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BORIS LAVRIČ

Math. Subj. Class (1980) 05 B 45

Članek obravnava obstoj razkosanja ravnine na konveksne mnogokotnike, kil

zadoščajo nekaterim pogojem (število stranic, obseg, ploščina).

TILING THE PLANE WITH CONVEX POLYGONS

The paper discusses the existence of tilings of the plane with convex polygons

that satisfy some additional conditions (number of sides, circumference, aerea).

Že grški matematiki so vedeli, da moremo ravnino razkosati na med seboj

skladne pravilne mnogokotnike le na tri načine: z enakostraničnimi trikot-

niki, s kvadrati ali s šesterokotniki. Če sprostimo stroga pogoja o pravilnosti

in skladnosti mnogokotnikov, se ob tem porodijo zanimivejši problemi raz-

kosanja (parketiranja). Reševanje mnogoterih tovrstnih nalog ima pestro zgo-

dovino. Namen tega članka je pokazati enega teh problemov in ga rešiti.

Opredelimo najprej nekaj pojmov, ki jih bomo srečevali v tekstu. Beseda

mnogokotnik nam bo pomenila zaprt ravninski mnogokotnik. Premer mno-

žice v ravnini je najmanjša zgornja meja razdalj med poljubnima točkama

te množice. Razdalja (oddaljenost) točke od množice je največja spodnja

meja razdalj med to točko in poljubno točko iz množice.

Dogovorimo se, kaj je razkosanje (parketiranje) ravnine na mnogokotnike.

Definicija 1. Razkosanje ravnine je tako pokritje vse ravnine z mnogokot-

niki, da imata poljubna dva izmed njih skupne kvečjemu robne točke.

Definicija 2. Parketiranje ravnine imenujemo pravo (parketiranje), če za

poljubna dva različna njegova mnogokotnika velja natanko ena od tehle

možnosti:

(1) sta disjunktna,

(ii) imata skupno eno točko, ki je hkrati oglišče obeh

(iii) imata skupno daljico, ki je celotna stranica enega kot drugega.

Poljubno parketiranje ravnine si lahko v nekem smislu zamišljamo kot

pravo. Poglejmo, kako! Mnogokotnika iz parketiranja, ki s poljubnim drugim

zadošča eni od točk (i), (ii) ali (iii), ne bomo spreminjali. Če pa ne, proglasi-

mo za nova oglišča vse tiste točke, ki so taka oglišča starih mnogokotnikov,

da leže na njegovih stranicah, a sama niso oglišča v njem. Hkrati nadomesti

mo posamezno stranico z daljicami, na katere jo razdelijo nova oglišča. Tako

gledano razkosanje imenujemo »pravo«.

Na ta način se ne spremene niti ploščine niti obsegi mnogokotnikov,

število oglišč posameznega mnogokotnika je enako številu njegovih stranic

in je kvečjemu večje kot prej. Videli bomo, da zato v dokazu izreka 1 lahko

brez škode jemljemo vsako razkosanje za »pravo«.
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Slika 1

Na sliki 1 lika P, ne spreminjamo, liku P, dodamo točke B, C in D kot

oglišča, liku P, pa točko A.

Zdaj dokažimo pomožni izrek, ki nam bo nadomestil rešitev izoperimetrič-

nega problema, glasi pa se takole:

Mnogokotnik z obsegom, manjšim od nekega pozitivnega realnega števila

b, ima ploščino manjšo od 7b2/16..

Dokaz. Vzemimo na robu mnogokotnika, ki zadošča predpostavki, dve

točki A in B, ki razdelita rob na dva dolžinsko enaka dela. Naj bo S sre-

dišče daljice AB, 7 pa poljubna točka na robu mnogokotnika. Težiščnica ST

trikotnika ABT je krajša od aritmetične sredine dolžin stranic AT in BI pa

krajša od polovičnega obsega mnogokotnika. Torej je ST' krajša od b/4. Vi-

dimo, da ves lik leži znotraj kroga s središčem v točkiS in polmerom B,4,

torej ima ploščino manjšo od ;b2/16.

Dokazali bomo naslednja izreka.

Izrek 1. Naj bosta a in b poljubno izbrani pozitivni realni števili. Ravnine

ni mogoče razkosati na konveksne mnogokotnike tako, da ima vsak sedem

ali več stranic, ploščino večjo od a in obseg manjši od Db.

Izrek 2. Če katerega od pogojev za mnogokotnike iz izreka 1 (konveksnost,

število stranic, ploščina, obseg) izpustimo, potem obstaja parketiranje, ki

zadošča preostalim trem.

Dokaz izreka 1. Oglejmo si poljuben omejen del K ravnine. Trdimo, da

seže vanj (ima skupne točke z njim) le končno mnogo mnogokotnikov, ki za-

doščajo v izreku navedenim pogojem. Vsak mnogokotnik ima obseg manjši

od b, zato je njegov premer manjši od b/2. Tvorimo množico K, tako, da

h K dodamo še vse točke ravnine, ki so od K oddaljene kvečjemu za b/2.

Unija vseh mnogokotnikov, ki sežejo v K, je tedaj vsebovana v K,, ki ima

končno ploščino. Po privzetku so ploščine mnogokotnikov večje od a, torej

jih seže v K le končno mnogo.

Denimo, da lahko razkosamo ravnino tako, kot zahtevajo pogoji, navedeni

v izreku 1.

Opremimo ravnino z običajnim pravokotnim koordinatnim sistemom. Naj

bo r neko pozitivno realno število, K(r) pa zaprti krog s središčem v koordi-
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natnem izhodišču in polmerom r. Naj bo N, družina vseh tistih mnogokotni-

kov razkosanja, ki imajo s krogom K(r) neprazen presek, in vseh tistih, ki

so s tovrstnimi popolnoma obkroženi (torej zapolnjujejo luknje prvotnega

lika). Prav tako kot v začetku dokaza lahko ugotovimo, da je v N, končno

mnogo poligonov, recimo n,. Označimo z o, število oglišč, ki nastopajo v par-

ketiranju, danem z družino N..

Vsak mnogokotnik iz družine N, ima vsaj sedem stranic, zato je vsota

njegovih notranjih kotov vsaj 57. Skupaj jih je m,, torej je vsota njihovih

notranjih kotov vsaj 5n,7. Vseh njihovih oglišč je o,, ob vsakem tvorijo člani

parketiranja iz N, kvečjemu polni kot 2x, zato je vsota vseh notranjih kotov

likov iz N, manjša od 20,7. Torej velja neenakost 20,7 Z 5n,a oziroma

20, Z 5n, 4

Po privzetku je obseg poljubnega mnogokotnika manjši od b, zato je

unija družine N, vsebovana v krogu K(r tt b/2). Na enak način, kot smo tvorili
družino N, za krog K(r), zdaj tvorimo družino N za krog K(r - 0/2). Označi-
mo Z mn število mnogokotnikov v N, z o število oglišč, z s pa število stranic
v delu parketiranja, ki ga ustvari družina N. V vsakem notranjem oglišču

tega razkosanja se srečajo vsaj tri stranice (konveksnost mnogokotnikov),
Sicer pa vsaj dve.

