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AFINA GEOM
IVAN VIDAV

Math. Subj. Class. (1980) 51—01, 51A 30

Članek obravnava osnove afine geometrije v ravnini. Podana je definicija pla-

narnega ternarnega kolobarja in nakazana zveza med lastnostmi tega kolobarja

ter Desarguesovim in Pappusovim izrekom.

AFFINE GEOMETRY

In this article the basic properties of affine plane are presented, the planar

ternary ring is introduced, and the relations between ihe properties of this ring

and the theorems of Desargues and Pappus are indicated.

1. Uvod

Afina geometrija je nastala najprej kot del evklidske geometrije. Osnovna

pojma v geometriji ravnine sta točka in premica. Množica točk in množica

premic določata afino strukturo ravnine. Pri vsaki strukturi nas zanimajo

njeni avtomorfizmi, to so preslikave, ki ohranjajo strukturo. Avtomorfizem

evklidske ravnine je taka povratno enolična (bijektivna) preslikava množice

točk ravnine nase, ki preslika premice na premice. Avtomorfizem ravnine

imenujemo afina transformacija. Množica vseh afinih transformacij dane

ravnine je grupa. Enota je v tej grupi identična preslikava.

S koordinatami se izraža amina transformacija o takole: V ravnini si izbe-

rimo koordinatni sistem. Naj preslika g točko 7 s koordinatama (x, y) v točko

6(T) — TI" s koordinatama (x',y'). Izkaže se, da sta x in y linearni funkciji

koordinat x, y prvotne točke T':

x saxsbytp, y<scocxtdyta (4)

Tu so koeficienti a, b, c, d, p, g za dano afino transformacijo g natanko dolo-

čena števila. Obratno pomeni vsaka transformacija oblike (1) afino transior-

macijo, če je determinanta koeficientov ad — bc -k:0. Ta pogoj pomeni, da

je preslikava (1) bijekcija: pri znanih koordinatah x, y' preslikane točke lahko

iz sistema (1) enolično izračunamo x in y, tj. koordinati originalne točke. Pri-

mer take transformacije je

x — 2X, V — 3Y (2)

Zdaj že lahko povemo, kateri del evklidske geometrije imenujemo aftina

geometrija:

Afina geometrija študira tiste lastnosti likov, ki se ohranjajo pri vsaki

atini transformaciji.

Tako je lastnost treh točk, da leže na isti premici, afina. Prav tako je vzpo-

rednost premic atina lastnost. Vsaka afina transformacija preslika namreč

vzporedne premice v vzporedne premice. Nadalje preslika afina transforma-

cija daljice na daljice, toda dolžine daljic ne ohranja. Transformacija (2) na

primer poveča vsako daljico na abscisni osi dvakrat, na ordinatni osi pa celo

trikrat. Zato tudi podobnost likov ni pojem, ki bi sodil v afino geometrijo.

Ker skladnost daljic in kotov nista pojma afine geometrije, lahko to vejo

geometrije opredelimo tudi takole:

Afina geometrija sestoji iz izrekov, ki jih dobimo z logičnim sklepanjem

iz sistema aksiomov za evklidsko geometrijo brez uporabe aksiomov o sklad-

nosti.
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Od tod sledi, da je afina geometrija splošnejša od evklidske. Vsi izreki

afine geometrije so tudi izreki evklidske geometrije. Narobe pa ni res. Pita-

gorov izrek na primer ne sodi v afino geometrijo.

Sistem aksiomov za evklidsko geometrijo je precej kompliciran. To je

razumljivo, saj imata ravnina in prostor bogato strukturo. Bistvene lastnosti

afine ravnine pa dobimo že iz preprostejšega sistema aksimov. Trije aksiomi

zadoščajo, da lahko opredelimo koordinatni sistem, v katerem ima vsaka

točka dve koordinati, in da priredimo vsaki premici enačbo. Vendar koordi-

nate niso realna števila. Množica [', katere elementi so koordinate, ima, po-

dobno kakor množica realnih števil, neko algebrsko strukturo, ki pa ni struk-

tura obsega.

2. Aksiomi za afino ravnino

Afino ravnino ,4 sestavljata dve neprazni množici. Elemente prve imenu-

jemo točke, elemente druge pa premice. Vsaka premica je neka podmnožica

množice točk. Točka T leži na premici p, če je 7 element podmnožice p, tedaj

Te p. V tem primeru tudi pravimo, da gre premica p skozi točko 7. Skupno

točko dveh premic p in g imenujemo presečišče.

Definicija. Premici p in g sta vzporedni, če sta ali identični premici ali pa

nimata nobene skupne točke.

Za množico točk in družino premic afine ravnine .% naj veljajo aksiomi:

<4 1. če sta P in O različni točki, obstaja ena in samo ena premica p, ki gre

skozi Pin O.

<4 2. Naj bo P poljubna točka in p poljubna premica. Obstaja ena in samo

ena premica p', ki gre skozi točko P in je vzporedna s premico p.

<4 3. Obstajajo vsaj tri točke, ki ne leže na isti premici.

[1 aksiomi so očitno izpolnjeni v evklidski ravnini.

vn, Zato je evklidska ravnina model za afino ravnino. Ni pa

| ; to edini model. Obstajajo afine ravnine, na katerih je

samo končno število točk. Vzemimo v evklidski ravnini

kvadrat. Naj sestoji množica točk afine ravnine ,4 iz

oglišč A, B, C, D tega kvadrata, množica premic pa iz

štirih stranic in obeh diagonal kvadrata (Sl. 1). Brez

težave se brž prepričamo, da so za to množico točk in

to množico premic izpolnjeni aksiomi.4l —./3. Diago-

Slika 1 nali AC in BD sta tu vzporednici, ker presečišče diago-

nal ni točka našega modela. |

Premico p, ki gre skozi točki P in O in je po./ 1 natanko določena, ime-

nujemo zveznica točk P in O in označimo s PO. Aksiom 4 1 pove, da imata

dve različni premici kvečjemu eno skupno točko. Če sta torej premici p in g

različni in nista vzporedni, se sečeta v natanko določeni točki. Pri tem je

presečišče T — pna.

Izrek 1. Vzporednost je ekvivalenčna relacija.

Dokaz tega izreka je preprost. Bralec ga najde v [2], str. 35.

Vzporednost kot ekvivalenčna relacija razdeli množico premic afine rav-

nine ,4 na ekvivalenčne razrede. Ekvivalenčni razred imenujemo šop vzpored-

nic. Šop vzporednic, v katerem je premica p, sestoji iz vseh premic, ki so

vzporedne s p.

Prav tako preprosta posledica aksiomov je
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Izrek 2. Na vsaki premici afine ravnine ./ je isto število točk in to število

je enako številu premic v poljubnem šopu vzporednic.

Dve množici imata isto število elementov, če imata isto kardinalno število,

to se pravi, če obstaja bijektivna preslikava ene množice na drugo.

Dokaz zreka 2 je v [2], str. 36.

3. Afin koordinatni sistem

V afini ravnini .%4 si izberimo poljubno točko O in skoznjo tri premice

(Sl. 2). Točko O imenujemo izhodišče, prvo premico abscisna os ali os (x),

drugo ordinatna os ali os (y), tretjo pa enot-

na premica. Na enotni premici si izberimo še

poljubno od O različno točko E. Te tri pre-

mice s točko E£ sestavljajo afin koordinatni

sistem. Vzemimo zdaj poljubno množico /',

kiima isto število elementov, kolikor je točk

na premici ravnine.x4. Zato obstaja bijektiv-

na preslikava y množice točk enotne premice

na množico /'. Zaznamujmo z 0 in 1 elementa / |

iz T, ki sta sliki točk O in E, torej y(0)<0. Slika 2

in v(£E) — 1.

Naj bo P poljubna točka ravnine .%. Skoznjo potegnimo vzporednici 7 in s

z ordinatno in abscisno osjo. Nobena od premic r in s ni vzporedna z enotno

premico. Zato seče enotna premica premico 7 v neki točki A, premico s pa

v točki B. Naj bo y(A) — x in y(B) — y. Elementa x, ye 7 imenujemo afini

koordinati točke P, in sicer je x abscisa in y ordinata. Pogosto pišemo P —

— (x, Y). Točka P očitno natanko določa elementa x in y. Vzemimo zdaj, da

sta daria x, ye[T. Ker je y bijekcija, obstajata taki točki A in B na enotni

premici, da je y(A) — x in y(B) — y. Skozi A potegnimo vzporednico r z ordi-

natno osjo, skozi B pa vzporednico s z abscisno osjo. Premici 7 in s nista

vzporedni in obstaja zato presečišče P — r[1s. Brez težave ugotovimo, da sta

x in y koordinati točke P.

Če leži točka P na abscisni osi, je premica s kar os (x); le-ta seče enotno

premico v točki O. Ker je y(O) — 0, ima vsaka točka na abscisni osi ordinato

0. Podobno ugotovimo, da je abscisa za vsako točko na ordinatni osi enaka 0.

Vse točke na vzporednici z ordinatno osjo imajo isto absciso, vse točke na

vzporednici z abscisno osjo pa isto ordinato. Kakšni pa sta koordinati točke

P na enotni premici? V tem primeru sečeta vzporednici r in s enotno premico

kar v točki P, tako da je A — B — PP, Od tod sledi x — y(A) — y(5) — y. Torej

ima vsaka točka na enotni premici koordinati (x,x). Posebej je E <— (1,1).

Narobe je tudi res, da leži točka s koordinatama (x, x) na enotni premici.

4. Planarni ternarni kolobar

Imejmo v afini ravnini .4 dan koordinatni sistem. Skozi točko E£ poteg-

nimo vzporednico z osjo (y). To premico imenujemo premico strmin. Vsaka

točka na njej ima absciso 1. Naj bo p poljubna premica, ki ni vzporedna

z osjo (y). Potegnimo skozi izhodišče O vzporednico p" s p (Sl. 3). Premica p"

seče premico strmin v neki točki s koordinatama (1, m), me. Ordinato m

imenujemo strmina premice p. Zapomnimo si, da smo strmino m priredili

samo premicam, ki niso vzporedne z ordinatno osjo. Abscisna os ima npr.
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strmino 0, enotna premica pa strmino 1. Premici p in p' sta vzporedni natanko

tedaj, kadar imata isto strmino.

Ali obstaja premica s strmino m pri poljubnem me 7? Točka P s koordi-

natama (1, m) leži na premici strmin. Zveznica OP je očitno premica s strmino

m. Takoj tudi vidimo, da za vsako točko P, in vsak me [ obstaja premica p,

ki gre skozi P, in ima strmino m.

Slika 3 Slika 4

Vzemimo poljubne elemente a, m, be 7. Točka (0, b) — B leži na ordinatni

osi. Naj bo p premica, ki gre skozi B in ima strmino . Je natanko določena.

Nadalje naj bo 7 premica, ki gre skozi točko A — (a,0) na abscisni osi in je

vzporedna z ordinatno osjo. Vse točke na r imajo absciso a. Premici p in r

nista vzporedni in se zato sečeta v neki točki P — (a,c) (Sl. 4). Iz konstrukcije

se vidi, da je ordinata c določena z elementi a, m, b. Zato pišimo c — Ta, m, b).

Tako smo dobili preslikavo 7, ki vsaki urejeni trojki (a, m, b) elementov iz /'

priredi natanko določen element Ta, m, b)ec T. Tako preslikavo imenujemo

ternarna operacija. Deluje v množici ['.

Element 5 določa točko B <— (0,0) na ordinatni osi. Premica p gre skozi

B in ima strmino m. Točka s koordinatama (x, y) leži na njej natanko tedaj,

kadar je y — T(x, m, b). Fo je neposredno razvidno iz definicije ternarne ope-

racije in iz tega, da vzporednica z ordinatno osjo seče premico p, ki ni vzpo-

redna s to osjo, v natanko določeni točki. Zato lahko vzamemo, da je

y — T(x, m, b) (3)

enačba premice p. Tako smo priredili enačbo vsaki premici, ki ni vzporedna

z ordinatno osjo. Če pa je p vzporedna z osjo (y) in seče os (x) v točki A —

— (a,0), imajo vse točke na njej absciso a. Zato lahko rečemo, da je x<—a
enačba vzporednice z osjo (y).

Naštejmo zdaj osnovne lastnosti ternarne operacije T'.

(T,) 700, m, bh) — T(a,0,b) — b pri poljubnih a, m, be T

(T,) T(a,1,0) — 7(,a,0) — a za vsak ac [7

(T,) Naj bodo rm, m', b, b'e T poljubni in m' -: m. Enačba

T(x, m, b) < T(x, m,b) (4)

ima natanko določeno rešitev xc /'.

(T,) Naj bodo a, a, c, ce I' poljubni in a J-a. Sistem enačb

T(a, x,y) —c in TI(4,x,y)) <c€ (5)

ima natanko določeno rešitev x, yc ['.

(T,) Pri poljubnih 4, m, ce ' je enolično rešljiva na x enačba

T(a, m, x) < c (6)
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Dokaz. (I,). Postavimo x — 0 v enačbi (3). Dobimo, da je 7(0, m, b) ordi-

nata točke B, kjer seče premica p ordinatno os. Ta ordinata pa je 5. Torej

Premica z enačbo y — T(x,0, Db) ima strmino m <— 0, torej je vzporedna

z osjo (x). Ker seče ordinatno os v točki B — (0,0), je njena enačba tudi

y — b. Od tod sledi T(a,0, b) — b.

(T.). Premica z enačbo y — T(x, 1,0) gre skozi izhodišče in ima strmino 1.

To pa je ravno enotna premica, katere enačba je y — x, saj sta koordinati

vsake točke na njej med seboj enaki. Torej T(x,1,0) — x.

Premica y — T(x,a, 0) gre skozi izhodišče, njena strmina je a. Po definiciji

strmine seče premico strmin x — 1 v točki (1,4). Zato je T(l,a4,0) —a.

(T.). Naj bo y — T(x,m, b) enačba premice p in y — T(x, m',b') enačba

premice p'. Ker m' gem, p in p' nista vzporedni in se sečeta v natanko dolo-

čeni točki P, — (x,,y,). Potem je T(x,, m, b) — y, — T(x,,m',b"). Torej je x, re-

šitev enačbe (4). Denimo, da obstaja še kaka druga rešitev x,. Postavimo

y, — T(x,, m, b) — T(x,, m,b"). Točka (x,,y,) leži na premicah p in p'. Od tod

sledi x, — x, in y, — Y,, Saj je presečišče eno samo.

