statistika,

Da bi na srečanju omogočili poročanje tudi o delih, ki še niso zaključena,

ali ki bodo objavljena drugje, lahko udeleženci, če želijo, pošljejo le rezime

referata v kateremkoli jeziku v obsegu do 1 strani formata A4, ki bo objav-

ljen v programu srečanja.

Znesek kotizacije bo odvisen od števila udeležencev in od finančne pod-

pore.

Čeprav je uradni rok za prijave 20. januar 1986, bo organizator sprejemal

prijave tudi naknadno. Rok za oddajo referatov je namreč 20. marec 1986.

Navodila za pripravo rokopisov za objavo bodo dobili le prijavljenci.

Vsi, ki se Želijo prijaviti, a niso dobili vabila osebno, naj izpolnijo prilo-

ženi formular in ga pošljejo čimprej na naslov:

Inštitut za matematiko, fiziko in mehaniko

61111 Ljubljana, Jadranska 19, p.p. 64

Zvonimir Bohte
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