Vsa oglišča članov iz N, so notranja za parketiranje, ki ga da N, torej je

le-teh vsaj o,. Ker vsako stranico določata natanko dve oglišči, vsota 30,
J- 2(o— 9,) prav gotovo ne presega dvojnega števila vseh stranic iz mreže,

ki jo tvori MN. Tedaj velja

2s z30, - 2l0o—o,) < žo tro, (2)

Zapišimo še Eulerjev izrek za to mrežo |

otnest1 | (3)

Upoštevajmo najprej(3) in (2):

20 J- 2n — 2s - 2220 to, 2, torej 2n Z o, -- 2, nato pa še (1), da dobimo

novo neenakost

dn> 2o, -4Zz5n, -4. (4)

Mnogokotniki iz N, prekrivajo krog K(r), njihova skupna ploščina pa je

po pomožnem izreku manjša od n,nbž/16, torej je n,b?x/16 > ar? oziroma

n,bi > 161? | (5)

Mnogokoinikov iz družine N, ki niso v N,, je n—n,, zato pokrijejo del

ravnine s ploščino vsaj (mn — n,a. Le-ta pa je ves vsebovan v krožnem kolo-

barju K(r -- b/2) — K(r) s ploščino z(br -- b2/4). Dobimo

a(br -- b2/4) > (n— n ja (6)

Predelajmo (4) v neenakost 4(n —n,) z n, - 4 in to upoštevajmo v (6), pa

dobimo 4x(br -- b2/4) > a(n, - 4). Nato uporabimo še (5) in pridemo do ne-

enakosti

l6ar? — 4yrbšr -- (dabž — zbi) <0 | (7)

ki ji mora zadoščati polmer r.
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Pomožni izrek nam pove, da je naloga parketiranja smiselna pri pogoju

a < gb?/16. Tedaj se lahko prepričamo, da pri pogoju r> a-ibš neenakost

(7) ne drži. Predpostavka, da parketiranje z vsemi omenjenimi lastnostmi ob-

staja, je napačna, izrek pa s tem dokazan. |

Hkrati smo dokazali: Kroga s polmerom r > aribš ni mogoče pokriti

z mnogokotniki, ki zadoščajo pogojem izreka 1. Zapišimo še naslednjo po-

sledico izreka 1.

Med konveksnimi mnogokotniki z navzgor omejenim obsegom in navzdol

omejeno ploščino, na katere lahko razkosamo ravnino, vedno najdemo nešteto

takih, ki imajo kvečjemu po šest stranic.

Dokaz izreka 2.

Vemo, da ravnino lahko parketiramo s skladnimi pravilnimi šesterokot-

niki. Torej števila 7 pri drugih pogojih izreka 1 ne moremo zmanjšati (če naj

ostane veljaven).

Druga zahteva v izreku 1 je konveksnost. Obstaja cela vrsta razkosanj (na

konkavne mnogokotnike), ki zadoščajo drugim pogojem izreka 1. Na primer

razkosanje ravnine na skladne sedmerokotnike na sliki 2.

ZORKO RE OK Ž

ORI AL ARJA
Slika 2

Dokončajmo dokaz izreka 2 s konstrukcijo parketiranja s konveksnimi

sedmerokotniki, ki jim lahko izberemo navzdol omejene ploščine ali navzgor

omejene obsege. Za lažji opis uporabimo zapis v polarnih koordinatah (r, g).

Koordinatno izhodišče in točke (7,, kx/10),k — 0,1,..., 5, r, >0, naj bodo

oglišča sedmerokotnika O iz parketiranja. Trikrat zaporedoma ga zavrtimo

za kot 7/2 okrog izhodišča, da pokrijemo z njim pravilen dvajseterokotnik

O... Naj bo x poljubno naravno število. Sedmerokotnik P,, n N, z oglišči

(r,, nk/10.42-1), k—0, 1 in (7,'4, ak/10.4)), k—0, 1, ..., 4, O<r, <1, ',

20.4n"— ] krat zavrtimo za kot 7/(10.4"-1) okrog izhodišča, tako da dobimo

iz sedmerokotnikov sestavljen prstan O,. Z zaporedno konstrukcijo likov O,,

n <—<0,1,... pri pogoju lim r,, — co pokrijemo vso ravnino (glej sliko 3).
n—>co

Če polmere r,, neN, izberemo tako, da bo ploščina likov P, kot tudi lika

O večja od a, dobimo parketiranje, ki zadošča vsem zahtevam izreka 1, razen

tisti o omejenosti obsegov s številom D. |

Trdimo, da zgornja konstrukcija pri r, — nb/8 zadošča vsem pogojem iz-

reka 1, le tistemu o omejenosti ploščin ne. Pokažimo, da je obseg lika O in

obseg ob, poljubnega P, manjši od b. Za O je to očitno, obseg ob, lika P,,

je manjši od obsega izseka iz ustreznega kolobarja, v katerega je včrtan. Te-

daj velja neenakost ob, < 2(r, —r,-1) -- zr,/(10.. 4-4) -- zr, ,/(10. 4) —

<— (1/4 - 2;(10.4n) (šn -- 1)/8)b < b, neN. Ni težko videti, da ploščine sed-

merokotnikov P, res niso omejene navzdol. S tem je izrek 2 v celoti dokazan.
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Slika 3
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DOMAČE VESTI

SEMINAR ZA UČITELJE MATEMATIKE

Zavod SR Slovenije za šolstvo organizira seminar za učitelje matematike:

a) V Ljubljani, 18. in 19. avgusta 1980 v predavalnici št. 2 na Fakulteti za

elektrotehniko, Tržaška c. 25.

b) V Mariboru, 20. in 21. avgusta 1980 v predavalnici št. 4020 na Visoki tehniški

šoli, Smetanova 17.

Program seminarja

Prvi dan

9.00—11.00

11.00—13.00

15.00—17.00

Drugi dan

8.00—10.00

10.00—12.00

12.00—14.00

UH

. dr. V. Doma, Skupna vzgojno izobrazbena osnova v usmerjenem

izobraževanju

dr. F. Križanič, Didaktično metodične zasnovanosti in pregled

vsebin učbenika za matematiko s poudarkom na povezavl geo-

metrije z algebro

Odmor

. mag. M. Vencelj, Znani rezultati geometrije

Vzorec časovne razporeditve učne snovi; razgovor

. mag. I. Hafner, Logika

. dr. J. Rakovec, Matematične strukture
Aleksander Cokan
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PELLOVA ENAČBA"

TOMAŽ PISANSKI

Math. Subj. Class. (1980) 10 B 05, 10—01

Tujec, prisedi, preštej vse Sončevo lepo govedo.

(Bistrc nabrusi ostro, naloga bo, bogme, zavita.)

Pašnike sočne Trinakra, Sicilije polja preleti,

štiri boš črede našel, po pasmah jih ločil natanko:

Ta se kot mleko beli. Kot morja viharnega vali

temna je v oni živina. Rjavordeča je tretja,

z lisami zadnja pokrita. S pogledom jih vseh ne objameš,

množica bikov krepkih že šteje nesluteno moč.

Strašna je moč, a vendar pregledna. Poslušaj me, tujec:

Belih je bikov, poglej, prav toliko kolikor skupaj

temnih tretjina in pol z rjavimi biki nanese.

Črnih število dobiš, če lisastih bikov petini

brž četrtino dodaš in ruse v celoti navržeš.

Koliko, vedel bi rad, je lisastih bikov. Dodeni

bikom rjavim lepo sedmino in šesti del belih.

Pa se lotiva še krav po vrsti od črede do črede.

Belih število dobiš, če črne govedi tretjino

k delu četrtemu daš. Iz lisaste črede povzameš,

koliko črnih je krav: petini dodaj četrtino.

Lisaste krave preštela spet bova, tujec, brez muje:

Množico z isto močjo iz ruse sestavi živine,

vzemi od šestih en del, zedini ga z enim od sedmih.

Štetje rjavih samic na belo nasloniva čredo:

pol le tretjine dodaj sedmini.

Zdaj si ti na vrsti.

Koliko vsake govedi Sonce vardeva, povej mi,

bikov mogočnih in krav z bogatimi vimeni mleka.

Če boš pravilno preštel od glave do glave vse črede,

spretno s števili ravnaš — rad ti bom, tujec, priznal.

Ali med modrece, vedi, ne bom te z rojaki zapisal,

dokler pogojev še dveh ne vzameš pri štetju v zakup:

Bele in črne premešaj vse bike, tesno razpostavi,

kamor ti seže pogled v širino naj bo al' globino,

bik naj ob biku stoji. Na travnikih sicilijanskih

mukal in zemljo teptal tedaj bo kvadrat brez primere.

Bike marogaste v čredo postavi z rusimi skupaj,

enega najprej pa dva in dalje natanko v stopnicah,

v dir jih poženi. Po polju rohnel bo živi trikotnik.