(T,). Točki (a,c) in (g,c") sta različni zaradi pogoja d4 spa. Naj bo p zvez-

nica teh točk. Pogoj a' ska še pove, da p ni vzporedna z osjo (y). Zato ima

enačbo y — T(x, m, b) pri primerno izbranih m, be [. Ker gre p skozi točki

(a, c) in (a',c'), je T(a,m,b) — c in T(a,m,b) — c. Torej zadoščata x — m,

y — b sistemu (5). Da je to edina rešitev tega sistema, sledi od tod, ker je

premica p skozi točki (a,c) in (a',c') ena sama.

(T). Naj bo y — T(x, m, b) enačba premice, ki ima strmino m in gre skozi

točko (a, c). Potem je T(a, m, b) — c. Torej je x — b rešitev enačbe (6). Očitno

je to edina rešitev.

Definicija. Množica /' s ternarno operacijo 7 se imenuje planarni ternarni

kolobar, če sta v /' vsaj dva med seboj različna elementa 0 in 1 in če ima ope-

racija T lastnosti (T,)—(T,).

Planarni ternarni kolobar bomo na kratko označili z (/', 7). Pravimo mu

planarni zato, ker smo ga dobili iz ravninske afine geometrije. Ker so ele-

menti iz 7' koordinate točk, imenujemo (7,7) tudi koordinatni kolobar.

5. Seštevanje in množenje

V vsakem planarnem ternarnem kolobarju (7,7) lahko na naraven način

definiramo dve binarni operaciji: seštevanje in množenje. Ti dve operaciji pa

nimata istih lastnosti kakor v običajnih kolobarjih.

Za poljubna elementa a, be naj bo

a--b-—T(a,1,b) 60

S tem je v množici /' natanko določena binarna operacija seštevanja. Element

a - b imenujemo vsota elementov a in 5. Množico / z binarno operacijo

seštevanja bomo označili z ([, --). Oglejmo si lastnosti seštevanja:

(S) a-0<—0-azx—a za vsak ac[T

(S,) Pri poljubnih a, b</' sta enačbi

aJ-x—<b in ydJ-az<b (8)

enolično rešljivi na x oziroma na y.
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Dokaz. (S,). Definicija (7) in lastnost (T,) operacije 7 povesta, da je

a-0x<— I7(a,1,0) — a. Lastnost (T,) pa nam da še 0 -a<7(0,1,4a) — a. Torej

je 0 nevtralni element za seštevanje.

(S,). Prvo enačbo (8) zapišemo v obliki T(a, 1,x) — b. Lastnost (T,) pove,

da ima ta enačba natanko določeno rešitev x. Drugo enačbo (8) pa zapišimo

v obliki T(y,1,a) < b — T(y,0,b). Ker 1-0, je po (T,) tudi ta enačba eno-

lično rešljiva na y.

Če bi za seštevanje veljal zakon asociativnosti, bi bila (7, --) grupa. Ven-

dar zakona asociativnosti ne moremo izpeljati iz lastnosti (T,) — (T,) ternarne

operacije T oziroma iz aksiomov .4 1 —.4 3.

Algebrsko strukturo (7, --), ki izpolnjuje pogoja (S,) in (S,), imenujemo

kvazigrupa (angleško loop). Kvazigrupa je posplošitev pojma grupe. Kvazi-

grupa je namreč grupa, če velja v njej zakon asociativnosti.

Za poljubna elementa a, b e FT postavimo

ab — T(a,b,0) (9)

To binarno operacijo v / imenujemo množenje in označimo s ., ki je ponavadi

ne pišemo. Množenje ima tele lastnosti:

(M) a.0—0.a— 0 za vsak aeT

(M) a.1—-l1.a-—a za vsak ac[T

(M,) če sta a in b oba različna od 0, je tudi ab 4-0

(M,) Za vsak ac, a--0, in vsak be [' sta enolično rešljivi enačbi

ax—b in ya<b (10)

Dokaz. (M,). Iz definicije (9) in (T,) dobimo a.0 — T(a,0,0) —0 in 0.a —

— I(0,a,0) — 0.

Lastnost (M,) je kar (T,).

(M,). Naj bosta a--0 in b--0. Premica p z enačbo y — T(x, b,0) gre skozi

izhodišče in ima strmino b. Ker b 3-0, p ni abscisna os. Zato y — T(x,b,0) <0

za vsak x--0. Od tod ab — T(a, b,0) <0.

(M,). Naj bo a--0. Prvo enačbo (10) zapišemo v obliki T'a,x,0) — b.

Oglejmo si zdaj sistem enačb

T(a,x,y)<b tin T(0,x,y) <0

Ker a-:-0, ima ta sistem po (I,) natanko določeno rešitev (x,,y,). Druga

enačba pove, da je y, — T(0,x,,y,) — 0. Torej ax, — T(a,x,,0) — T(a,x,,y, — b.

Drugo enačbo (10) pa lahko zapišemo v obliki T(y,a,0) < T(y,0,b). Ker

a -E0, ima po (T,) natanko določeno rešitev y,.

Označimo z 7" množico 7 brez elementa 0. Lastnost (M,) pove, da je 7"

zaprta za množenje. Torej je v njej . binarna operacija. Nadalje je 1 nevtralni

element za množenje, enačbi ax — b in ya — b pa sta v 7" vselej rešljivi. Od

tod vidimo, da ima tudi (7",.) strukturo kvazigrupe.

Planarni ternarni kolobar je zelo podoben običajnemu kolobarju in celo

obsegu. Pač pa v njem ne veljajo asociativnostna zakona za seštevanje in

množenje in distributivnostni zakon.

6. Desarguesov in Pappusov izrek

Asociativnostna zakona za seštevanje in množenje sta v planarnem ter-

narnem kolobarju tesno povezana z veljavnostjo posebnih primerov Desar-

guesovega izreka v afini ravnini. Oglejmo si najprej
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izrek D,. Na bodo p,g,7 med seboj različne vzporedne premice afine

ravnine ./. Nadalje naj bosta A, A' različni točki na premici p, B, B' različni

točki na g in c, C različni točki na r. Če je zveznica AB vzporedna z AD' in

zveznica BC vzporedna z D'C', je tudi zveznica AC vzporedna z A'C'. (Sl. 5.)

Izrek D, se ne da dokazati iz aksiomov .4 1 —.Y 3. Velja pa

izrek 3. Naj bo .% taka afina ravnina, da v njej velja izrek D,. Potemje

seštevanje v ternarnem kolobarju (/,7) komutativno in asociativno. Velja
desni distributivnostni zakon (a - b)c — ac - bc, ternarni operator 7 pa se

izraža s seštevanjem in množenjem v obliki |

T(a, m, b) — am - b (11)

Če torej privzamemo k aksiomom 2/1 —.%43 afine ravnine še izrek D, kot

aksiom, ima koordinatni kolobar tele lastnosti:

(1) (7, --) je Abelova grupa z nevtralnim elementom

(2) ([",.) je kvazigrupa z nevtralnim elementom 1;

(3) a.0—0.a-— 0 za vsak acT;

(4). (a -- b)e — ac - be.

Množenje pa je asociativno, če velja tale posebni primer Desarguesovega

izreka:

0;

Izrek D,. Naj gredo med seboj različne premice p, g,r skozi isto točko O.

Nadalje naj bosta A, A' različni točki na premici p, 5, B' različni točki na g in

C, C" različni točki na r. Če je zveznica AB vzporedna z AB' in zveznica BC

vzporedna z B'C', je tudi zveznica AC vzporedna z A'C'. (Sl. 6.) |

| Pripomba. Izreka D, in D, se ločita v tem, da so p,g,r pri D, vzporedne

premice, pri D, pa gredo skozi isto točko O.
Izrek D, lahko v afini ravnini .4 velja ali ne. Obstajajo celo afine ravnine,

v katerih D, velja, D, pa ne.
Afina ravnina, v kateri veljata izreka D, in D,, se imenuje Desarguesova

afina ravnina. Koordinatni kolobar (/', 7) se v Desarguesovi afini ravnini od-

likuje s temile lastnostmi:

(1). (F, --) je Abelova grupa z nevtralnim elementom 0;
(2) ([",.) je grupa z enoto 1; |

(3) veljata distributivnostna zakona

(a- he <ac -bce in cla - b) — ca - cb

Koordinatni kolobar je torej v tem primeru za seštevanje in množenje obseg.
Naj bo / poljuben obseg. Definirajmo v njem ternarno operacijo 7 z enač-

bo (11). Brez težave se prepričamo, da je (7,7) planarni ternarni kolobar,
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operaciji seštevanja in množenja pa se v (/,7) ujemata s tema operacijama

v obsegu ['.

V afini ravnini.%4, ki sestoji iz štirih točk, pogoja izrekov D, in D, ne

moreta biti izpolnjena, ker na. ni 6 različnih točk. Ni pa težko videti, da je

v tem primeru koordinatni kolobar obseg Z,, ki ima samo dva elementa 0 in 1.

Koordinatni kolobar za evklidsko ravnino je obseg realnih števil, ki je

komutativen. Kakšno dodatno lastnost mora imeti afina ravnina, da je koor-

dinatni kolobar komutativen obseg? Komutativnost množenja je povezana

z veljavnostjo Pappusovega izreka.

Pappusov izrek. Naj bodo P,O,R različne točke na premici p in P,O0,R'

različne točke na premici g. Vse te točke naj bodo različne od presečišča

p NOIg<—O. če je zveznica PR' vzporedna z zveznico RO', zveznica RP' pa vzpo-

redna z OR', je tudi zveznica PP' vzpo-

redna z OO". (Sl. 7.

Pappusov izrek se ne da dokazati iz

aksiomov.4/1—./3 in izrekov D, ter D..

Velja namreč

Izrek 4. Koordinatni kolobar Desar-

guesove afine ravnine 4 je komutati-

ven obseg natanko tedaj, kadar velja

v ravnini.4 Pappusov izrek.

P Dokaze za izreka 3 in 4 in za druge

Slika 7 v tem razdelku navedene trditve najde

bralec v knjigi [1], str. 80—100.

V tem bežnem pregledu smo obravnavali le ravninsko afino geometrijo.

V prostorski geometriji imamo poleg točk in premic še ravnine. Aksiomi za

atini prostor so prva skupina aksiomov Hilbertovega sistema in aksiom

o vzporednicah. Desarguesov izrek tu vselej velja, je namreč posledica pro-

storskih aksiomov. Od tod sledi, da je koordinatni kolobar v vsakem afinem

prostoru obseg. Algebrske strukture, ki so posplošitve obsega, dobimo torej

samo pri ravninskih geometrijah. Zato je z algebrskega stališča najbolj zani-

miv študij afinih ravnin.

Na koncu se povrnimo še k afinim transformacijam. Izreka D, in D,

veljata v afini ravnini ,4 tedaj, kadar je grupa afinih transformacij dovolj

bogata. Pri tem imajo pomembno vlogo afine transformacije, ki vsako premi-

co ravnine .4 preslikajo v vzporedno premico. Izkaže se, da ima taka trans-

formacija, če ni identična preslikava, natanko eno negibno točko ali pa nobe-

ne. V prvem primeru se imenuje razteg, v drugem pa translacija ali vzporedni

premik. Translacija je natanko določena s sliko ene točke, razteg pa s slikama

dveh točk, pri tem mora biti zveznica P'O' preslikanih točk vzporedna zvez-

nici PO originalnih točk P in O. Toda aksiomi .41 —.43 ne povedo, ali te

translacije in raztegi obstajajo. Dokazati se da, da velja v ravnini. izrek D,

natanko tedaj, kadar za vsak par točk P in O obstaja translacija, ki preslika

P vO. Izrek D, pa velja natanko tedaj, kadar za poljubne različne kolinearne

točke P,O, R obstaja razteg, ki ima negibno točko P in preslika O v R.
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Obzornik mat. fiz. 29 (1982) 3

V JANEZ RAKOVEČ

Math. Subj. Class. (1980) 51-01, 57-01, 57N05

Za oba izreka sta podrobno izpeljana elementarna dokaza, ki se naslanjata na

ravninsko geometrijo.

PROOFS OF THE JORDAN AND SCHOENEFLIES THEOREMS FOR POLYGONAL

SIMPLE CLOSED CURVES IN THE PLANE

Elementary proofis of both theorems are carried out in detail, relying upon

plane geometry.

1. Priprava

V ravnino 1/J, ki jo izberemo za univerzum, vpeljemo topološko strukturo.

Za bazične okolice poljubne točke 7 ec (7 vzamemo vse odprte kroge s sro-

diščem T. (Pridevnik »bazičen« bomo odslej izpuščali.)

Pri formulaciji in dokazovanju omenjenih izrekov bomo rabili spodaj na-

vedene pojme in ugotovitve; več o teh glej npr. v [4], [5], [7].

1.1. Definicija. Naj bo .s4 množica točk v ravnini II in T poljubna točka

v II. Točka T je notranja (oziroma zunanja) točka za.w, če ima vsaj eno

okolico, ki leži v. (oziroma v C.%); T je robna točka za.s4, če vsaka njena

okolica vsebuje vsaj eno točko iz.4 in vsaj eno točko iz C.«4. — Množica vseh

notranjih (zunanjih, robnih) točk za .4 je notranjost (zunanjost, rob) mno-

žice 4.

1.2. Definicija. Množica 4 v ravnini II je zaprta v I], če vsebuje svoj rob.

Množica 4 je odprta v IJ, če ne vsebuje nobene svojih robnih točk.

Kaj odlikuje povezano množico (ki je »iz enega kosa«) pred nepovezano

množico (ki sestoji »iz dveh ali več kosov«), nam pove:

1.3. Definicija. Množica MY v ravnini II je povezana, če za poljubni neprazni

množici 4 in G, za kateri je ZUB-<./U in ZN 8-—0, obstaja ' V M4 točka T,

ki je robna točka za. in za S hkrati. (Slika 1.) —TI—

Primere nepovezanih množic nam da:

1.4. Trditev. Unija dveh nepraznih, disjunktnih

odprtih množic 4% in A v ravnini II ni povezana.