Če še to zanko razmotaš, prevrtaš z ostrim razumom,

čredam orjaškim moči do repa natanko pretehtaš,

z zmago odidi odtod. Ponosnega spremljaj te slava,

da si visoko nad nas v modrosti se, tujec, povzpel.

Arhimed: Problem o govedu

Prevedel: France Križanič

« Predavanje na 17. seminarju DMFA SRS 1980 — Zanimiva matematika.
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V celih številih rešujemo enačbo z dvema neznankama oblike

x? — Dyi — 1 (1)

Pri tem je D znano pozitivno število, ki ni popoln kvadrat. To diofantsko

enačbo imenujemo Pellova enačba. O zgodovini te enačbe le nekaj besed. Ime

je krivično dobila po angleškem znanstveniku Johnu Pellu (1611—1685), ki pa

o enačbi ni napisal nič takega, kar bi ne bilo že znano Fermatu. Z metodo

verižnih ulomkov je Pellovo enačbo popolnoma rešil šele Lagrange okrog leta

1766. Že stari Grki so se ukvarjali s problemi, ki se prevedejo na Pellovo

enačbo. Arhimedu pripisujejo problem o govedu, ki ga je mogoče prevesti na

Pellovo enačbo

x? — 472 949y? — (2)

Ni znano, ali je Arhimed poznal vsaj kakšno posebno rešitev te enačbe,

verjetno je ni. Potrpežljivi bralec se lahko sam prepriča — potem ko bo

v tem prispevku spoznal, kako se rešuje Pellova enačba — da ima Arhimedov

problem (2) najmanjšo rešitev za x petinštirideset, za y pa enainštirideset-

mestno število. Sam problem o govedu pa rešijo števila, ki imajo nekaj sto-

tisoč mest! |

Vrnimo se spet k enačbi (1). Omejitve na D niso prav nič omejujoče, saj

je sicer enačba (1) enostavno rešljiva. O tem nas prepriča naša prva naloga.

Naloga l: V celih številih reši enačbo (1)

a) če je D — d? (popolni kvadrat)

b) če je D—O0

c) če je D—< —1

d) če je D<—1l | |

Naslednja naloga pa nam pokaže, v čem je posebnost popolnih kvadratov:

Naloga 2: Dokaži, da je VD iracionalno število, če D ni popolni kvadrat.
Iz naslednjih dveh nalog pa je razvidno, da je mogoče ugnati marsikatero

zanimivo nalogo, če znamo reševati Pellovo enačbo.

Naloga 3: Dokaži, da je mogoče nalogo, ki sprašuje o trikotnih številih, ki

so popolni kvadrati, in ki je natančno določena z diofantsko enačbo

n(n -- l)/2 — m?

prevesti na Pellovo enačbo! Kakšen D dobiš?

Naloga 4: Naslednjo nalogo preoblikuj na Pellovo enačbo z D <— 3. Poišči

vse trikotnike s celoštevilsko ploščino, ki imajo za stranice tri zaporedna

naravna števila. |

Preden se lotimo samega reševanja enačbe, moramo malo več zvedeti

o množici rešitev. Dejstvo, da x in y hkrati zadoščata enačbi (1), bomo zapisali

takole: [x, y]. Rečemo, da je [x, y] rešitev enačbe (1).

Naloga 5: Če je [x, y] rešitev enačbe (1), so rešitve tudi [— x, y], [x, — 9],

[— x, — y]; dokaži!

To pomeni, da si lahko znak x in y v rešitvi poljubno izberemo. Rešitvam

z x >0 in y >0 rečemo pozitivne rešitve. Odslej se bomo omejili izključno

na pozitivne rešitve, saj je druge mogoče dobiti na tako preprost način. Po

drugi strani je jasno, da ima vsaka Pellova enačba irivialno rešitev x, <— l,

y, — 0. Zato nas bodo zanimale predvsem netrivialne rešitve (če sploh ob-
stajajo).
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Dokažimo, da jih obstaja neskončno mnogo, brž ko obstaja ena sama.

Izrek 1: Če je [x,, y,] netrivialna rešitev enačbe (1), so tudi [x,, y,] za vsak

n > 0 rešitve te enačbe. Pri tem je

Xn — (6, 4- y, V D)a £ (x, — y, V D))

1
V — 76, - y, V D)a — (x, — y, VD)n)

Dokaz: Ker je [x,, y,] rešitev enačbe (1), je

— Dy?—
Levo stran razstavimo:

(x, —y, VD) (x, - 9, VYD) —1 (3)

Enakost (3) potenciramo na n-to potenco

(x, — y, VD)a (x, - y, VDa <1 (4)
Oba binoma razvijemo po binomskem obrazcu:

(x, £ y, VDa — xn 4 niša y, VD 4 (z) yeD A... (5 a)

(x, — y, VD)n — xy. — (1) y, VD (z Je ysD—... (5 b)

S sodimi členi v (5a) in (5 b) definiramo x,, z lihimi pa y,:

x, — XR (z) y2D 4... (6a)

vYD — (1) y, (z )ae ySD 4... )YW/D (6b)

Ko vstavimo (6a) in (6h) v (5a) in (5h), dobimo

(x, — y, V Da — x,— y, VD (7b)

Čeprav sta x, in y, celi števili, določeni s (6a) in (6b), ju lahko na drug način

izračunamo iz (/a) in (7b):

x, — ZG, dy, VD)a -£ Ge, — v, Dm (82)

»—>eh £ y, V D)a— (x, — y, VD)") (8 b)

x, in y, Sta res celi števili, ki ju omenja izrek. Če pa (7 a) in (7 b) upoštevamo

v (4), dobimo:

104



oziroma

—D y poo 1

[x,, Yn] resnično reši enačbo (1).

Pot do dokaza tega izreka kaže tudi naslednja naloga.

Naloga 6: Če sta [x,y] in [X,Y] rešitvi enačbe (1), sta tudi [xX - yYD,

xY - yX] in [xX — yYD, xY — yX] rešitvi te Pellove enačbe.

Paru [x, y] lahko priredimo število a< x -r y VD. Število a je iracionalno
število, brž ko je rešitev netrivialna (y << 0). Spomnimo se, da D ni popoln

kvadrat! Z a" označimo število x — y V D. Rešitvam iz naloge 5 pripadajo torej
števila a, aš, — a, —a", Prirejeno število pa rešitev enolično določa.

Naloga 7: Če sta [x;y] in [X, Y] rešitvi naloge (1) in je xy VD — X --
- V VD, tedaj je x — X in y — Y; dokaži!

Število a< x y VD omogoča, da rešitve primerjamo med seboj. Zdaj

ima smisel govoriti o večjih in manjših rešitvah.

Naloga 8: Naj število a pripada kaki netrivialni rešitvi [x, y] Pellove enačbe

(0), a— x yYVD.
a) Dokaži, da je med števili a, a", — a, — a" natanko eno večje od 1.

b) Dokaži, da je a>1, če in samo če je rešitev [x, y] pozitivna.

Naloga 9: Dokaži, da obstaja med pozitivnimi, netrivialnimi rešitvami (če

sploh kakšna obstaja) minimalna rešitev.

Ta naloga je netrivialna. Spomnimo se, da obstajajo omejene množice

realnih števil, ki nimajo minimalnega (ali maksimalnega) elementa. Zdaj

vemo, da obstaja minimalna (pozitivna, netrivialna) rešitev [x,,Y,], brž ko

obstaja kakšna netrivialna rešitev. Z izrekom 1 in nalogo 5 lahko najdemo

še neskončno mnogo drugih rešitev. Seveda nas zanima, ali dobimo na la

način vse rešitve. Odgovor je da! Drugih rešitev namreč ni.

Naloga 10: Vsaka rešitev enačbe

x?— Dy?i — 1

za pozitiven D z iracionalnim VD ima obliko [E x,, £ y,] kjer je

1 — —

1
Yn— —zla, ty VDa — 6, —9, VD) (94)

pri čemer je [x,,y,] minimalna rešitev in je n Z 0.