Dokaz. V 4 U B ni nobene točke, ki bi bila rob-

na točka za «4 in za 4 hkrati. (Vsaka točka iz 4

je notranja za. in zunanja za Z; analogno je s RJLO . —

točkami iz B.) Slika 1

Če je p premica v ravnini 77, njen komplement Cp ni povezan, saj je unija

dveh odprtih polravnin, ki sta neprazni in disjunktni. (Vse točke na p so

sicer robne za obe polravnini, a seveda ne spadajo v Cp.) Podobno vidimo, da

komplement krožnice ali roba trikotnika v ravnini ni povezan.

Kot primeri povezanih množic se izkažejo premice, daljice in poltraki

(glej [5], str. 183) pa tudi lomljene črte, ki jih bomo zdaj definirali (glej še

[5], str. 186). |

« Članek vsebuje osrednji del avtorjevega predavanja 7 opologija v evklidskih
prostorih na seminarju Geometrija, 30. 1. 1982 v Ljubljani. Vsebina se dopolnjuje

s člankom J. Vrabca Jordanov in Schoenfliesov izrek, Obzornik mat. fiz. 23 (1976)
5/6, str. 137—145.
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1.5. Definicija. Naj bodo A;, Ax, ..., A, take točke v ravnini I], da se zaprte

daljice A,As, AsAs, ..., A,, 14x stikajo le v teh točkah, sicer pa nimajo skupnih

točk. Unijo zaprtih daljic A,As U AsA5 U... UA,, ,A, imenujemo lomljeno črto

(z oglišči A,, As, ..., A,, in stranicami A,A3, AsA3, ..., A, —44,). Če je A; — A,,

pravimo tej črti poligonalna krožnica, če je A; --A,, pa poligonalen lok (ki

veže A; in A,,)).

1.6. Izrek. Naj bo .4 množica v ravnini II. Če za poljubni točki iz .M ob-

staja poligonalen lok, ki ju veže in ki leži v./, je množica .M povezana.

Dokaz glej v [5], str. 186, 187. — Po tem izreku so očitno povezane na

primer vse konveksne množice v ravnini. |

A;

An-?

Slika 2 Slika 3

1.7. Definicija. Bodita 4, $ množici v ravnini II in f:.4—> % poljubna pre-

slikava (funkcija). Preslikava f je zvezna, če velja za vsako točko Xe.Yd: k po-

ljubni okolici Y točke f(X)e obstaja taka okolica točke X, ki se z f presli-

ka v YU.

1.8. Definicija. Preslikava f:.4—> 8 je homeomorfizem, če je zvezna in

bijektivna ter je tudi inverzna preslikava (1: B->.4 zvezna. — Množici 4

in E v Il sta homeomorfni, če obstaja kak homeomorfizem f:4->8B.

Homeomorfnost je ekvivalenčna relacija med množicami v ravnini /7. Upo-

števati je namreč treba, da je identična preslikava homeomorfizem, da je

inverzna preslikava homeomorfizma spet homeomorfizem in da je kompozi-

tum dveh homeomorfizmov spet homeomorfizem.

Za primer homeomorfizma se izkaže vsaka afina preslikava (transformaci-
ja) f : I7 — II ravnine /7. Očitno sta potem poljubna zaprta (ali odprta) trikot-

nika NABC in AAB'C' homeomorfna. Obstaja namreč taka afina preslikava

f: a—a, da je (A) — A, f(B) — B', ((C) — C in se tedaj AABC z f preslika

na AABC'. |

Množica v ravnini /7, ki je homeomorfna krožnici, se imenuje emostavno

sklenjena krivulja (slika 3). Primer zanjo je med drugim poljubna poligonal-

na krožnica (saj je homeomorfna robu trikotnika, ta pa krožnici).

Za konec razdelka bomo izpeljali dve geometrijski ugotovitvi o poligonal-

nih krožnicah, ki ju bomo rabili pri dokazovanju Jordanovega in Schoenflieso-

vega izreka.

1.9. Trditev. Če ima poligonalna krožnica k v ravnini II vsaj štiri oglišča,

obstaja daljica, ki spaja dve njeni oglišči tn razen v njiju ne seka k.

Dokaz. Naj bodo A;, A», A; zaporedna, nekolinearna oglišča krožnice k. Naši

trditvi ustreza daljica A,As, če razen v A; in A; ne seka k. V nasprotnem pri-

meru pa vsaj eno oglišče od k leži znotraj daljice A,As ali znotraj trikotnika

AA;4-As (slika 4). (Stranica od k, ki seka A;As, mora namreč imet eno kra-

jišče v AA,A,4s.) Skozi vsa oglišča krožnice k, ki so znotraj A;A; ali znotraj

AN A,4.45, položimo vzporednice k premici skozi A;, Az. Naj bo p tista vzpo-

rednica, ki je najbližja oglišču A. Premica p seka stranici A,As in AsA; v toč-
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kah T in 7"; znotraj daljice 77" je neko oglišče A; krožnice k, znotraj ATA7'

pa ni nobene točke iz k. (Če bi namreč kakšna stranica od k segala znotraj

ATAsT', bi imela vsaj eno oglišče znotraj /7As7", kar po izbiri p ni možno.)

Tedaj daljica A,A; ustreza naši trditvi.

Slika 4 iu Slika 5
1.10. Trditev. Bodita j in k takšni poligonalni krožnici v ravnini IT, da njun

presek ne vsebuje nobenega oglišča krožnice j ali k. Tedaj se j in k sekata

v sodem številu točk.

Dokaz poteka z indukcijo na število oglišč krožnice k; število oglišč pri j

naj bo ves čas poljubno. — V začetku indukcije je k rob trikotnika A A;As4s.

Poljubna stranica 5,B;,, krožnice j seka k kvečjemu dvakrat. Če B;,B;,; seka

k v dveh točkah ali pa sploh ne, sta B,; in B;;, oba znotraj ali oba zunaj

A AMiHAshAs; če B,B;,, seka k v eni točki, je eno od oglišč B;, B;,, znotraj in

drugo zunaj / A;As4s. Obhodimo krožnico j od oglišča B, skozi Ba, Bs, ... do

B, nazaj. Če je pri tem med B; in kakšnim B,; liho število sečišč s k, je eno

od oglišč B;, B; znotraj in drugo zunaj / A,AsAs. Ker se pri celotnem obhodu

vrnemo v B;, je število vseh sečišč krožnic j in k sodo.

Indukcijski korak. Naj bo n poljubno naravno število. Privzemimo, da

velja naša trditev v vseh primerih, ko ima krožnica k manj kot n oglišč.

Bodita j in k poligonalni krožnici kakor v naši trditvi in naj ima k zdaj mn

oglišč. Po 1.9 obstaja daljica, ki spaja dve oglišči A in A krožnice k ter razen

v A in A ne seka k. Tisti oglišči pa razdelita k na poligonalna loka k, in k;,

ki oba vežeta A in A. Uniji AA U k; in AA U ks sta poligonalni krožnici z manj

kot m oglišči. Privzamemo lahko, da nobeno oglišče krožnice ; ne leži na

daljici AA'; sicer bi namreč j; malo spremenili v bližini AA', pri čemer bi

presek j [A k ostal kakor prej (slika 5).

Naj bodo s, s,, ss zapored števila sečišč krožnice j z AA, k,, ks. Števili

sečišč krožnice j s krožnicama AA'U k; in AA U k, sta enaki s -- s; in s - S9

ter sta sodi po indukcijski predpostavki. Potem je soda tudi njuna vsota

2s -- s, so in prav tako s; -- sa, kar je število sečišč krožnic j in k. — Tako

smo izvedli indukcijski korak in s tem dokazali postavljeno trditev.

2. Jordanov izrek

Enostavno sklenjena krivulja v ravnini (slika 3) »očitno« razdeli ravnino

na dve polji, ki jima je krivulja skupni rob. To dejstvo je kot izrek prvi

formuliral C. Jordan leta 1893 v [1]. Natančneje se njegov izrek glasi:

2.1. Jordanov izrek. Naj bo k enostavno sklenjena krivulja v ravnini Il.

Njen komplement Ck je unija dveh nepraznih, disjunktnih, odprtih in po-

vezanih množic .£ in 8. Krivulja k je rob za .4 in za B hkrati.
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Komplement Ck je tedaj po 1.4 nepovezan. Enostavno sklenjena krivulja

k tako razdeli ravnino na dva »kosa« — prav tako kakor jo razdeli premica

ali rob trikotnika (glej tu str. 00).

Izkaže se, da je ena od množic .4 in 4 v 2.1 omejena in druga neomejena;

prvo imenujemo notranje polje, drugo pa zunanje polje krivulje k. O tem

glej [8], str. 139; v [8] je tudi izčrpno razložen pomen Jordanovega izreka in

podana njegova razširitev na višje dimenzije. V [3] pa najdemo na str. 14—17

zanimiv primer uporabe našega izreka.

Izrek 2.1 seveda obvelja, če za k vzamemo poligonalno krožnico, saj je ta

poseben primer enostavno sklenjene krivulje. — Tu bomo izpeljali:

Dokaz Jordanovega izreka za primer, ko je k poligonalna krožnica v rav-

nini I1. V komplementu Ck izberimo takšni točki A in B, da seka daljica AB

krožnico k v eni sami točki, ki ni oglišče (slika 6). Naj bo.«% množica, ki

vsebuje točko A in vse tiste točke iz Ck, ki jih lahko povežemo z A s poligo-

nalnim lokom, ki ne seka k. Enako definiramo množico $, pri čemer vzamemo

točko B namesto A. Množici .4 in Z sta seveda neprazni; za naš dokaz se

moramo še prepričati, da sta disjunktni, odprti in povezani, da je Ck — 4 UB

in da je k skupni rob za .4 in $.

Recimo, da imata množici 4 in 4 kakšno skupno točko U. Če je U-kA

in U JE B, lahko U povežemo s točkama A in B s poligonalnima lokoma v Ck.

Unija obeh lokov in daljice AB vsebuje poligonalno krožnico j, ki seka k

v eni sami točki, ki ni oglišče za j ali k. To pa je v protislovju z 1.10. Podobno

dobimo protislovje, če je U — Aali U — B. — Zato je .4 NAZB<—9.

Pokažimo, da je poljubna točka Te.4 notranja za. in je tako .4 odprta

množica. Naj bo 7 pozitivno število, ki je manjše od vseh razdalj točke 7' od

stranic krožnice k. (Razdalja točke od daljice je razdalja med to točko in

njej najbližjo točko daljice.) Odprti krog.X (T,r) tedaj ne seka k. Za poljubno

točko Ve.X(T, r) dalji-

ca TV ne seka k in po-

tem lahko V povežemo

skozi 7 s točko A s po-

ligonalnim lokom v

Ck; torej je Ve.Y.

Krog X (T, r) tako leži

v.d in s tem je T not-

ranja točka za 4. —

Enako pokažemo, da

je tudi množica 4 od-

prta.

Če sta X in Y poljubni točki v 4, različni od B, ju lahko povežemo s točko

B s poligonalnima lokoma v Ck. Unija obeh lokov vsebuje poligonalen lok /,

ki veže X in Y. (Tega dobimo tudi, če je X — B ali Y — B.) Poljubno točko

Wel, W --B, očitno lahko povežemo z B s poligonalnim lokom v Ck; torej

je WeA. Lok ! tako leži v 4. Po 1.6 je tedaj množica Z povezana. — Enako

dokažemo povezanost množice...

Komplement Ck vsebuje množici .4, 4 in s tem njuno unijo. Pokazali

bomo, da poljubna točka Z e Ck spada v. ali v Z in je tako Ck — 4U 8. —

Če daljica AZ ne seka k, je očitno Ze.x. Sicer pa obstaja poligonalen lok, ki
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ne seka k in veže Z z eno od točk A in B; torej je Ze.Y ali Z e 4. Konstrukcija

takega loka je razvidna iz slike 6. Razdalje med stranicami krožnice k in njim

vzporednimi stranicami loka so vse enake d. Pri tem je d manjši od razdalj

točk A in B od krožnice k ter od polovice vsake razdalje med poljubnim

ogliščem krožnice k in poljubno njeno stranico, ki ga ne vsebuje. Zato kon-

struirana črta ne seka niti krožnice k niti same sebe. V nasprotnem primeru

bi namreč k imela takšno oglišče in takšno stranico, ki ga ne vsebuje, pa je

od njega oddaljena kvečjemu za d (slika 7a ali 7 b) — oziroma kvečjemu za

2d (slika 7 c) — kar po izbiri d ni možno.

Prepričajmo se še, da je krožnica k skupni rob množic «4 in S. Če je Pek,

vsebuje poljuben odprt krog s središčem P takšni točki O in R iz Ck, da seka

daljica OR krožnico k v eni sami točki, ki ni oglišče (slika 6). Tedaj je ena

od točk O, R v.4 in druga v 3. Če bi bili namreč obe v .%4 ali obe v $, bi ju

lahko povezali s poligonalnim lokom v Ck; podobno kot že prej bi dobili

poligonalno krožnico, ki bi sekala k v eni sami točki, ki ni oglišče — kar po

1.10 ni možno. Tako je poljuben Pek robna točka za .4 in za 4. — ločke

iz Ck pa niso robne niti za. niti za Z. Vsaka točka iz.4 je namreč notranja

za .4 in zunanja za 7; analogno je s točkami iz Z.

2.2. Trditev. Naj bo k poligonalna krožnica v ravnini II in X, Y različni

točki v komplementu Ck. Točki X in Y sta obe v notranjem ali obe v zuna-

njem polju krožnice k natanko tedaj, ko ju lahko povežemo s poligonalnim

lokom v Ck.

Dokaz. Vpeljimo točki A, B in množici .4, £ kakor v dokazu Jordanovega

izreka za poligonalne krožnice. Ena od množic .44, 4 je tedaj notranje in druga

zunanje polje krožnice k. Če sta točki X in Y obe v. ali obe v 4, ju lahko

povežemo s poligonalnim lokom v Ck — glej omenjeni dokaz in sliko 6.

Naj obstaja poligonalen lok v Ck, ki veže točki X in Y. Vzemimo, da je

X e./, in pokažimo, da je tudi Ye.%Y. Če je X —< Aali Y — A, je Y e.v po sami

definiciji množice.4. Sicer pa lahko, po isti definiciji, povežemo A in X s po-

ligonalnim lokom v Ck. Ker tak lok že veže X in Y, lahko povežemo tudi

A in Y s poligonalnim lokom v Ck in s tem je Ye.%. — V primeru, ko je

X e%, pokažemo podobno, da je tudi Y ce 4.

Dokazana trditev nam še pove, kdaj je od dveh točk X, Y iz Ck ena v no-

tranjem in druga v zunanjem polju krožnice k: to je natanko tedaj, ko X in

Y ne moremo povezati s poligonalnim lokom v (Ck — se pravi, ko vsak poli-

gonalen lok v ravnini 7/7, ki veže X in Y, seka krožnico k.
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3. Schoenfliesov izrek

Leta 1908 je A. Schoenflies v [6] izpeljal tole dopolnitev Jordanovega izreka:

3.1. Schoenfliesov izrek. Naj bo k enostavno sklenjena krtvulja v ravnini.

Unija krivulje k in njenega notranjega polja je homeomorfna zaprtemu krogu.

— Več o tem izreku glej v [8]. Tam je med drugim dokazano, da je izrek 3.1

ekvivalenten naslednji trditvi, ki se zato tudi imenuje po Schoenfliesu:

3.2. Schoenfliesov izrek. Za poljubno enostavno sklenjeno krivuljo k v rav-

nini II obstaja tak homeomorfizem f : II —> II ravnine Il, da je f(k) krožnica.

Seveda že po definiciji obstaja homeomorfizem med enostavno sklenjeno

krivuljo in krožnico. Izrek 3.2 pa zagotavlja obstoj homeomorfizma celotne

ravnine, ki preslika dano enostavno sklenjeno krivuljo na krožnico.

Jordanov izrek se izkaže za posledico Schoenfiliesovega izreka. Po 3.2 je

namreč lega pojubne enostavno sklenjene krivulje k v ravnini /7 topološko

enakovredna legi neke krožnice v // (zaradi homeomorfizma f: // —> I], ki pre-

slika k na krožnico). Ker krožnica deli ravnino na dve polji, ki jima je skupni

rob (v tem primeru sta to notranjost in zunanjost ustreznega kroga), ima tedaj

enako lastnost krivulja k.

Izrek 3.2 seveda obvelja, če za k vzamemo poligonalno krožnico. Za ta

primer ga navadno povemo v tejle obliki:

3.3. Izrek. Za poljubno poligonalno križnico k v ravnini II obstaja tak

homeomorfizem f:II-—>TIl ravnine II, da je f((k) rob trikotnika.

Zamenjava »krožnice« z »robom trikotnika« na koncu izreka tu ničesar ne

spremeni: za poljubno krožnico in poljuben trikotnik v ravnini /7 namreč

obstaja homeomorfizem ravnine 77, ki preslika krožnico na rob trikotnika.

Dokazali bomo izrek 3.3 in v ta namen bomo najprej izpeljali naslednji

trditvi 3.4 in 3.5, ki se naslanjata na Jordanov izrek. (V 3.4 je omenjena odprta

3.4. Trditev. Poligonalna krožnica k v ravnini II naj ima vsaj štiri oglišča.

Potem ima k dve takšni oglišči A,, in A,, da leži odprta daljica (A,,4,) v no-

tranjem polju krožnice k.

Dokaz. Očitno je to poostritev trditve 1.9. Dokaz za 3.4 je prav tak kot

za 1.9, le da tu upoštevamo naslednje: |

Poljubna poligonalna krožnica k v ravnini /7 ima takšno oglišče A;, da so

točke znotraj kota <A; ,4;4A;,,, ki so dovolj blizu A;, vse v notranjem polju

krožnice k.

Prepričajmo se o tem. Najprej privzemimo, da pri nobenem oglišču krož-

nice k ustrezni stranici ne oklepata iztegnjenega kota; sicer taka oglišča od-

pravimo. Obhodimo zdaj vso krožnico k. Pri poljubnem oglišču se smer ob-

hoda obrne na levo ali na desno. Če se pri vseh ogliščih obrne na levo ali

pri vseh na desno, je krožnica k rob konveksnega mnogokotnika. Notranjost

le-tega je notranje polje krožnice k in poljubno oglišče A; ima tedaj zgoraj

navedeno lastnost. — Če pa se smer obhoda pri nekaterih ogliščih obrne na

levo in pri drugih na desno, ima krožnica k taki sosedni oglišči A; in A;;;, da

je pri A; obrat na levo in pri A;,, na desno (slika 8). Izberimo zdaj taki

točki O, R iz Ck, da seka daljica OR krožnico k v eni sami točki, ki leži

v (AA; 4). Potem na primer O leži znotraj kota <A; ,4;A;,; in R znotraj

JA,A;HA;2. Dalje je ena od točk O, R v notranjem in druga v zunanjem

polju krožnice k, kar ugotovimo enako kakor na koncu dokaza Jordanovega

izreka za poligonalne krožnice. Tako je na primer O v notranjem polju in
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v njem so potem vse točke znotraj A, ,A,A;,,, ki so blizu A; — saj jih lahko

povežemo s O s poligonalnim lokom v Ck.

Pravkar dokazano trditev uporabimo pri iskanju oglišč A,, in A, z lasit-

nostjo kot v 3.4. Ponovimo postopek iz dokaza za 19, kjer predpostavimo,

da so točke znotraj kota <£A,AsAs, ki so blizu As, vse v notranjem polju krož-

nice k. (Oglišča lahko tako oštevilčimo — kakor je to že na sliki 4.) Tam

(AsA;) je tedaj v notranjem polju krožnice, saj so v njem že tiste njene točke,

ki so blizu As (upoštevamo 2.2). Če pa že daljica A,As ustreza trditvi 19, je

(A,A3) v notranjem polju krožnice k, če le znotraj /AA;4AsA5 ni oglišč od k;

v nasprotnem primeru pa lahko dobimo, kakor zgoraj, odprto daljico (A4A,),

ki je v notranjem polju krožnice k.

Slika 8 Slika 9

3.5. Trditev. Poligonalna krožnica k v ravnini II naj ima vsaj štiri oglišča.

Potem tma k takšna zaporedna oglišča A; ;, A;,, Aj;,,, da seka trikotnik

NA, 4AA;H krožnico k samo v stranicah A; ,A; in AA;,.

Dokaz. Po 3.4 ima krožnica k takšni oglišči A,, in A,, da leži odprta daljica

(A,,4,) v notranjem polju krožnice k. Oglišči A,, in A, razdelita k na dva

poligonalna loka; naj bo k' eden od njiju. Unija k UA,4, je poligonalna

krožnica; imenujmo jo k;. Pokazali bomo, da notranje polje krožnice k, leži

v notranjem polju krožnice k.

Krožnici k in k; ter njuni notranji polji so vsebovani v dovolj velikem

krogu v ravnini //. Poljubna točka O zunaj tega kroga je potem v zunanjem

polju tako krožnice k kakor tudi k;. Naj bo T točka v notranjem polju krož-

nice k (slika 9). Poljuben poligonalen lok / v /7, ki veže 7 in O, tedaj po 2.2

seka k; v vsaj eni točki X. (Tako /7 ni v k, saj bi sicer lahko 7 povezali z O

s poligonalnim lokom, ki ne seka k,.) Če je Xe k', s tem [ seka tudi k. Sicer

pa je X c(A,A4,) in je tako X v notranjem polju krožnice k. Potem po 2.2 lok

I v svojem delu od X do O seka k. Torej vsak poligonalen lok v //, ki veže

T in O, seka krožnico k in po 2.2 je točka 7 v njenem notranjem polju. Tako

notranje polje krožnice k; leži v notranjem polju krožnice k.

Po 3.4 ima tudi krožnica k, takšni oglišči A,,, in A,,, da leži odprta daljica

(A,,,4,,) V njenem notranjem polju — in s tem v notranjem polju krožnice k.

Oglišči A,,, in A,, razdelita k, na dva poligonalna loka; naj bo k" tisti od

obeh, ki ne vsebuje daljice A,,A,. Unija k" U A,,,4A,, — Ks je poligonalna krož-

nica; njeno notranje polje leži v notranjem polju od k; (sklepamo kakor zgo-

raj) in s tem v notranjem polju od k.

Če tako nadaljujemo (uporabimo 3.4 za ks itd.), dobimo zaporedje poligo-

nalnih krožnic k;, ]—1,2,3, ..., kjer je vsak k; unija nekega loka v k in

daljice A,,'A,,, ki veže dve oglišči pri k. Za vsak j; vsebuje notranje polje
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krožnice k odprto daljico (A,,4,,) in notranje polje krožnice k;. Z rastočim j

se število oglišč pri k; manjša. Tako pridemo končno do krožnice k; s samo

tremi oglišči A; 4, A; A;y;,, ki so zaporedna oglišča pri k. Pri tem sta
A; 4A; in A,4A;,, sosedni stranici krožnice k, odprta daljica (A; 4A;,,) in no-

tranjost trikotnika NA; 44A;A;44 pa ležita v notranjem polju krožnice k. Zato
NA; 44,4;-, seka k samo v stranicah A; ,A; in A,A;,,.

Dokaz izreka 3.3 napravimo z indukcijo na število oglišč poligonalne krož-

nice k. V začetku indukcije je k rob trikotnika in zanj očitno velja trditev

izreka 3.3. (Za f vzamemo identično preslikavo.)

Indukcijski korak. Naj bo n poljubno naravno število. Privzemimo, da

velja trditev v 3.3 za vsako poligonalno krožnico z m oglišči. Naj bo k poli-

gonalna krožnica z m - 1 oglišči. Po 3.5 ima k takšna zaporedna oglišča, re-

cimo kar A;, As, As, da seka trikotnik

AA4i42A3 krožnico k samo v stranicah

AjA> in AsAs. Naj bo B središče stra-

nice Aj;As. Na premici skozi As in B iz-

beremo točki C in D tako, da imamo

vrstni red C, Ax, B, D (slika 10). Pri tem

naj bo C oziroma D dovolj blizu A,

oziroma B, tako da četverokotnik % z

m oglišči A;CAsD seka krožnico k le v nje-

Slika 10 nih stranicah A;As in AsAs.
Vpeljimo zdaj homeomorfizem g: $ —- 4 četverokotnika 4 takole. Naj bo

£(A,) — A, g(C) — C, g(As5) — A3, g(D) — D in g(4) — B. Nato razširimo g na

trikotnike /AA;AsC, /AAs4sC, /NAj4AaD, NČ AsAsD: na vsakem od njih naj bo g

afina preslikava, ki je na ogliščih že predpisana. (Ti trikotniki se z g presli-

kajo zapored na /AA;BC, /AAsBC, AA;BD, AAsBD.) Tako smo dobili homeo-

morfizem g: $ —> %, ki je na robu četverokotnika € identična preslikava. Če

vzamemo identiteto še na komplementu C.%, dobimo v celoti homeomortizem

g: II —> II ravnine [/1.

Unija stranic A,As in AsA; se z g preslika na A;A;s, vse druge stranice krož-

nice k pa g ohrani. Torej je g(k) poligonalna krožnica, ki jo dobimo, če od k

odvzamemo stranici A;A> in AsA3 ter dodamo A;As. Ker ima g(k) n oglišč (eno

manj kot k), obstaja po predpostavki tak homeomorfizem f: //—>I], da je

f(e(k)) rob trikotnika. Trditev v 3.3 s tem velja tudi za krožnico k, saj jo ho-

meomorfizem fg: I7 —> I/ preslika na rob trikotnika. — Naš izrek je tako z in-

dukcijo dokazan.
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UKCIJE Z R
MARIJA VENCELJ

IN K

Math. Subj. Class. (1980) 51-01

Sestavek obravnava inverzijo na krog v ravnini in njeno uporabo pri konstruk-

cijskih nalogah elementarne geometrije.

INVERSION AND CONSTRUCTIONS WITH RULER AND COMPASS ALONE

[he paper discusess inversion with respect to a circle in the plane and its

application to construction problems in elementary geometry.

V okviru seminarja Geometrija je bilo tudi predavanje z naslovom Kon-

strukcije z ravnilom in šestilom. Predavanje je bilo razdeljeno na tri dele.

Prvi del je vseboval razlago problema konstrukcij z ravnilom in šestilom ter

zgodovinski pregled s posebnim poudarkom na slavnih antičnih problemih.

Težišče drugega dela je bil algebraični vidik problema in konstrukcije pra-

vilnih m-kotnikov. V tretjem delu smo poskušali sistematično obravnavati

nekatere principe, ki jih je moč uporabiti pri konstrukcijskih nalogah. Žal

zaradi omejenega časa dosti dlje od opisa metod in njihovih ilustracij z nekaj

zgledi nismo prišli.

Očitno je, da se vse navedeno ne da opisati na nekaj Obzornikovih straneh.

Zato sem se na pobudo nekaterih udeležencev seminarja odločila izrabiti

razpoložljivi prostor za podrobnejšo obravnavo ene same metode, tako ime-

novane metode inverzije. Ta nam omogoča rešiti vrsto razmeroma težkih kon-

strukcijskih nalog elementarne geometrije preprosteje kot druge metode.

Žal ima tudi hibo; je namreč nekoliko okorna, kar je posledica običajno ve-

likega števila konstrukcijskih korakov. Omenimo še, da je metoda glede na

dvatisočletno starost konstrukcijskih problemov razmeroma mlada. Sega tja

v trideseta leta preteklega stoletja.

inverzija in njene lastnosti

1. Definicija inverzije

V evklidski ravnini A naj bo dana točka O in krožnica K(O, a) s središčem

v O in s polmerom a. Če iz ravnine odvzamemo točko O, dobimo tako ime-

novano punktirano ravnino. inverzija punktirane ravnine 4A(O) glede na

krožnico K je bijektivna preslikava

f: 410) >4INOJ

definirana na naslednji način. Če je Te (Oj, je njena slika 7" — f(T) točka

na poltraku OT (z izhodiščem O, skozi točko 7), za katero je

OT.OT"'—a?

Iz definicije takoj sledi, da je inverzija punktirane ravnine imvolucija, saj je

očitno slika točke 7" kar točka 7. Pravimo, da sta 7 in 7" inverzni točki.

Nadalje je očitno, da se poljubna točka, ki leži v notranjosti krožnice

inverzije K, preslika v točko zunaj krožnice in obratno. Čim bolj se 7 pri-

bližuje O, tem bolj se 7" od O oddaljuje.