Naloga 11:

a) Pri katerem n dobiš v nalogi 10 trivialno reštev enačbe (1)?

b) Dokaži, da je [x,,Y,] določen z (9a) in (9b) tudi pri negativnih vred-

nostih m rešitev enačbe (1). Izrazi x., in y.., Z X, in Y, Razloži, zakaj smo se

v nalogi 10 lahko omejili na negativne mn!

Naloga 12: Naj bo [p, g] minimalna rešitev enačbe (1). Druge oznake naj

bodo enake kot v nalogi 10. Dokaži, da je

x,—1I,y,<0

Xpyag— pXn % DgYai Inja < 4%n E PYn
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Ta naloga nam omogoča, da računamo rešitve enačbe (1) zaporedoma, brž

ko poznamo minimalno rešitev [p, g]. Hkrati pa vidimo, da je x,,,> X%, in

Ynji > Yn« 10 nam utegne pomagati pri iskanju minimalne rešitve. Za ogre-

vanje naj bralec reši naslednjo nalogo.

Naloga 13:

a) Poišči tisto pozitivno rešitev Pellove enačbe x?— 3y? — 1, pri kateri je

x — 26. Poišči minimalno rešitev te enačbe in za tem še prvih pet pozitivnih

rešitev.

b) Poišči vse rešitve Pellove enačbe x?— 2y? — 1.

Zdaj je ostal le še en problem. Kako poiskati minimalno rešitev ali pa

pokazati, da enačba nima netrivialne rešitve! To pa je izredno trd oreh.

Zaradi pomanjkanja prostora bomo le pokazali, kako poiščemo minimalno

rešitev. Dokaze bomo žal opustili.

Naj [x] označuje celi del realnega števila x. Označimo d — [VD]. Definiraj-
mo pet zaporedij celih števil.

P, <0, P,<a, 40, 4—P,Aa (10a)

O,<1, O, < (D—P,'/O0,4 | (104)

ajed, a, — [(d - P,)/0,] (10c)

posl, mnsd, p,— apna - Dyo2 (10d)

go <0, gi <1, g, — a,dnyai t dn—2 (10€)

Ne zlahka, vendar je mogoče dokazati tole.

Naloga 14: Za vsak n Z 1 veljata zvezi

b) p,? — Day? — (— "O,1

Še težji pa je dokaz naslednjega izreka.

Izrek 2: Obstaja tak n, da je O,,1 <— l. Naj bo nr, najmanjši med njimi.

Če je mo sodo število, enačba

x? — Dj? —<—] | (11)

nima rešitve v celih številih, [p,,, 4x,] Je minimalna rešitev enačbe (1). Če je

no liho število, je [p,,, 4,,] Minimalna rešitev enačbe (11). Pišimo x; — p,, in

Yi — dn, ln naj bodo x, in y, definirani z obrazcema (9a) in (9b). [x2, ys] je

minimalna rešitev enačbe (1). [x2,, Yzm| So vse pozitivne rešitve enačbe (1),

[X2,1, Yem-a] pa so vse pozitivne rešitve enačbe (11).

Predaleč bi nas zaneslo, če bi želeli dokazati izrek 2 ali pa rešiti nalogo 14.

Omenimo le tole: v zaporedjih (10 a—10e) se v resnici skriva postopek za

razvoj VD v enostavni verižni ulomek:

— 1 1 1 1
VD-a 4 ... — [Ai, Ax, ag, ...]

as" as" a," as"

Pri tem je p,/g, n-ti približek:

Pn/dn — [Ab 82 --., Ax]
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Število (P, -- VD)/O, pa je m-ti ostanek:

(P, d- VD)/O, — [A,, daji, d,,2, <« -]

Manjkajoče dokaze in rešitve nalog pa lahko bralec najde v navedeni litera-

turi, npr. v [3, 4].

Naloga 15:

a) V celih številih reši enačbi

x? — 13;2—1 in x—l13y?——1

b) Ali je enačba x?— 2y? — — 1 rešljiva v celih številih?

c) Poišči vse celoštevilske pravokotne trikotnike, ki imajo za kateti zapo-

redni naravni števili!
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PELL'S EOUATION

The Pell's eguation is discussed. The approach is elementary without an explicit

development of the theory of continued fractions. [he emphasis is on the actual

computation of all solutions of Pell's eguation. It is perhaps of interest to know

that the famous cattle problem of Archimedes appears as a motto. This is the first
appearence in verse of this well-known problem in Slovene language. It was trans-

lated by France Križanič.

NOVE KNJIGE

Mirko Budinčevič, Vojislav Marič: Obične diferencialne jednačine. Problemi

i zadaci. Naučna knjiga. Beograd, 1978. 107 str.

Mogočih je več različnih pristopov k vajam iz diferencialnih enačb. Pri prvem,

bolj računskem pristopu, rešuje študent konkretne primere diferencialnih enačb
po znanih postopkih in tako pridobiva računsko prakso, globljega razumevanja
teorije pa tak pristop ne prinese. Druga možnost so bolj splošne naloge o eksistenci
in lastnostih rešitev diferencialnih enačb, ne da bi te rešitve lahko tudi izračunali.
V zbirki je poudarek bolj na nalogah, ki zahtevajo razmislek za rešitev, čeprav je

precej tudi rutinskih nalog. |

Zbirka vsebuje naloge o eksistenci in enoličnosti rešitev, reševanje z zaporednimi
približki, primere enačb prvega reda, ki jih je mogoče eksplicitno rešiti, linearne

enačbe, reševanje s potenčno vrsto, robne probleme za linearne enačbe drugega

reda in linearne sisteme. Vsebina zbirke pokriva približno snov prvega semestra

pri analizi 3, če izvzamemo variacijski račun in parcialne in diferencialne enačbe

prvega reda, ki jih ne vsebuje. Zbrane naloge so zanimive in različno težke, na

koncu vsakega poglavja pa so izdelane rešitve. Zbirka bo dobrodošla predvsem

študentom matematike (pri analizi 3), nekatera poglavja pa tudi študentom tehnič-
nih fakultet.

Bojan Magajna
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RAZVOJNE SMERI DIDAKTIKE FIZIKE

V ZVEZNI REPUBLIKI NEMCIJI"

WILFRIED KUHN

UDK 371.3:53(430.1)

Članek obravnava tokove v didaktiki fizike z zahodnonemškega gledišča. Za

glavne naloge didaktike postavi elementarizacijo znanosti za pouk ter raziskovanje

miselnih in učnih procesov in motivacije. Razpravlja o odnosu med poskusom in

teorijo in opozori na to, da pri pouku ne kaže precenjevati pomembnosti poskusov

ob nastanku fizikalnih teorij. l

TRENDS IN PHYSICS EDUCATION IN THE GERMAN FEDERAL REPUBLIC

In the article various attitudes towards research in physich education are

considered from the German point of view. The main aims are supposed to be

development of scientific achievements for teaching and research of cognitive and

learning processes as well as of motivation. The interplay of experiment and theory

is discussed and it is concluded that in teaching one should not exaggerate the

significance of experiments in the formation of physical theories.

V didaktiki fizike zasledimo v glavnem štiri smeri.

1. Empirične raziskave, ki naj odkrijejo za proces učenja pomembne spre-

menljivke in njihovo medsebojno povezanost.

2. Raziskave o učnih načrtih, ki jim gre za utemeljitev, načrtovanje in oce-

njevanje pouka na splošno in posebnih učnih vsebin. Pri tem imata pomemb-

no vlogo iskanje in klasifikacija učnih smotrov. V delih iz točke 1 raziskujejo

različne načine pouka, na primer s stališča stroke, izbranega projekta, interesa

učencev ali notranje diferenciacije. Posebno pozornost posvečajo uporabi raz-

nih učnih sredstev. Za te raziskave je značilno, da si prizadevajo optimizirati

pouk in učenje in razviti ustrezne organizacjske oblike pouka.

3. Raziskave, ki imajo za cilj »elementarizirati znanost in usmeriti pouk

po znanosti« (priporočilo sveta za vzgojo ZRN 1970) in »obdržati pouk na naj-

višji mogoči znanstveni ravni« (francoski visokošolski zakon 1968).

4. Teoretične raziskave o miselnih in učnih procesih, ki so značilni za

fiziko, ter analiza nastajanja fizikalnih pojmov in teorij. Raziskave motivacij

ter ugodnih in neugodnih vplivov ob proučevanju zgodovinskih primerov v raz-

merah, ki so podobne današnjim razmeram.

Na prvi pogled se zdi, da so raziskave iz točke 1 blizu eksperimentalni

fiziki, ker pri njih nekaj »merijo«. Čeprav bomo pozneje podrobneje raz-

mislili o interpretaciji »empiričnih podatkov«, pa že zdaj navedimo očitek,

da so pri empiričnih raziskavah pogosto v ospredju nepomembne ali celo

neprave spremenljivke in malenkostne — resnične ali navidezne — izboljšave

« Po predavanju, ki ga je imel profesor W. Kuhn, predstojnik inštituta za di-

daktiko fizike univerze v Giessnu in predsednik sekcije za didaktiko fizike Nem-

škega fizikalnega društva, na oddelku za fiziko 4. 10. 1979. Prevod in povzetek je

pripravil J. Strnad.
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pri učenju. Večinoma te raziskave ne obravnavajo posebnosti pri učenju fizi-

ke in ustreznih načinov pouka, ampak bolj pedagoške probleme. Zato ne

sodijo toliko v didaktiko fizike kot v pedagogiko.

Toda tudi s pedagoškega gledišča se zdi zamisel o izvedljivosti problematič-

na, če obravnavamo posredovanje učne snov samo v okviru teorije informacij.

Taki poskusi izhajajo iz prepričanja, da je mogoče vsakogar vse naučiti, torej

tudi fiziko, če le uporabimo optimalni način posredovanja. To prepričanje

in napačno pojmovana »enakost možnosti« nista kriva samo za mnogo težav

pri pouku fizike, ampak tudi v fiziki kot znanosti. Znanost ni stroj, ampak

niz genialnih prebliskov. Zato se njenih metod ne moremo naučiti, kot se

naučimo prijemov ob tekočem traku. Znanstveno spoznanje ni kar sorazmer-

no z razpoložljivim številom ljudi in razpoložljivim denarjem.

Dela iz točke 2 so bistveno prispevala k temu, da so začeli pouk in učenje

znanstveno raziskovati. Na učne načrte in na učbenike je ugodno vplivala

prilagoditev vsebine učencem različnih starostnih in razvojnih stopenj z raz-

ličnimi učnimi smotri. Vendar je treba tudi pripomniti, da podrobni in po-

gosto togi učni načrti večinoma ne puščajo dovolj možnosti za individualno

oblikovanje pouka. Katalogi učnih smotrov s hiperfino strukturo delujejo kot

zbirka puhlic. Zdi se, da velja pri določanju učnih smotrov nekakšna zveza

nedoločenosti: čim podrobneje določen smoter, tem večja trivialnost.

Kljub temu se didaktika fizike ne sme odreči raziskovanju učnih načrtov.

Pri tem pa mora prevzeti kontrolno funkcijo in zagotoviti, da učenje in pouk

po sprejetih učnih načrtih ne postaneta dogmatična. Didaktika fizike naj bi

tudi poskrbela predvsem za naprave in za druga posebna sredstva za učenje

in pouk fizike. Vprašanja optimizacije in organizacije učenja in pouka, ki

niso značilna za fiziko, pa naj prepusti pedagogom in psihologom, vnetim za

informacijsko teorijo. Te trditve lahko posplošimo in smiselno omejimo raz-

iskovalno območje didaktike fizike. Vprašanja, pri katerih je mogoče »fizi-

kalni« nadomestiti s kakim drugim prilastkom, zanjo niso zanimiva. Ta deti-

nicija naj se upira tudi prizadevanjem, da bi postala didaktika fizike preveč

vsestranska. To ne pomeni, da naj ne bi vzdrževala in gojila pogovorov in

stikov s pedagoškimi in sociološkimi znanostmi. Vendar ne bi smela nastopati

»v vlogi učenca, ki mu povedo vse po učiteljevi želji, ampak v vlogi sodnika,

ki zahteva od prič, da odgovarjajo na postavljena vprašanja« (Kant).

Didaktika fizike je lahko interdisciplinarna le glede na organizacijsko so-

delovanje z drugimi disciplinami in izkoriščanje le-teh kot pomožnih znanosti.

Po predmetu raziskav pa je le intradisciplinarna. Pri tem v didaktiki fizike

ni glavni namen raziskav pridobiti in povečati fizikalno znanje, ampak pred-

vsem analizirati spoznavni proces. Raziskave logične zgradbe s stališča teorije

znanosti povezujejo didaktiko fizike s fiziko. Zaradi tega ostaja fizika kljub

neizbežni specializaciji enotno znanstveno področje. To obenem preprečuje,

da si dane učne snovi, utemeljene glede smotrov, prirejene učencem, optimal-

no posredovane in preverjene z vsemi mogočimi poskusi, preveč ne prilasti

pedagogika. Bojimo se namreč lahko tega, da bi v dobri pedagoški nameri

posredovali vse mogoče, med tem tudi fizikalno popolnoma nesmiselne stvari.

Poudarjanje logične zgradbe fizike pa si ne prizadeva strokovno zožiti

pouka. Seveda mora biti fizikalni didaktik po duhovni osnovi fizik, toda ne

specialist, temveč generalist, ki se zavzema za enotnost fizike in skrbi za

njeno prihodnost.
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V okviru splošne definicije didaktike fizike lahko razumemo kritiko raz-

iskav iz točk 1 in 2 in prepričanje, da naj didaktika fizike ustvarjalno prispe-

va v glavnem pri točkah 3 in 4.

Zelo pomembna vloga didaktike fizike, ki naj bi zmanjšala skrb zbujajoči

razkorak med znanstvenim raziskovanjem in poukom fizike, je elementariza-

cija. To je didaktična obdelava sodobnih fizikalnih raziskovalnih rezultatov.

Sodelovanje med fiziki in didaktiki je tu v zadnjih letih rodilo odlične uspehe.

Sekcija za didaktiko fizike Nemškega fizikalnega društva je od leta 19/3 na

številnih sestankih predstavila širok krog takih del.

(Predavanja so izšla v poročilih s sestankov v letih 1974, 1975, 1976, 197/

in 1978 v Giessnu v uredništvu W. Kuhna in A. Scharmanna.)

Med zgledi lahko navedemo: Feynmanovo elementarizacijo kvantne fizike,

Dubocov predlog, da bi fotografije reakcij med osnovnimi delci v mehurčni

celici uporabili za eksperimentalni uvod v posebno teorijo relativnosti, didak-

tično pomembne optične poskuse (uklon, interferenca, koherenca) z lasersko

svetlobo, posebej demonstracijo osnov Fourierove optike, nove poskuse

v atomski in jedrski fiziki in fiziki trdnin, poskuse z električnimi in optičnimi

analogijami za ponazoritev energijskih pasov v trdninah in simulacijske po-

skuse z magnetnimi ploščicami na zračni blazini v atomiki.

Zasluge imajo tudi proizvajalci učil, ki so iz teh del izhajajoče nove eksperi-

mentalne možnosti razvili od laboratorijskih vzorcev do množičnih proizvo-

dov. Brez pripravnih poskusov za demonstracijo fizikalnih pojavov ter ana-

lognih in modelnih poskusov ni učinkovite elementarizacije. Poskusi pa

ostanejo samo izložbeni primerki, če ne spoznamo njihove osrednje vloge

v fizikalnem spoznavnem procesu. S tem smo prišli do predmeta raziskav

didaktike fizike v točki 4: do analize oblikovanja fizikalnih pojmov in teorij

in ustreznih raziskav pouka fizike.