« Predavanje na seminarju Geometrija.



Edine negibne točke transformacije, to je sebi inverzne točke, so točke

krožnice K. Ko opiše točka 7 neko množico v ravnini A (npr. neko krivuljo),

opiše njena slika 7' inverzno množico (inverzno krivuljo). Tako je npr. krož-

nica K sama sebi inverzna krivulja, medsebojno inverzni sta njej koncentrični

krožnici s polmeroma 7 oziroma až/r. Sama sebi inverzna je tudi poljubna

premica, ki poteka skozi središče inverzije O. Seveda pri tem točko O s pre-

mice odvzamemo.

- Ne sme nas zapeljati misel, da bi se odvzemu točke O iz ravnine 4 izognili,

tako da bi inverzijo dopolnili s predpisom f(O0) — O. Tedaj bi namreč inver-

zija ne bila več zvezna transformacija. Lahko pa evklidsko ravnino dopolnimo

z neskončno točko T,,, ki jo nato vzamemo kot inverzno točko središča in-

verzije pri poljubni krožnici inverzije. Tako dopolnjeno ravnino imenujemo

inverzivna ravnina. Ta interpretacija je zelo udobna. V njej običajno na pre-

mice gledamo kot na krožnice, ki potekajo skozi T',, in imajo neskončno velik

polmer.

2. Geometrijska konstrukcija inverzne točke

Točko, inverzno dani točki glede na krožnico K, je moč konstruirati s še-

stilom in ravnilom. Poglejmo.

Ločimo dva primera, glede na to ali leži točka 7' zunaj ali znotraj krožnice

K. Za točke s krožnice K vemo, da so negibne.

Naj bo T najprej točka, ki leži znotraj K in je različna od O (slika 1).

rišimo tangenti na krožnico K. Tangenti se sekata na poltraku O/ prav

v točki 7", inverzni točki točke T.

Res. Pravokotna trikotnika AOTA in /AOAT" imata pri oglišču O skupen

kot in sta tedaj podobna. Od tod takoj sledi

OT:a—a:OT"

kar da OT.OT' — aa.
Naj sedaj leži točka T zunaj krožnice K. V tem primeru konstruiramo iz

točke T' tangenti na K in spojimo dotikališči. Presečišče dobljene tetive s pol-

trakom OT je iskana točka 7". Pri tem tangent pravzaprav ne potrebujemo,

ampak le njuni dotikališči s krožnico K. Dejansko delamo tako, da narišemo

pomožno krožnico s premerom [OT]. Iočka 7" je presečišče skupne tetive te

krožnice in krožnice K s poltrakom OT' (Slika 2).
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Omenimo še, da je moč dani točki inverzno točko konstruirati tudi samo

s šestilom, brez uporabe ravnila. Bralec lahko najde opis konstrukcije in po-

trditev njene pravilnosti v [1].

Obstajajo tudi posebne priprave, ki omogočajo narisati krivuljo, inverzno

poljubni dani krivulji. Običajno jih imenujemo kar inverzorji. Najbolj znana

sta Paucellierova kletka in Hartov inverzor. Pri obeh je posebej presenetljiva

njuna preprostost, seveda pa risanje z njima ne sodi med elementarne geo-

metrijske konstrukcije.

3. Inverzija premice

S šestilom in ravnilom lahko konstruiramo le figure, sestavljene zgolj iz

krožnic in premic oziroma njihovih delov. Če naj tedaj inverzijo uporabimo

kot pomoč pri reševanju konstrukcijskih problemov, se je naravno vprašati,

v kaj se z inverzijo preslikajo premice in krožnice v evklidski ravnini. Na to

vprašanje bomo odgovorili v tem in v naslednjem razdelku. Da se izognemo

stalnemu opozarjanju na odstranitev točke O,

se odločimo za delo v inverzivni ravnini.

Videli smo že, da se pri inverziji premice, ki

potekajo skozi središče inverzije, preslikajo

same nase. To smo ugotovili za inverzijo punk-

tirane ravnine, ker pa se točki O in 7,, presli-

kata druga v drugo, velja to tudi v inverzivni

ravnini,

Za druge. premice velja
Li s 8 SEO

Izrek 1, Premici, ki ne poteka skozi središče
OV V

inverzije, je inverzna krožnica skozi središče

inverzije. Njen premer s krajiščem O je pravo- | Slika 3

koten na dano premico.

Dokaz. Naj bo K(O,a) krožnica inverzije in p premica, ki ne poteka skozi

O (Slika 3). Z A označimo nožišče pravokotnice iz O na p in z A inverzno

sliko točke A. Če je T ec p poljubna nadaljnja točka premice, leži njena slika

T" na poltraku OT. Imamo |

at — OA'.OA — OT'.OT

odkoder dobimo

OA:OT-—OT':OA

Zo pa pomeni, da sta trikotnika AOTA in AOAT" podobna, saj imata pri O

skupen kot. Ker je AOTA po konstrukciji pravokoten, je pravokoten tudi

AOTA' s pravim kotom pri 1". Točka 7" se torej nahaja na krožnici, katere

premer je [OA]. Očitno je, da gre pri tem za povratno enolično preslikavo

med točkami te krožnice in premice p. S tem je izrek dokazan.

Opomba. Na sliki 3 premica p in krožnica K nimata skupnih točk, vendar

v dokazu ta posebna lega ni nikjer upoštevana. Izrek torej velja tudi za tan-

gente krožnice K in za njene sekante, če le ne gredo skozi središče inverzije.

Dokaz podaja tudi postopek za.geometrijsko konstrukcijo krožnice, inverzne

dani premici.
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4. Inverzna slika krožnice

Kot premice, moramo tudi krožnice pri obravnavi razdeliti v dve skupini:

na krožnice, ki potekajo skozi središče inverzije, in na take, ki točke O ne

vsebujejo. Za prvo skupino velja

Izrek 2. Inverzna slika krožnice, ki gre skozi središče inverzije, je premica.

Ta premica je pravokotna na centralo dane krožnice in krožnice inverzije.

Dokaz. Poglejmo kar sliko 3 iz dokaza izreka 1. Naj bo L poljubna krož-

nica skozi O, ki jo želimo inverzno preslikati glede na K. Centrala obeh

krožnic seka krožnico L razen v O še v točki A. V točki A, inverzni sliki

točke A', konstruirajmo pravokotnico p na centralo. Inverzna slika premice

p je po dokazu izreka 1 ravno dana krožnica L. Ker pa je inverznost vzajem-

na, takoj sledi, da je premica p inverzna slika krožnice L. S tem je trditev

izreka v celoti potrjena.

Tudi iz tega dokaza lahko povzamemo metodo za konstrukcijo dani krož-

nici inverzne premice. Posebno preprosto gre v primeru, ko krožnica L seka

K ali se je dotika. Tedaj je zaradi negibnosti točk krožnice K inverzna slika

krožnice L kar skupna sekanta K in L oziroma njuna skupna tangenta.

Izrek 3. Inverzna slika krožnice, ki ne poteka skozi središče inverzije, je

krožnica, ki ne gre skozi središče inverzije.

Dokaz. Naj bo K(O,a) krožnica inverzije in L dana krožnica, ki ne gre

skozi O (Slika 4). Nada-

lje naj bo 7 poljubna toč-

ka te krožnice. Ker T s:

zE O, obstaja natanko ena

premica skozi O in 7. Ta

) premica ima s krožnico L
loje, —

skupno še točko S, pri

| ča —. čemer je lahko T — 5.
Ro —A Označimo kot običajno

k s T' in S inverzni sliki

Slika 4 točk 7 in S in definiraj-

| mo g(T) — S.

Ko T preteče krožnico L, preteče g(T) očitno ravno njej inverzno krivuljo.

Hitro lahko vidimo, da je g za krožnico L pravzaprav razteg z negibno točko

O. Res. Imamo

OS.OS'— a? in OT.OS-k

kjer smo s k označili potenco točke O glede na krožnico L. Odtod dobimo

OS' — (a2/k).OT

in, ker so točke O, S', T kolinearne, tudi

OS — (ai/k). OT

Pri tem sta a in k konstanti, neodvisni od izbire točke 7 na krožnici L in,

ker je S' — g(T), je g za L razteg z negibno točko O in koeficientom a2/k. Za

raztege pa vemo, da preslikajo krožnice v krožnice.

Po izreku 3 torej obstajajo pari krožnic, medsebojno inverznih glede na

dano krožnico inverzije. Pri tem pa se središči takih krožnic z inverzijo ne

preslikata drugo v drugo. Brez dokaza navedimo izrek, ki podaja zvezo med

središčema obeh krožnic.
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Izrek 4. Če sta dve krožnici medsebojno inverzni glede na krožnico K,

sovpada inverzna slika središča prve krožnice glede na K z inverzno sliko

središča inverzije glede na drugo krožnico in obratno.

Središče krožnice, inverzne dani krožnici, konstruiramo torej tako, da naj-

prej poiščemo inverzno sliko središča inverzije O glede na dano krožnico in

nato izvedemo še inverzijo dobljene točke glede na krožnico inverzije.

5. Invariantne krožnice

V prvem razdelku smo videli, da neposredno iz definicije inverzije sledi,

da je krožnica K inverzna sama sebi. Ali razen K obstajajo še druge krožnice,

invariantne pri inverziji? Vemo že, da se sama nase preslika poljubna pre-

mica, ki poteka skozi središče inverzije O. Če na te premice gledamo kot na

krožnice z neskončno velikim polmerom v inverzivni ravnini, imamo tu že

cel šop invariantnih krožnic. Razen tega, da vse potekajo skozi O, jim je

skupna še lastnost, da sekajo krožnico K pravokotno. Videli bomo, da je ta

lastnost značilna za krožnice, invariantne pri inverziji glede na K. Velja

namreč

Izrek 5. Potreben in zadosten pogoj za to, da se krožnica, različna od K,

pri inverziji ohrani, je, da je ortogonalna na K.

Dokaz. Če se krožnica L pri inverziji glede na K ohranja, potem ne poteka

skozi O. Koeficient raztega g iz dokaza izreka 3 je tedaj enak 1, torej a2/k — 1.

Potenca k točke O glede na krožnico L je torej enaka a? in lahko iz O kon-

struiramo na L tangenti dolžine a. Ker je a polmer krožnice K, ležita dotika-

lišči na K, kar ne pomeni nič drugega, kot da se K in L sekata pravokotno.

Naj se sedaj K in L sekata pravokotno. Točka O leži tedaj zunaj krožnice

L in njena potenca glede na L je v tem primeru k — až?, Gre torej za razteg g

z negibno točko O in koeficientom raztega 1, ki krožnico L ohranja.

Oglejmo si še

Izrek 6. Vsaka krožnica, ki poteka skozi dve medsebojno inverzni točki,

se pri inverziji ohranja.

Dokaz. Naj bo L dana krožnica in A, B e L dve medsebojno inverzni točki

slede na K(O,a). Točki A in B ležita na istem poltraku, ki izhaja iz O, in,

ker sta inverzni, je RH

OA.OB-—a?

To pa po drugi strani za potenco točke O glede na L pomeni k — až?, torej

je koeficient a?/k prirejenega razteza g enak 1 in se krožnica L ohranja.

Posledica. Krožnica, ki poteka skozi dve medsebojno inverzni točki, je

ortogonalna na krožnico inverzije.

Seznam lastnosti inverzije naj zaključi

Izrek 7. Velikost kota dveh sekajočih se krivulj se pri inverziji ohranja.
Pustimo izrek brez dokaza, ker ga v nadaljevanju ne bomo potrebovali.

Pride pa tu in tam prav pri kakšni konstrukcijski nalogi.

Uporaba inverzije pri konstrukcijskih nalogah

1. Metoda inverzije

Bistvo metode je v tem, da ne opazujemo neposredno danih in iskanih

figur v ravnini, ampak njim inverzne, oziroma njihove dele. Danim figuram

konstruiramo inverzne figure in nalogo prevedemo na konstrukcijo figure,
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inverzne iskani. Pri primerni izbiri krožnice inverzije lahko na ta način nalogo

močno poenostavimo. Z inverzijo nato iz dobljene figure dobimo iskano.

O moči metode govori dejstvo, da lahko z njo dokaj enostavno rešimo

splošno Apolonijevo nalogo: konstruirati krožnico, ki se dotika treh danih

krožnic. Poseben primer te naloge, ko se dve od danih krožnic reducirata

v točko, si bomo kasneje ogledali kot ilustracijo metode.

V prejšnjem poglavju smo videli, da je moč točko, inverzno dani točki,

konstruirati s šestilom in ravnilom. Nadalje je iz vsega, kar smo ugotovili

za inverzne slike premic in krogov, očitno, da so figuram, sestavljenim le iz

krožnic in premic oziroma njihovih delov, inverzne prav take figure. Od tod

lahko sklepamo, da se da vsaka konstrukcijska naloga, ki je rešljiva samo

z uporabo ravnila in šestila, izvesti zgolj s tema pripomočkoma tudi pri upo-

rabi metode inverzije.

Ne bi bili temeljiti, če ne bi na tem mestu omenili, da se da prav z upo-

rabo inverzije zelo preprosto dokazati (sicer starejša) presenetljiva Mohr-

Mascheronijeva trditev, ki pravi, da lahko vsako geometrijsko konstrukcijo,

izvedljivo z ravnilom in šestilom, izvedemo samo s šestilom. Gre seveda za

principialno izvedljivost konstrukcije, kjer npr. štejemo premico za kon-

struirano, če smo konstruirali dve njeni različni točki, saj ravnih črt s šesti-

lom ne moremo vleči.

| | | 2. Primera |

Zgled 1. Konstruiraj krožnico, ki gre skozi dani točki A in B in je orto-

gonalna na dano krožnico K(O,a) (Slika 5).

Analiza. Označimo z L iskano krožnico. Če za krožnico inverzije izberemo

kar K(O,a), se L po izreku 5 preslika nase, točki A in B torej preideta v točki

A', B' te krožnice. Ker tri različne nekolinearne točke krožnico natanko do-

ločajo, je za konstrukcijo dovolj poleg

A in B poznati še denimo A'.

Konstrukcija.

a) Konstruiramo točko A', inverzno

točki A glede na K.

b) Narišemo krožnico L skozi A, B,

A'. To je iskana krožnica.