V nekem učbeniku piše: »Fizika vedno izhaja iz poskusov in nato povezuje

merske podatke.« Trditev, da vodi od merskih podaikov do teorije neposred-

na in ravna pot, vsebuje didaktično zahtevo po popolni eksperimentalni ob-

delavi teoretičnih predstav. Takšnim težnjam pravim Baconov sindrom. Fran-

cis Bacon (1561—1626) je namreč trdil, da izvira vse znanje iz opazovanja in

poskusov, se pravi, da raziskujemo s tem, da opravimo pri kakem pojavu

veliko opazovanj in poskusov in jih zberemo, razvrstimo in sistematično

uredimo. Potem postavimo domnevo in pojasnimo merske podatke. Šele ko

je zbranih dovolj dejstev in merskih podatkov, lahko razvijemo teorijo z na-

menom, da povežemo merske podatke. Baconov sindrom da napačen pogled

na poseben način poti do fizikalnih spoznanj. Učbeniki naredijo v dobri

pedagoški nameri to pot čim krajšo in »varno«. Pri tem se zgubi informacija

o tem kako zares pridemo do fizikalnih spoznanj.

Razglabljanje s stališča teorije znanosti in zgodovine fizike ni nepotrebno,

ampak je zaradi Baconovega sindroma in iz njega izvirajočih klišejskih pred-

stav nujno. Galileja ni mogoče povzdigniti v glavno pričo te tako imenovane

induktivne metode. Proučevanje njegovih del namreč pokaže, da pri uteme-

Hevanju svoje nove fizike ni sledil Baconovemu induktivnemu postopku. Čisto

v nasprotju z empiričnim ravnanjem, ki mu ga pripisujejo, pravi: »Napravil

sem poskus, potem ko me je naravna pamet za trdno prepričala, da mora

pojav (padanje) potekati tako, kot je zares potekal.« Na drugem mestu bere-

mo: »Želimo se prepričati, da se pospeški pri naravnem padanju ujemajo
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s prej (teoretično) napovedanimi. Kant je v predgovoru h Kritiki čistega

razuma označil bistvo Galilejeve metode takole: »Ko je Galilei spuščal po

klancu krogle, ki jim je sam izbral težo...., se je vsem naravoslovcem prižgala

luč. Spoznali so, da razum samo uvidi tisto, kar sam ustvari po lastni

zamisli.«

Kaže, da ta luč ni več svetila pozitivistom 19. stoletja, ki so se, sledeč

Ernstu Machu, omejili le na razvrščanje dejstev. Fizika se zdi po tem kot

zbirka zakonov narave, ki stojijo bolj ali manj neodvisno drug ob drugem.

Takoj se pojavi didaktično vprašanje, koliko zakonov in katere zakone mora

poznati učenec, učitelj, študent ali raziskovalec, da je izobražen, da zna rav-

nati s fiziko, da jo zna uporabljati ali da jo razume. Lahko se na primer

posebej vprašamo, koliko poskusov moramo narediti pri pouku, da z merje-

njem časa in poti spoznamo enačbo za enakomerno pospešeno gibanje. Na-

videzni didaktični problem, ki ga sproži Baconov sindrom, to je popolna

eksperimentalna obdelava področja, v osnovi onemogoča uporabo zgledov.

Površno znanstvenoteoretično razglabljanje privede pri pouku do preobr

lice snovi, nad čemer se pritožujemo na vseh straneh. Kljub velikemu ekspe-

rimentalnemu naporu in veliki prizadevnosti lahko tako nastane popolnoma

napačna slika o bistvu fizikalnega spoznanja. Danes vemo, da najpomemb-

nejših odkritij niso napravili po Baconovi metodični zamisli. Einstein je raz-

ločno opozoril, da izhaja osnovna zgradba vsake fizikalne teorije iz razuma

in ne od poskusov. Matematične predstave, s katerimi zajamemo naravo, so

po njegovem »prosti izumi človeškega duha«. Nato pravi: »Izkušnja morda

namiguje na pripravne matematične predstave, toda teh ne moremo z go-

tovostjo izpeljati iz izkušnje. Izkušnja ostaja seveda edini preskusni kamen

za fizikalno uporabnost kake matematične konstrukcije, toda ustvarjalni ele-

ment je doma v matematiki.«

Iz vsega tega izhaja ugotovitev, da v razvoju teorije poskusi nimajo vloge,

ki jim jo pripisuje površno znanstvenoteoretično razglabljanje. Takšno raz-

glabljanje vidi v merskih podatkih praslike trdoživih dejstev, ki jih ni mogoče

nadalje analizirati in s katerimi je treba za vsako ceno uskladiti teoretične

predstave. Vendar težko pridemo do merskih podatkov, ki se skladajo s teo-

rijo, če ta nič ne namiguje, kakšne podatke naj bi iskali pri poskusih. Vemo

na primer, da Dalton ni izpeljal svoje atomske teorije, čeprav tako še vedno

beremo v učbenikih, iz merjenj konstantnih in večkratnih razmerij med ma-

sami elementov v raznih kemijskih spojinah. Njegova atomska teorija, ki jo

je postavil vnaprej, je šele omogočila razvoj kemijskih merilnih načinov,

s katerimi so dokazali napovedana konstantna in večkratna razmerja. Kemij-

ske analize niso nikakor dale teh podatkov, dokler niso postale znane Dalto-

nove teoretične predstave.

Še več drugih primerov priča, da ni neposredne poti od merskih podatkov

do teorije in da šele teorija določi, kaj naj pravzaprav merimo. Tudi Coulom-

bovega zakona niso dobili po merskih podatkih, ampak po podobnosti z gra-

vitacijskim zakonom. Z merjenji so raziskovali zakon sile le tako, da so dali

nabito telo pod posodico tehtnice in določili utež, ki je v drugi posodici urav-

novesila privlačno silo. Pri tem izmerjena privlačna sila ni bila v preprosti

zvezi z razdaljo. |

V fizikalnih knjigah tudi beremo, da je Einstein postavil teorijo relativ-

nosti, da bi pojasnil negativni izid Michelsonovega poskusa. Zgodovinska raz-

111



iskovanja so pokazala, da je v Einsteinovih razglabljanjih imel ta poskus le

stransko vlogo. Pozneje pa je prepričal druge fizike, da so priznali teorijo

relativnosti.

Prav tako ni induktivne poti od merskih podatkov o črtastih spektrih do

valovne funkcije. Zgodovinski razvoj kvantne fizike razločno kaže, da je treba

odločilne fizikalne pojme uganiti. Poskusi so sicer dali namig, vendar ti pojrni

niso bili v nujni logični zvezi s poskusi. Samo teorlja lahko odloči, katere

vidike pojmov lahko preverimo s poskusi.

Da bi pravilno razumeli zvezo med merskimi podatki in teorijo, pa mora-

mo priznati, da lahko pridemo do preprostih kvantitativnih zvez včasih samo

z merjenjem. Tako so na primer neposredno po merjenjih ugotovili Boylov

in Hookov zakon in Joulovo zvezo med električnim tokom, uporom in toplot-

nim tokom. Vendar so to izjeme. Do tega pride navadno, če o pojavu že

skoraj vse vemo, samo matematičnega zapisa zakona še ne poznamo. Zato ti

zgledi ne morejo biti didaktično opravičilo za Baconov sindrom. Nasprotno,

ti redki zgledi kažejo, kako malo je verjetno, da bi dobili kvantitativne zveze

po merskih podatkih.

Veliko bolj tipični za fizikalno metodo so Galilei, Dalton, Coulomb ali

Maxwell, ki so našli kvantitativno zvezo intuitivno kot najpreprostejši izraz

kvalitativne domneve in so se potem z merjenjem prepričali o pravilnosti

domneve. Zanimivo je, da je celo Boyle našel svoj zakon, potem ko je ta

zakon napovedal zato, da bi registriral merske podatke.

Povedati je treba, da so poskusi zelo različni. Poskus ni zmeraj merjenje.