Dokaz. Glej posledico izreka 6.

Diskustja. Korak a) lahko vedno iz-

vedemo, če je le A-O. Če pa je A --

— O, je L premica skozi A in B.

Za izvedbo drugega konstrukcijskega koraka morajo biti A, B, A tri raz-

lične in nekolinearne točke. Če je A — A, zamenjamo vlogi točk A in B in

konstruiramo krožnico skozi A, B, B'. Če pa je tudi B — B', to pravzaprav

pomeni A, Be K. Tedaj konstrukcijo izvedemo preprosto tako, da v A in B

konstruiramo tangenti na K. Njuno presečišče je središče iskane krožnice L.

Če so A, B, A' kolinearne, je to ekvivalentno kolinearnosti točk O, A, B.

V tem primeru v skladu z izrekom 5 rešitev ne obstaja, če A in B nista

medsebojno inverzni točki. Če pa sta A in B medsebojno inverzni, je zaradi

posledice izreka 6 ortogonalna na K poljubna krožnica, ki poteka skozi točki

Ain BB. | |
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Zgled 2. Naj bo dana krožnica L, tn točki A in B, ki ležita v njeni zunanjo-

sti. Skozi točki A tn B konstruiraj "krožnico L, ki se bo dotikala krožnice L,
(Slika 6).

Analiza. Figuro bi radi preslikali tako, da bo slika iskane krožnice L premi-

ca. V ta namen izberemo točko B za središče inverzije in AB za polmer krožni-

ce inverzije K(B, AB). Dana krožnica L, se pri inverziji na K preslika v neko

krožnico L,' (izrek 3), iskana krožnica L pa v premico L' (izrek 2). Premica

L' mora potekati skozi A' (ki sovpada z A) in se dotikati krožnice L,', ker se

L dotika L,. Nalogo smo torej prevedli na konstrukcijo tangente na dano

krožnico iz dane točke zunaj krožnice.

Konstrukcija

a) Narišemo krožnico K s središčem B in polmerom AB.

b) Konstruiramo krožnico L,', inverzno krožnici L,. To konstrukcijo lahko

izvedemo tako, da poiščemo inverzne slike treh točk s krožnice L,. Posebno

preprosto je, če se krožnici K in L, sekata, ker se presečišči pri inverziji

ohranjata. Lahko si pomagamo tudi z izrekom 4.

c) Iz točke A konstruiramo |

tangento Z' na krožnico L,/'. | La-TTIT- Li

d) Poiščemo krožnico L, in- z ; Ne

verzno premici Z'. Poteka sko- |

zi točki A in B (izrek 1) ter

skozi inverzno sliko dotikali-

šča tangente Z' s krožnico L".

Dokaz in diskusijo kon-

strukcije naj po vzoru prejš-

njega zgleda opravi bralec

sam. Na sliki 6 sta narisani

obe možni rešitvi. Ena od obeh

in tudi pot do nje je narisana

črtkano, oznake so dane v

oklepaj. Potek konstrukcije se

razveji pri koraku c), saj iz A

lahko konstruiramo dve tan-

genti na krožnico L,'.

Omenim naj še, da nalogo lahko rešimo tudi tako, da središče inverzije
izberemo na krožnici L,. S tem nalogo prevedemo na konstrukcijo krožnice

skozi dve dani točki in z dano tangento.
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Pred kratkim je praznoval šestdeset.letnico dr. Niko Prijatelj, profesor mate-matike na fakulteti za naravoslovje intehnologijo v Ljubljani. Lepa navada je,da prikažemo ob taki priliki življenje indelo jubilanta, ki je bil nekaj let tudi so-
urednik Obzornika,
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vu. Ko je bil še profesor na gimnaziji, je
začel predavati metodiko pouka matema-tike, in sicer najprej na Višji pedagoškišoli in pozneje, od 1. 1955 do 1961, tudi zaštudente matematike na tedanji naravo-
slovni fakulteti. Njegova predavanja so
marsikaterega študenta navdušila za po-
učevanje Inatematike.
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so apolarni polinomi, enakost poliedrov, problem dimenzij, Mooreove družine, uni-

verzalne algebre, glavni kolobarji itd. V znanstvenih razpravah pa se ukvarja s ka-

rakterizacijo Hilbertovega prostora in s teorijo regularnih kolobarjev. Med drugim

je dokazal, da je Banachov prostor Hilbertov, če je kakšna dovolj obsežna algebra

njegovih omejenih operatorjev C" — algebra. Našel je preprost dokaz izreka o struk-

turi polnih involutivnih kolobarjev. Obravnaval je tudi lastnosti projektorjev v in-

volutivnih regularnih kolobarjih.

Profesor Prijatel] ni študiral samo matematiko, temveč tudi filozofijo, ker so ga
vedno živo zanimala filozofska vprašanja. Tudi v matematiki ga zelo zanimajo

področja, ki so povezana s filozofijo: osnove matematike, matematična logika,

teorija množic itd. V okviru matematičnega oddelka Inštituta za matematiko, fiziko

in mehaniko vodi zadnja leta seminar iz osnov matematike. Ta njegova naravnanost

se kaže predvsem v njegovih knjigah. Najprej je izšlo delo Uvod v matematično

logiko, ki je prva in edina knjiga te vrste v slovenskem jeziku. Doslej je bil Uvod

že dvakrat ponatisnjen, pravkar pa je izšla nova temeljito predelana izdaja. Ob-

sežno delo je trilogija, ki nosi naslov Matematične strukture. V njej je avtor obde-

lal strukture, ki so osnova sodobne matematike. Prvi del z naslovom Množice —

Relacije — Funkcije obravnava teorijo množic. Drugi del Operacije govori o osnov-

nih algebrskih strukturah, kot so grupa, kolobar, obseg, modul in vektorski prostor.

Tretji del Okolice pa je posvečen topološkim strukturam in je uvod v splošno

topologijo. Zadnja njegova knjiga je Uvod v matematično analizo I. del. V njej
je zbral in obdelal poglavja, ki so osnova za matematično analizo. Čeprav je to

delo nastalo ob predavanjih predmeta Analiza I, pa vsebuje dosti več snovi kakor
je predelamo v prvem semestru. Od bralca zahteva temeljitost pri študiju in veselje
do osnovnih vprašanj.

Vsa svoja dela, pa naj gre za razprave, strokovne članke ali knjige, napiše pro-

fesor Prijatelj zelo skrbno, pretehtano in kolikor se da razumljivo.
Poleg znanstvenega, učnega in strokovnega dela je opravljal razne funkcije na

fakulteti, Tnštitutu za matematiko, fiziko in mehaniko, pri Društvu matematikov,
fizikov in astronomov ter pri Raziskovalni skupnosti. Bil je direktor Instituta

IMFM (1961—65) in predstoinik njegovega oddelka za matematiko. Predsednik
DMFA je bil od 1. 1975 do 1976. Bil je prvi predsednik tiskovne komisije pri DMFA.
Sodeloval je pri predavanjih in seminarjih, ki jih je društvo organiziralo za srednje-
šolce in za profesorje. Več let je bil član komisije za matematično-naravoslovne
vede pri RSS in delegat skupščine RSS za matematično-fizikalne vede. Katerokoli
funkcijo je opravljal, vedno si je prizadeval doseči kakšno korist tudi za mate-
matiko, pa naj je šlo za prostore, za matematično knjižnico, za subvencijo za tisk
matematične in fizikalne literature itd.

Profesorja Prijatelja odlikujeta odkritost in svobodoljubnost. Vsakomur pove

svoje mnenje in svoja stališča odločno zastopa, vendar vselej tako, da ne prizadene
sobesednika, ki je morda drugačnih nazorov.

Ob šestdesetletnici želimo jubilantu vse najboljše, predvsem seveda zdravja in
še veliko uspehov pri delu. Ker so se v zadnjem času pokazale težave pri izdajanju

matematične in fizikalne literature, mu želimo tudi to, da bi te težave čimprej
minile in bi njegova nadaljnja dela zagledala luč sveta v tiskani obliki.
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tr. 319.

4. Matematične strukture III: Okolice. Knjižnica Sigma 19. DZS 1972. Str. 256.

5. Uvod v matematično analizo, 1. del. Matematika — Fizika. Zbirka univerzitet-

nih učbenikov in monografij 13. DZS 1980. Str. 360.

6. Osnove matematične logike, 1. del. Simbolizacija. Knjižnica Sigma 33. DMFA

SRS 1982. Sir. 188.
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B Znanstveni in strokovni članki

1. Pravilni sedemnajsterokotnik. OMF 2 (1952), 178—180.

2. Apolarni polinomi. OMF (1953), 68—72.

3. O adicijskih teoremih. OMF 4 (1955/56), 6—10.

4. O enakosti poliedrov, OMEF 5 (1956/57), 58—62.

5. O problemu dimenzij. OMF 6 (1957/58), 145—152.

6. Nicolas Bourbaki. OMF 2 (1960), 145—150.
7. O relacijah. OMF 8 (1961), 155—161.

8. Karakterizacija Hilbertovega prostora z involucijo adjungiranih operatorjev.

Disertacije, 1961. Str. 43.

9. Vektorji v elementarni geometriji. OMF 10 (1963), 97—110.

10. Algebra characterization of Hilbert spaces. Publications Dept. Math. 1 (1964),

43—57.

11. Mooreove družine. OMF 11 (1964), 97—104,

12. Študij " — regularnih kolobarjev z dodatnim aksiomom. IMFM 1968. str. 29.
13. Some notes on " — regular rings. Glasnik mat. 4 (1969), 173—181.
14. O realnih številih. OMF 16 (1969), 49—55..

15. Struktura polnih "% — regularnih kolobarjev. IMFM (1969). Str. 94. (Soavtorja

I. Vidav in J. Vrabec).

16. O univerzalnih algebrah. OMEF 17 (1970), 97—108.

17. On special " — regular rings. Michigan Math. J. 18 (1971), 213—221. (Soavtor

I. Vidav.)

18. Aritmetične lastnosti v glavnih kolobarjih. OMF 18 (1971), 98—103.

19. Študij univerzalnih algeber. IMFM (1972). Str. 42.
20. Regularni kolobarji, 1. del. OMEF 24 (1977), 33—41.

21. Regularni kolobarji, 2. del. OMF 24 (1977), 65—68.

22. Kolobarji z involucijo. OMF 24 (1977), 161—168.

23. Formalna izgradnja logičnega jezika. OMF 25 (1978), 20—23.

LETOVANJE V PLEMLJEVEM DOMU NA BLEDU 1982

Vabimo člane društva, da del svojega dopusta preživijo z družinami v Plemlje-

vem domu na Bledu, Prešernova 39, kjer je na razpolago več sob z dvema ali tremi
posteljami. V vsakem nadstropju je kuhinja z vso potrebno opremo za kuhanje.
Gostje jo uporabljajo po medsebojnem dogovoru. Nočnina za eno ležišče je 150 din,

za tretje (oz. četrto) v isti sobi pa 80 din. Otroci, ki ne uporabljajo lastnega le-

žišča, se ne štejejo. Gostje se morajo po prihodu na Bled prijaviti tudi pri Turi-

stičnem društvu na Bledu, da plačajo turistično takso.

Iz tehničnih razlogov je letovanje po poletni šoli mladih matematikov in sicer

od 11. 7. do 3. 9. organizirano v izmenah, ki se začenjajo: prva v nedeljo, 11. 7.,

druga v torek, 20. 7., tretja v četrtek, 29. 7., četrta v soboto, 7. 8., peta v ponedeljek,

16. 8. in zadnja v sredo, 25. 8.

Prihod v dom je po 13. uri, odhod dopoldne do 11. ure, sicer pa veljajo določbe

hišnega reda, ki je objavljen v domu. Gostje pospravljajo sami, ob menjavi je
organizirano temeljitejše čiščenje.

Prijavite se z dopisnico do 18. junija na naslov: Dušan Modic, 61104 Ljubljana,

Šaranovičeva 5 (SŠFZ).

Navedite rok (lahko tudi rezervni rok), v katerem želite letovati, število postelj

oz. pomožnih ležišč (število sob), ki jih potrebujete. Vsak prijavljenec bo do 25.

junija 1982 obveščen o sprejemu in dodeljenem prostoru. Obvestilu bo priložena

položnica, s katero je treba nakazati celotno nočnino na naslov: DMFA SRS, Ljub-

ljana, ž.r. 50101-678-49168. S ptrdilom o plačani nočnini bo vsak gost dobil ključa

od vežnih vrat in stopnišča pri Majdi Andoljšek, Bled, Levstikova 13, tel. (064)

71-100, kjer ju mora tudi vrniti pred odhodom z Bleda. Tam se tudi prijavijo

morebitne pomanjkljivosti in napake. Prijave bodo upoštevane po vrstnem redu.

Morebitne spremembe bodo sporočene vsakemu prijavljencu posebej.

Do letovanja ima pravico vsak član društva z družino.

Dušan Modic
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FRANC KVATERNIK

Na Silvestrovo 1981 nas je po kratki

in težki bolezni za vedno zapustil naš dra-

gi kolega Franc-Branko Kvaternik. Vse

nas je zelo presenetila in še bolj razža-

lostila novica o njegovi smrti.

Profesor Franc Kvaternik se je rodil

leta 1919 v Osilnici ob Kolpi. Osnovno šolo

je obiskoval v domačem kraju, gimnazijo

in visoko šolo pa v Ljubljani. Po odlično

opravljeni srednji šoli se je vpisal na fi-

lozofsko fakulteto in diplomiral na mate-

matično-fizikalnem oddelku.

Kot profesor je služboval na različnih

srednjih šolah v Sloveniji. Poučeval je

dolgih šestintrideset let fiziko in matema-

tiko z veliko mero potrpežljivosti in razu-

mevanja. Švojega znanja pa ni razdajal

le neposredno v šolskih učilnicah, temveč

tudi v pisni obliki. Deloval je kot pisec

številnih člankov metodično-pedagoške

vsebine in kot avtor učbenikov fizike za

nižje in srednje šole. Med pomembnejšimi

so: Fizika za srednje šole v treh delih in

Fizika za sedmi in osmi razred osnovne

šole (v sodelovanju z I. Štalcem in A.

Žabkarjem). Njegovi metodično dognani

učbeniki, ki so četrt stoletja polnili slo-

venski fizikalni prostor, so bili prvi po-

vojni šolski učbeniki za fiziko v slovenskem jeziku. Kasneje je učbenikom dodal

še Fizikalni priročnik in zvezke za laboratorijske vaje, ki jih je spisal v sodelovanju

s profesorjem S. Uršičem.

Pokojni profesor Kvaternik je zelo rad delal z mladimi; zato se je njegovo delo

nadaljevalo v krožkih in na srednješolskih tekmovanjih v fiziki; dolgo let je bil

član tekmovalne komisije. Na teh tekmovanjih so njegovi dijaki dosegali lepe re-

zultate in prejemali nagrade in pohvale.

Udejstvovanje profesorja Kvaternika pa se ni omejevalo le na delo z mladimi.

Bil je aktiven član našega strokovnega društva in dalj časa glavni urednik Obzor-

nika za matematiko in fiziko. Za svoje dolgoletno in plodno delo je bil ob petin-

dvajsetletnici Društva matematikov, fizikov in astronomov SRS odlikovan z Redom

dela z zlatim vencem.

Profesor Kvaternik je bil eden tistih ljudi, ki jih je prijetno srečavati: prijazen,

prijeten, vesel, vedno poln življenjske vneme in delovnih načrtov.

Tisti, ki smo poučevali skupaj z njim, smo ga poznali kot vzornega kolega in

dobrega prijatelja. Rad se je poveselil z nami ali pa se nam pridružil pri športu.

Vedno in takoj pa je bil tudi pripravljen priskočiti na pomoč, če se mu je le po-

nudila prilika. Zelo dobro ga je v nekrologu označil njegov nekdanji učenec in

zadnji njegov direktor, tovariš Ludvik Urekar: Bil je ambiciozen in skromen, po-

gumen in blag, ustvarjalen, nikdar ni nikogar poniževal, žalil, ko je bilo treba trdo

delati za znanje in uspeh. Vse te in druge lastnosti so se v njem združevale

S pravo mero, Njegovo. učiteljsko delo in skromno osebno življenje sta mnogim

generacijam njegovih učencev in kolegom vzor.

Na koncu je treba poudariti, da je bil profesor Kvaternik izredno dober mož in

oče, zato ga bo najbolj pogrešala njegova družina, vsi pa ga bomo ohranili v lepem

spominu.

Marjan Vagaja
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OBČNI ZBOR DRUŠTVA MATEMATIKOV, FIZIKOV IN ASTRONOMOV
SR SLOVENIJE OKTOBRA 1981 NA BLEDU

Na 33. občnem zboru DMFA SRS 16. in 17. oktobra 1981 na Bledu smo se zbrali

v kar lepem številu. Kot je že običaj, je bil prvi dan namenjen strokovnemu pre-

davanju in razgovorom o žgočih problemih. Prof. Mitja Rosina nam je v zanimivem

predavanju poskušal približati novi nauk o jedrski sili — kromodinamiki. Predava-

telji fizike v usmerjenem izobraževanju so imeli priložnost, da vsaj približno spo-

znajo, kakšna naj bi bila zgradba osnovnih delcev, pa tudi matematiki so z zani-

manjem prisluhnili.

Drugi del popoldneva je bil namenjen pogovoru o vsebini in obliki tekmovanj iz
matematike in fizike v usmerjenem izobraževanju. Živahen razgovor, ki se je zavle-

kel v noč, je vodil asist. T. Pisanski skupaj s predsedniki komisij za tekmovanja

pri DMFA SRS. Glede fizikalnih tekmovanj so razpravljalci menuli, da se je treba

prilagoditi novi organizaciji srednjega šolstva. Ker učence usmerjajo že v osnovni

šoli, morajo biti tudi tekmovanja iz fizike že v osnovni šoli. Čeprav je bilo jasno,
da naj bi bila v višjih razredih srednjih šol te kmovanja taka kot doslej, pa ni bilo

popolnoma razčiščeno vprašanje, kako zajeti v naš program popularizacije fizike

dijake v SVIO, Najbrž bi se dal za to uporabiti naravoslovni teden. Glede tekmovanj

iz matematike je bilo mnenje, da spremembe ne pomenijo veliko novega. Še vedno

imamo iste učitelje in enake učence, iščemo le boljše poti. Sprejet je bil sklep, da

bo komisija za tekmovanja iz matematike skupaj s tistimi, ki jih to posebej] zanima,

skušala najti rešitev.

V soboto, 17. oktobra 1981, je bil na programu občni zbor društva. Potekal je

po običajnem zaporedju, vendar z eno izjemo. Predsednik društva je prebral pred-

log skupine članov društva, da občni zbor izvoli prof. Frana Dominka za častnega

člana Društva matematikov, fizikov in astronomov SRS. Utemeljitev predloga je
vsebovala tudi naslednje: Prof Fran Dominko je veliko storil za širjenje znanja in

znanstvene razgledanosti pri nas. Imel je številna predavanja iz astronomije po

vseh krajih Slovenije za strokovno in širšo javnost. Razlagal nam je življenje zvezd,

da bi v njih videli naravne pojave in ne iskali horoskopskih zapisov. Posebno je

širil znanje in navdušenje pri mladih v astronomskih seminarjih in krožkih. Vedno

je pripravljen za strokovni pogovor in vzpodbujanje k razmišljanju, saj je pre-

pričan, da učitelj svoje naloge ne opravlja le v šoli, ampak v vsem življenjskem

okolju. Njegove razprave so nam velikokrat vzpodbuden zgled za lepo strokovno

retoriko in za humano vrednotenje vplivov novih dognanj in možnosti. Njegova

velika zasluga je, da je začel pri Slovenski matici izdajati zbornike za zgodovino

naravoslovja in tehnike...

Občni zbor je soglasno izvolil prof. Frana Dominka za častnega člana DMFA SRS,

tretjega po vrsti za prof. J. Plemljem in L. Čermeljem."

Prav tako je podelila priznanja tudi komisija za delo z mladimi. Priznanje in

skromno nagrado so dobili: Milena Kožar, učiteljica matematike na gimnaziji v

Kopru, Sonja Plevnik, učiteljica matematike na I. gimnaziji v Ljubljani, Jerica Lor-

ser, učiteljica matematike in fizike na osnovni šoli Slava Klavora v Mariboru

in Mirko Cvahte, učitelj fizike na gimnaziji Miloša Zidanška v Mariboru.

Poročila, ki so sledila svečanemu delu in so objavljena v biltenu 33. občnega

zbora, so odsevala težaven finančni položaj društva. Med najbolj perečimi problemi

je nadaljnja usoda izdajateljske dejavnosti, delovanje posameznih oblik populari-

zacije fizike in matematike ter popravilo Plemljevega doma na Bledu. V razpravi

smo slišali predlog za ustanovitev komisije za popularizacijo astronomije. Predlog

je bil sprejet tako, da se nekaj astronomov združi in pripravi začetno delo. Če bo

dejavnost zaživela, bo naslednji občni zbor ustanovil posebno komisijo.

Velik del razprave pa se je sukal okoli problemov obnove Plemljevega doma na

Bledu. Sredstva, potrebna za popravilo, so tolikšna, da jih blagajna društva ne

zmore. Zato so bile predlagane razne rešitve. Od nabiralnih akcij z značkami in

razglednicami, od prostovoljnih prispevkov do najemanja kreditov s pomočjo viso-

košolskih delovnih organizacij. Sprejet je bil sklep, da novi upravi odbor na osnovi

predlogov presodi, kako bo ravnal.

« Glej sliko na naslovni strani.
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V razpravi o predlogu novega upravnega odbora in komisij je bilo izrečeno
mnenje, da se v komisijo za Plemljev dom izvoli več članov in da se osnuje komi-
sija za uporabno matematiko. Predloga sta bila sprejeta in občni zbor je soglasno

izvolil nov upravni odbor.

In tako sta minila dva nepolna dneva srečanja, ki je bilo še posebej prijetno
v petek zvečer. Za organizacijo in uspešen potek občnega zbora gre posebna zahvala

Mariji Andoljšek in Davorinu Tomažiču. Omeniti pa je treba, da je bila ves čas

občnega zbora razstava knjig in revij, ki jih izdaja naša komisija za tisk. Tudi

njej hvala.

Janez Stepišnik

DRUGI SEMINAR IZ TEORIJE GRAFOV BEOGRAD-LJUBLJANA

Seminar Beograd-Ljubljana iz teorije grafov je neformalno srečanje jugoslo-

vanskih raziskovalcev, ki se ukvarjajo s teorijo grafov. Prvi sestanek seminarja

je bil leta 1980 v Beogradu in o njem je Obzornik že poročal (Obzornik mat. fiz.

28 (1981) 4). Drugi sestanek je bil v Ljubljani, 15. in 16. julija 1981. Ta termin je

bil izbran zato, da bi na seminarju sodeloval tudi prof. T. D. Parsons (Penn State

University, Pennsylvania, ZDA), ki je obiskal Ljubljano v zvezi z zagovorom doktor-

ske disertacije Tomaža Pisanskega.

Kljub poletnim počitnicam je bila udeležba na seminarju precejšnja. Navzoči

so bili z naslednjih jugoslovanskih univerz: Beograd, Kragujevac, Ljubljana, Novi

Sad in Zagreb. Še posebej pa smo bili veseli, da smo v svoji sredi poleg prof.

Parsona lahko pozdravili tudi prof. C. D. Godsila (Montanuniversitat Leoben, Avstri-

ja) in prof. B. D. MeKaya (Vanderbilt University, Tennessee, ZDA).

Seminar je potekal precej delovno, saj je bilo skupno petnajst predavanj, ki so

si sledila takole:

Sreda, 15. julij 1981

1. D. M. Cvetkovič: Discussing Graph Theory with a Computer, II, Theorems

Suggested by the Computer

2. M. Petkovšek: Hypergraphs and Diagnostics of Functional Systems

3. B. Mohar: On Edge-Colorability of Composite Graphs

4. B. D. McKay in N. Wormald: On the Automorphism Groups of Random

Graphs with Bounded Degrees d

5. F. Dacar: A Lower Bound to the Number of Planar Graphs with 12 Vertices

of Degree 5 and no more than m Vertices of Degree 6

6. D. Marušič: Hamiltonian Paths in a Certain Class of Graphs

1. A. Malnič: A Combinatorial Approach to Graph Embeddings

8. T, D, Parsons in B. Jackson: Longest Cycles in r-Regular r-Connected Graphs

etrtek, 16. julij 1981C

1. 1. Gutman in E. Ruch: Neke osobine stepena čvorova grafova

2. C. D. Godsil: Inverses of Forests

3. M. M. Petrovič: O spektru beskonačnih kompletnih multipartitnih grafova

4. A, Torgašev: O spektru linijskih grafova nekih beskonačnih grafova

5. T. Pisanski, J. Shawe-Taylor in J. Vrabec: Edge-Colorability of Graph Bundles

6. V. Batagelj: Hamiltonian Cycles in Graph Bundles

7. T. D. Parsons: A Pursuit-Evasion Problem

Prvo predavanje prof. Parsonsa je potekalo hkrati v okviru seminarja za nume-

rično in računalniško matematiko, drugo pa v okviru seminarja Oddelka za ma-

tematiko.

Kljub delovnemu ozračju smo imeli tudi dovolj časa, da smo navezali stike

in se neformalno pogovorili o našem delu. V sredo smo imeli družabni večer

Pod lipo, v četrtek pa smo odšli na skupno kosilo.

Za konec naj omenim še to, da se pri nas že precej ljudi ukvarja s teorijo grafov

in da si še želimo takih in podobnih srečanj.

Bojan Mohar
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Niko PRIJATELJ, Osnove matematične logike, 1. del. Društvo matematikov, fi-

zikov in astronomov SRS 1981, 188 str. (Knjižnica Sigma : 33). Cena 300.— din

(240 — din).

To je prvi del predelane izdaje knjige Uvod v matematično logiko, ki je prvič

izšla pred dvajsetimi leti. Uvodno poglavje in drugo poglavje, ki govori o povezavi

izjav, se le nebistveno razlikujeta od ustreznih poglavij prejšnje knjige. Iretje po-

glavje, ki obravnava notranjo zgradbo izjav, pa je avtor skoraj v celoti na novo

sestavil. V njem je podrobno opisal, kako zgradimo umetni logični jezik prvega

reda, to je jezik, v katerem se univerzalnostni in eksistencialnostni kvantitikator

nanašata samo na individualne spremenljivke. Abecedo tega jezika sestavljajo lo-

gični znaki, individualne konstante, individualne spremenljivke, znaki za predikate

in funkcijski znaki. Sintaksa pa sestoji v bistvu iz induktivnih definicij terma in

iormule. Za primer, kakšna je izrazna moč tega jezika, je avtor v njem opisal

sorodstvene odnose med ljudmi in nadalje osnove lastnosti ter relacije v elementar-

ni geometriji in v naravnih številih. Na koncu je govor še o aksiomatični metodi.

Podrobneje pa bo avtor formalne aksiomske sisteme obdelal v drugem delu.

Knjiga je napisana jasno in razumljivo. Od bralca ne zahteva nobenega pred-

znanja niti iz logike niti iz matematike. Zato jo bo lahko vzel v roke vsak, ki se

želi seznaniti, s kakšnimi problemi se ukvarja matematična logika in kako jih

rešuje.

Ivan Vidav

Nace NADRAH, COBOL. Ljubljana. DMFA SRS 1980. 2. natis. 2/6 str. (Zbirka
izbranih poglavij iz matematike ; 14). Cena 250— din.

Skripta COBOL so bila napisana kot pripomoček ob tečaju cobola na RRC —

Računalniške storitve in obravnavajo programiranje v cobolu V,
Snov je razdeljena tako, da že kmalu omogoča pisanje prvih programov, potem

pa dograjuje nove ukaze. V vseh poglavjih srečujemo številne primere, ko poudarek
ni samo na sintaksi jezika, ampak tudi »lepem«, preglednem programiranju. Pose-

bej je treba omeniti skrb za standardni kobol, saj so posebnosti za računalnik

CYBER vedno posebej označene.

Na koncu je dodana obsežna zbirka nalog.