V procesu fizikalnega spoznavanja imajo veliko vlogo analogni, simulacijski

in modelni poskusi. Njihov pomen je hevrističen, se pravi, da so kažipoti do

novih domnev in teorij. Po Maxwellu je treba razumeti pod fizikalno analogijo

»delno podobnost« zakonov kakega območja z zakoni drugega, zaradi katere

»prvo drugo ilustrira«. Z modelnimi poskusi želimo navadno doseči pedagoške

namene. Pojasnjevanje v okviru naivnega realizma privede tudi tukaj do

didaktičnih težav.

Bistvena je tudi zveza med poskusom in vsakokratnimi tehničnimi mož-

nostmi. Nov instrument sproži nove eksperimentalne in teoretične raziskave,

ki poženejo naprej znanost. Zgledi so daljnogled, Voltova baterija, laser. Pri-

mer za to, kako zelo natančni podatki izboljšajo teorijo, je Keplerjevo obrav-

navanje Marsovega gibanja. Kepler je po nekaj poskusih izdelal teorijo, ki

je bila natančna na 8 ločnih minut. S tem bi se lahko zadovoljil, če ne bi

poznal podatkov Tycha Braheja, ki so bili natančni na 4 minute. Pravi: »Ker

imamo hvala bogu v Tychu Braheju tako skrbnega opazovalca in odstopajo

ti računi za 8' od njegovih merskih podatkov, ... ker jih ne moremo zane-

mariti, je samo teh 8' povzročilo popolno prenovitev astronomije.« Prenovitev

je bila v tem, da je prešel Kepler pri opisu gibanja planetov od krogov

k elipsam.

Tako uvidimo, da sicer lahko napovemo merske podatke iz teorije, ki je

na začetku le kvalitativna. V nasprotni smeri pa gremo po tej metodični

poti samo izjemoma, se pravi, da pridemo od izmerjenih podatkov enolično

do teorije.

Merjenje pa je odločilno pri presojanju nasprotujočih si teorij. Po-

membno je, da ne gre pri tem za primerjavo ene same teorije s pojavi,

ampak vedno za primerjavo najmanj dveh teorij s fizikalnimi dejstvi.
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Ta okvirna znanstvenoteoretična razglabljanja nikakor ne namigujejo, da

je v razvoju fizike poskus podrejen teoriji. Eksperimentalne izkušnje so izno-

dišče za fizikalne teorije, toda ne edino in ne po naivnem empirizmu. Zato

tudi sploh ne gre za nadrejenost ali podrejenost teorije ali poskusa, ampak

za zelo zamotan splet v spoznavnem procesu in za oceno različnih vlog po-

skusa v vsakokratnih zgodovinskih in trenutnih okoliščinah pri raziskovanju.

Pri oblikovanju fizikalnih teorij imajo pomembno vlogo modelne pred-

stave različnih vrst. Vendar vzbudi uporaba modelov po naivnem realizmu

ali pozitivizmu vtis, da je fizika ikonska slika resničnosti ali neobvezna igra

z modeli. Pomanjkljivo znanstvenoteoretično razglabljanje ima za posledico

zopet navidezne didaktične probleme, kot kažejo zgrešene objave o didak-

tični funkciji pojma model. Pri obravnavanju tako imenovanega dualizma

valovanja in delca postane to posebno jasno.

Dobro se je ravnati po današnji fiziki, da ne bi branili položajev, ki jih je

znanost zapustila že pred 50 leti. Sicer bi ohranili pri življenju navidezne

probleme z nalašč za to izmišljenimi didaktičnimi in metodičnimi prijemi.

Kot zgled sodobnega poskusa zaradi elementarizacije omenimo interferenčni

poskus curkov delcev, pri katerem opazujemo zdaj interferenčno sliko zdaj

posamične delce.

Analiza razvoja fizikalnih pojmov in teorij je bistvena za preiskavo pro-

cesov učenja in pouka v fiziki, torej za pravi predmet didaktike fizike. Kri-

tizirana dela iz točke 1 kažejo na teoretične pomanjkljivosti te didaktike. Če

bomo tu z metodami naivnega empirizma optimizirali in nadzorovali njegovo

poučevanje, bo to usodno stopnjevalo Baconov sindrom.

Didaktika fizike naj se še posebej ukvarja z zgodovinskim razvojem fizi-

kalnih pojmov in teorij. Hund je v svoji knjigi Zgodovina fizikalnih pojmov

opozoril na to, da se podrobno razpravlja o osnovnih fizikalnih pojmih samo

tedaj, ko se uvedejo, potem pa jim zaupamo bolj ali manj brez pomislekov.

O razlogih, dvomih in številnih težavah, ki jih prinese nova predstava, ne

razpravljamo, zato tudi osnovnih pojmov ne razumemo več v celoti, ampak

jih samo uporabljamo. Dobesedno pravi: »V nasprotju med razumevanjem

in uporabo morda lahko nekoliko pomaga obravnavanje zgodovinskega raz-

voja fizikalnih pojmov.« |

Tukaj se pokažejo natanko problemi, s katerimi se mora ukvarjati didak-

tika fizike, ko si prizadeva razumeti fizikalno mišljenje in ne samo posredo-

vati nekaj na pol razumljenega po najkrajši poti in z optimalnimi metodami

pouka in učenja. Dragoceni material za spoznavno-psihološko raziskovanje

naravoslovnega procesa mišljenja nudijo zgodovinski dokumenti. Sem sodi

na primer Galilejev Dialogo, katerega zunanja oblika že sama priča o didak-

tičnem namenu sestavljalca. Velik didaktični potencial je skrit tudi v Fara-

dayevih dnevnikih. Pojem silnice, ki ga je Faraday razvil, in slike polj s sii-

nicami so izrecno didaktične iznajdbe.

To pa naj nikakor ne pomeni, da naj bi pri pouku fizike gojili predvsem

zgodovino ali da naj bi učenec sledil vsem zgrešenim potom v zgodovinskem

razvoju. Za didaktično preiskavo procesa učenja je mogoče iz zgodovinskih

dokumentov izluščiti teoretične predstave in delovne domneve, ki se dajo pre-

skusiti, če prestavimo učenca v razmere, v katerih je delal kak Aristotel ali

Galilei. Take klinične preiskave, pri katerih določa teoretična predstava, kaj

naj preiščemo in »premerimo«, ne vodijo do stopnjevanega Baconovega sin-
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droma. Za študij takih primerov so prav pripravni Piagetovi poskusi v labo-

ratoriju za učenje.

Še iz enega razloga je pomembno vključiti zgodovinske raziskave v didak-

tiko fizike. Pokažemo, na primer, da Kopernik ni odkril heliocentričnega si-

stema, da bi podvomil o avtoriteti ali družbenem sistemu ali ker so trgovci

in pomorščaki zahtevali boljše efemeride. Njegovo zanimanje, ki je privedlo

do odkritja, ni bilo tako, kot ga slikajo nekatere zgodbe. Želel je le Ptole-

mejev sistem epiciklov, ki je bil zanj zločin proti duhu Platonove filozofije,

nadomestiti s sistemom, osnovanim na stari zamisli o kroženju. V tem je bil

Kopernik prej reakcionar kot revolucionar. Giede uporabnosti Kopernikove

zamisli pa moramo ugotoviti, da niso bile po njem preračunane prutenske

tablice nič boljše kot po Ptolomejevem sistemu sestavljene alfonske tablice.

Maxwell ni odkril elektromagnetnih valov, da bi poskrbel za boljše zveze

v angleški čezmorski trgovini, ampak je naletel nanje čisto induktivno po

simetriji svojih enačb, torej po fizikalnem občutku in globoki intuiciji za

fizikalne povezave in lepoto fizikalnih teorij. Zanimanje za resnico je bilo

vodilno načelo njegovih raziskav.

Ti zgledi ne želijo zbuditi vtisa, da nastanek fizikalnih teorij sploh ni

povezan z družbenimi razmerami, motivacijo in poznejšo uporabo novih od-

kritij. Povezava je, a je zamotana in večplastna.