Knjiga ne zahteva bistvenega predznanja iz računalništva, ni pa namenjena za-

četnikom za samostojno učenje, saj je bila napisana kot pomoč pri tečaju. Gotovo

pa v njej tudi programerji, ki cobol že znajo, najdejo številne koristne ideje.

Maja Žumer

Group 'Theoretical Methods in Physics, Proceedings, Austin 1978, Berlin 1979,

Springer, Lecture Notes in Physics 94, 540 str.

Knjigo sestavljajo prispevki iz teorije grup in njene uporabe v različnih vejah

teoretske fizike. Razdeljena je na naslednja poglavja: grupe umeritve in solitoni,

unitarne grupe v fiziki atomov, molekul in trdne snovi, tkivasto snopje (v geo-

metriji) in končna razsežnost osnovnih delcev (hadronov), teorija grup in kvantna
mehanika, grupe in polgrupe pri opisu nestabilnih sistemov, simplektične struk-

ture in geometrična kvantizacija, grupe s spektrom za določevanje energij osnovnih
delcev, grupe v splošni relativnosti, jedrski fiziki in fiziki osnovnih delcev, Lieve

algebre in Supergravitacija.
Knjiga je močno matematično obarvana, kar je značilno za sedanje stanje v teo-

riji polja in pri študiju nelinearnih pojavov. Pri tem so uporabljene sicer že izde-

lane metode moderne matematike, predvsem topologije in algebre. Zbirka preda-

vanj je namenjena predvsem raziskovalcem na teh specializiranih področjih; za
te je koristen izrez iz aktualne problematike.

Lovro Pičman
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Jože VRABEC, Bordism, homology and Stiefel-Whitney numbers. — Ljubljana :
DMFA SRS, 1982, 84 str. — (Postdiplomski seminar iz matematike ; 13),

Knjižica vsebuje podrobna dokaza dveh klasičnih Ihomovih izrekov iz diferen-

cialne topologije. Natančneje, sestoji iz potrebne pripravljalne snovi in podrobno

izdelanih dokazov teh izrekov, kot sta prikazana v članku: S. Buoncristiano, D.

Lase, An elementary geometric proof of two theorems of Thom, Topology 20 (1981)

97—99.

Da bi bila izreka vsaj do neke mere razumljiva, pojasnimo najprej nekaj poj-

mov. Dve gladki, sklenjeni (tj. kompaktni in brez roba) r-mnogoterosti M in N sta

vordantni, če je njuna disjunktna unija rob kake gladke kompaktne (m -- 1)-mno-

goterosti. Posebej, mnogoterost M je bordantna nič, če je rob kake gladke kom-

paktne (n - 1)-mnogoterosti. Fundamentalni razred [M] povezane sklenjene n-mno-
goterosti M nad Ze je generator (tj. neničelni element) n-te homološke grupe

H,(M; Z) — Z. Stiefel-Whitneyevi razredi mnogoterosti M so po definiciji Stiefel-

Whitneyevi razredi tangencialnega svežnja mnogoterosti M; pri tem titi razred

w;M) leži v i-ti kohomološki grupi Hi(M; Za),i— 0,1, ..., n. Če je n<i:...ti,

razčlenitev števila mn, je produkt (»cup product«) w;(M) w,(M). ..W;, (M) v grupi

Hn(.M; Z). Ker je Hn(M; Z) dualni vektorski prostor (nad Z») prostora H,(M; Z»),

lahko torej izračunamo Kroneckerjev produkt <w;(M)...w; (M), [M] € Za; rezultat

imenujemo Stiefel-Whitneyevo število mnogoterosti M, pripadajoče razčlenitvi n <—

sh -- :.. ti.

Omenjena Thomova izreka se glasita takole:

I. Stiefel-Whitneyeva števila sestavljajo popoln sistem invariant za klasifikacijo

gladkih sklenjenih mnogoterosti glede na bordizem. Z drugimi besedami, mnogo-

terost je rob tedaj in le tedaj, ko so vsa njena Stiefel-Whitneyeva števila enaka 0.

IZ. Vsak singularni homološki razred nad Zz poljubnega topološkega prostora X

je mogoče predstaviti z gladko mnogoterostjo, tj. za vsak x€ 4,(X; Zs) obstajata

taka gladka sklenjena n-mnogoterost M in taka zvezna preslikava f: M -—> X, da je

Izvirna Thomova dokaza (iz leta 1954) uporabljata več netrivialnih dejstev iz

algebraične topologije, recimo kohomološko strukturo Eilenberg- -MacLaneovih

narave in v dokazu izreka Il se . mnogoterost M konstruira eksplicitno.
Knjižica je nastala na osnovi niza predavanj, ki jih je imel avtor prof. Vrabec

na topološkem. seminarju Zagreb-Ljubljana v letu 1981. Sestoji iz 11 razdelkov in

ima poleg teh še izvleček, predgovor, bibliografske podatke in indeks. Prvih 9 raz-

delkov obravnava vso potrebno snov o vektorskih svežnjih, njihovi klasifikaciji,
o gladkih mnogoterostih, transverzalnosti, o Stiefel-Whitneyevih razredih in bor-

dizmu, 10. in 11. razdelek pa sta posvečena dokazoma navedenih izrekov.

Osnovni tekst je napisan v zelo preciznem in jasnem slogu in spremlja ga mnogo
hevrističnih in bibliografskih napotkov. Čeprav je knjižica napisana v angleščini,

jo smemo upravičeno šteti za prispevek k naši matematični literaturi in jo toplo

priporočiti podiplomskim študentom topologije in vsem, ki se zanimajo za alge-

braično in diferencialno topologijo.

Darko Veljan

Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook

conference / Ed. by I. Kra, B. Maskit. — Princeton : Univ. press, 1981. 517 str, —

(Annals of mathematics studies ; 97).

V tej knjigi je objavljena večina predavanj s konference, ki je že četrta s po-

dobno vsebino. Sodelovalo je mnogo novih (mladih in starejših) strokovnjakov

s tega področja. Vsebina: A geometric property of Bers' embedding of the Teich-

muller space (W. Abikoftf), Plane models for Riemann surfaces admitting certain

half-canonical linear series, p.l. (R. D. M. Accola), Nontriviality of Teichmiiller

space for Kleinian group in space (B. N. Apanasov), The action of the modular

group on the complex boundary (L. Bers), Some remarks on bounded cohomology

(R. Brooks), The dynamics of 2-generator subgroups of PSL (2, C) (R. Brooks, J. P.
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Matelski), Minimal geodesic on Fricke's torus-covering (H. Cohn), On variation of

projektive structures (C. J. Earle), Vanishing theta constants (H. M. Farkas),

Analytic torsion and Prym differentials (J. Fay), On a notion of guasiconformal

rigidity for Riemann surfaces (F. P. Gardiner), Spirals and the universal Teich-

muNHer space (EF. W. Gehring), Intersection matrices for bases adapted to auto-

morphisms of a compact Riemann surface (J. Gilman, D. Patterson), Homomor-

phism of triangle groups into PSL (2, C) (L. Greenberg), Hyperbolic manifolds,

groups and actions (M. Gromov), Automorphisms of compact Riemann surfaces

and Weierstrass points (I. Guerrero), Affine and projektive structures on Riemann

surfaces (R. C. Gunning), Boundary structure of the modular group (W. J. Harvey),

A realization problem in the theory of analytic curves (M. Heins), The monodromy

of projective structures (J. H. Hubbard), Holomorphic families of Riemann surfaces

and Teichmuller spaces (Y. Imayoshi), Commutators in SL (2, C) (T. Jorgensen),

Two examples of covering surfaces (T. Jorgensen, A. Marden, Ch. Pommerenke),

Deformations of symmetric products (G. R. Kempf), Remarks on projective stru-

ctures (I. Kra, B. Maskit), Some remarks on Kleinian groups (S. L. Krushkal),

Remarks on WEB groups (T. Kuroda, S. Mori, H. Takahashi), Remarks on Fuchsian

groups assoclated with open Riemann surfaces (Y. Kusunoki, M. Taniguchi), On

generalized Weierstrass points and rings with no prime elements (H. Laufer), Ihe

topology of analytic surfaces: decompositions of elliptic surfaces (R. Mandelbaum),

Dense geodesics in moduli space (H. Masur), Automorphismen ebener diskontinulier-

licher Gruppen (G. Rosenberger), Remarks on the geometry of the Siegel modular

group (R. J. Sibner), On the ergodic theory at inifinity of an arbitrary discrete

group of hyperbolic motions (D. Sullivan), On infinite Nielsen kernels (J. C. Wason),

Hyperbolic 3-manifolds which share a fundamental polyhedron (N. J. Wielenberg),

The length spectrum as moduli for compact Riemann surfaces (S. Wolpert).

Ciril Velkovrh

PUBLIKACIJE KOMISIJE ZA TISK DMFA SRS V LETU 1981 Cena

v din

1.—5. Obzornik za matematiko in fiziko, 28 (1981) št. 1—5 (486, 491, 513,

319, 535) (posamezna številka) 60.—

6. Seminar za učitelje matematike (Obzornik mat. fiz. 28 (1981) 1) 60.—

1—12. Presek — list za mlade matematike, fizike in astronome, 8 (1980/81)

št. 3, 4, 5, (Križanič F., Ukročena matematika. — Presekova knjižni

ca ; 1), 6 (Ranzinger P., Presekova zvezdna karta. — Presekova

knjižnica ; 8); 9 (1981/82) št. 1, 2 (492, 509, 496, 512, 529, 537)

(posamezna številka) 21.—40.—

13. Preprint series of the department of mathematics, No. 18 (493) ——

14. IMEM — letno poročilo 1980 (499) —-

15. DMFA SRS — Republiško tekmovanje iz matematike (516) —

16. DMFA SRS — Republiško tekmovanje iz fizike (522) n-

17. DMFA SRS — Občni zbor, 33., Bled, 1981 (536) —

Proceeding of tihe department of mathematics

18. 2. Seminar iz uporabne matematike, 2., Ljubljana, 1981 (520) —

19. 3. Seminar iz teorije grafov, 2., Ljubljana, 1981 (530) —

Knjižnica SIGMA

20. 20h. Uršič S., Štirimestni logaritmi in druge tabele (505) 80 —

21. 21b. Hribar M., Zbirka rešenih nalog iz fizike z republiških tekmovanj

(3. popravljena izdaja) (501) 44. —

22. 32. Weinberg S., Prve tri minute (503) 200. —

Matematika-Fizika — zbirka univerzitetnih učbenikov in monografij

23. Ge. Vidav I., Višja matematika, 1. del (508) 592 —

24. 14. Strnad J., Fizika, 3. del, Posebna teorija relativnosti. Kvantna fizika.

Atomi (500) 576.—

25. 15. Vidav I., Afina in projektivna geometrija (494) 240 —

26. 16. Jamnik R., Matematika (528) 960.—
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21.

28.

29.

30.

31.

32.

33.

34.

35.

36.

31.

38.

39.

40.

41,

42.

43.

44,

45.

46.

47.

48.

49,

50.

51.

32.

33.

35.

56.

57.

58.

39.

Zbirka izbranih poglavij iz matematike

4 d. Zakrajšek E., Programski jezik pascal (539)

12 b. Wirth N., Računalniško programiranje (538)

17. Vidmar R., Začni s TOPS-10 (524)

Zbirka izbranih poglavij iz fizike

3b. Rosina M., Jedrska fizika (541)

9c. Gros M. in dr., Naloge iz fizike (540)

11 a. Kuščer I., Žumer S., Statistična mehanika (532)

18. Zupančič I., Fizikalni praktikum II (488)

Seminar za numerično in računalniško matematiko (posamezni izvod)

22. Batagelj V., Iskanje po razpršenih tabelah (525)

23. Dacar F., Domet in struktura zaporedij kvadratnih ostankov (526)

158./159. Dacar F., Logika rasti (533)
166. Vitek A., Skrivanje nevidnih delov teles (489)
168. Tekmovanje programov — kocki (490)
206. Suhadolc A., Nedefinitni skalarni produkt in J-sebi adjungirane ma-

trike (497)

207. Batagelj V., Podatkovna struktura graf (514)

208. Lozej M., Kodiranje Petrijeve mreže (498)

212. Horvat B., Uglaševanje glasbenih inštrumentov (502)

213. Zakrajšek E., Karakteristični polinomi v celih številih (507)

214. Jevtič B., Sinhroni protokol CDC 200 UT (511)

218. Komelj J., LPT razdeljevanje poslov na procesorje (515)
222. Ferligoj A., Razvrščanje v skupine z omejitvami (534)
223. Feng Y. Y., Kozak J., On the generalized Euler-Frobenius polyno-

mial (518)

— Seminar za numerično in računalniško matematiko — seznam pre-

davanj (521)

227. Dacar F., Efektivna eliminacija kvantifikatorjev iz algebraičnih iz-

razov (523)

228. Kozak J., Kako poiščemo napako v programu? (527)

233. Dacar F., Tiling rectangular areas with rectangular pieces (531)

251. Bobkov V. V., O nekatoryh metodah čislennogo rešenija zadač

s načal'nymi uslovijami dlja obyknovennyh differencial'nyh uravne-

nij vysših porjadkov (543)

252. Bobkov V. V., Nejavnye raznostnye shemy i metody ih čislenoj

realizacii (544)

Priročniki za računalništvo in numerično matematiko (posamezni izvod)

. 9. Batagelj V., Zakrajšek E., Structuran/DEC-10 (542)

Učbeniki in priročniki za osnovno in srednjo šolo

Štalec I., Zbirka vaj iz aritmetike, algebre in analize za 2. razred gim-

nazije (8. natis) (510)

Avsec F. in dr., Zbirka vaj iz aritmetike, algebre in analize za 3. razred

gimnazije (5. natis) (504)

Žabkar A., Tablice kvadratov, kubov, kvadratnih in kubičnih korenov...

(15. natis) (506)

Strnad J., Fizika, Leksikon CZ (2. natis) (495)

Ranzinger P., Presekova zvezdna karta (517)

študente in naročnike Preseka.

DMFA SRS od leta 1951 do danes.

80.—

280 —

100 —

400 —

160 —

120 —

200 —

40) —

40 —

60.—

50 —

20 —

260.—

10 —

Na desni strani seznama so navedene znižane cene, ki veljajo za člane društva,

Na koncu naslovov so v oklepajih zaporedne številke izdaj Komisije za tisk

Ciril Velkovrh
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