Didaktika fizike, kakor jo razumemo, ima odločilen intradisciplinarni po-

men. Pri razvijanju učnih načrtov ima pomembno kontrolno funkcijo, da ne

nastopi pedagoško in uradniško varuštvo. Didaktična obdelava (elementari-

zacija znanosti) zagotavlja obnavljanje fizikalnega znanja, ko vzdržuje pouk

in učenje na najvišji mogoči ravni. Znanstvenoteoretične raziskave bistveno

prispevajo k ohranitvi notranje ubranosti fizike. Raziskave v zgodovini fizike

pa varujejo fiziko pred znanstveno naivnimi, zato pa nič manj nevarnimi

poskusi indoktrinacije, ki bi lahko ovirali raziskovanje in pouk.

NOVE KNJIGE

Alan Jeffrey, Mathematics for engineers and scientists, 2, ed., T. Nelson and Sons
Lid., 1979. X -- 734 str.

Delo je spremenjena verzija iste knjige, ki je prvič izšla 1969. leta. Kot pove
naslov, je knjiga namenjena študentom tehničnih smeri in tistim strokovnjakom,
ki pri svojem delu potrebujejo nekoliko znanja matematike. Na močno zgoščen,

pa vendar pregleden način je obravnavana snov, ki se pri nas običajno predava
v prvem in delno v drugem letniku visokošolskega študija; tako se zvrste poleg

osnovnih pojmov o množicah in številih še funkcije ene in več spremenljivk, presti-

kave pa kompleksna števila z vektorji, odvodi funkcije ene in več spremenljivk,

osnove integracije, linearne transformacije z matrikami, funkcije kompleksne spre-

menljivke, osnovni pojmi vektorske analize, vrste, navadne diferencialne enačbe,

Fourierove vrste in, kar je novost v tej zadnji izdaji, še nekaj numerične analize

in verjetnostnega računa s statistiko. Kot je že navada, je ob koncu vsakega po-

glavja nekaj prav primerno izbranih nalog. Posebna odlika knjige so vsekakor zelo

nazorne in prepričljive slike, ki izvrstno ilustrirajo posamezne izreke. Kljub do-

danima poglavjema pa nova izdaja po obsegu ni narasla, ker so pač neka druga

poglavja smiselno skrčena. Knjiga je dobrodošel pripomoček tistim, ki predavajo

osnovne tečaje matematike, in seveda tudi študentom.

Gabrijel Tomšič
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V dvajsetih letih tega stoletja je nastala nova fizika, katere temelja sta

kvantna mehanika in teorija relativnosti. Kvantna mehanika je pojasnila celo

vrsto pojavov, teorija relativnosti pa je bila sprva čudovita, a skoraj neupo-

rabna teorija. Razlika med napovedmi klasične Newtonove teorije gravitacije

in Einsteinove splošne teorije relativnosti je bila do nedavnega skoraj ne-

merljiva. Fiziki so bili zato razmeroma nezaupljivi do nove teorije in je niso

imeli za temeljno vejo fizike. Šele izredni uspeh kvantne elektrodinamike je

pokazal idejno premoč Einsteinove slike o prostoru in času nad klasično

Newtonovo predstavo o prostoru.

Posebej zanimiva napoved teorije relativnosti so gravitacijski valovi [1l.

Teorija pravi, da pospešeno se gibajoče mase ustvarjajo spremenljivo gravi-

tacijsko polje, ki ima v veliki oddaljenosti sevalni značaj in nosi energijo

s hitrostjo svetlobe. Že od vsega začetka je jasno, da je zaradi šibkosti gravi-

tacijske sile tako polje zelo težko meriti. Najmočneje seva spremenljiv gra-

vitacijski kvadrupol [2]. Za energijski tok, ki ga oddaja, da splošna teorija

relativnosti: 5

L — (G/5c5) X (ij)? (D)
j,kel

G — 6,1.10-1 Nm2/kg? je gravitacijska konstanta, c hitrost svetlobe in ž;j,

tenzor vztrajnostnega momenta:

(2)

S piko so označeni odvodi po času.

Kratek račun pokaže, da je z današnjo tehniko nemogoče na Zemlji zgra-

diti izdaten izvir gravitacijskih valov. Če bi na primer vzeli 490 ton težko in

20 m dolgo jekleno palico in bi jo vrteli s kotno hitrostjo wo < 28 s-! (to je

kotna hitrost, pri kateri se palica ravno še ne bi razletela), bi palica sevala

energijski tok gravitacijskih valov 2,2.10-" W.

Očitno je, da moramo izvire gravitacijskih valov iskati med vesoljskimi

objekti. Predvsem pridejo v poštev eksplozije supernov, ker se pri teh pojavih

sprosti izredno velika energija v zelo kratkem času, tako da so spremembe

kvadrupolnih tenzorjev (2) lahko zelo velike. Po ocenah se sprosti lahko

1046 J v nekaj milisekundah. Če vzamemo, da odletita pri taki eksploziji vsak-

sebi dve enaki masi, lahko z enačbo (1) ob privzetku za hitrosti mas tik po

eksploziji ocenimo energijo izsevanih gravitacijskih valov. Rezultat napišemo

v obliki:

W,, z 80G M? »ž/c 7 (3)

M je masa zvezde, z trajanje eksplozije, ; pa razmerje med kinetično energijo

obeh mas, ki odletita po eksploziji, in njuno mirovalno energijo Me?. Če upo-

števamo gornje podatke, ugotovimo, da odnese kratkotrajen sunek gravitacij-

skih valov kakih 1042 J. To je fantastična energija. Sonce bi je izsevalo toliko

v 60 milijonih let.
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Gostota energijskega toka s tako močnega izvira v razdalji 2.10% svetlob-

nih let (kolikor meri oddaljenost sosednje galaksije M31 v Andromedi) bi

bila pri nas med trajanjem sunka okrog 0,02 W/m?. Tudi tolikšne gostote

energijskega toka so z današnjimi detektorji gravitacijskih valov še težko

merljive. Razen tega pa so eksplozije supernov v naši bližini (do razdalj

2.10% svetlobnih let) zelo redke, saj pride v povprečju le ena eksplozija

supernove v galaksiji na sto let.

Kljub tako neugodnim napovedim je Američan J. Weber že pred dobrimi

dvajsetimi leti začel graditi detektor gravitacijskih valov. Občutljivost njego-

vega detektorja v ozkem frekvenčnem intervalu okrog frekvence 1660 Hz je

bila približno dj,in/dv — 104 W/m'?s-1, kar je seveda slabo, če primerjamo to

občutljivost z občutljivostjo detektorjev elektromagnetnih valov (dj/dv —

— 10-iš W/m? s-!). Weber zato ni uspel, čeprav se je nekaj časa zdelo, da

zaznava sunke gravitacijskih valov [3], [4]. Pokazal pa je, da je mogoče graditi

občutljivejše detektorje gravitacijskih valov, kot so prej mislili. S tem je

usmeril na to področje nekaj močnih raziskovalnih skupin, ki dosegajo

v zadnjih časih vse boljše rezultate. Obetajo, da bodo v desetih do dvajsetih

letih dosegli občutljivosti 50 ,W/m?, ki so potrebne, da bi zaznali gravitacijske

valove od eksplozij supernov v bližnji jati galaksij v Devici. Ta jata vsebuje

več kot tisoč galaksij in eksplodira v njej vsako leto skoraj zagotovo vsaj

ena supernova. Tako občutljiv detektor gravitacijskih valov bi torej omogočil

sistematičen študij supernov in tudi gravitacijskih valov. Za tiste, ki željno

čakajo odkritja gravitacijskih valov, so to sicer tolažilne, vendar ne preveč

vzpodbudne možnosti. V zadnjem času pa je področje gravitacijskih valov

znova razburilo odkritje dvojnega pulzarja z imenom PSR 1913 -- 16.

Pulzarji [5] so nevtronske zvezde, ki se vrtijo okrog svoje osi s frekvenco

nekaj obratov v sekundi in sevajo močne radijske valove v razmeroma ozek

stožec, ki se vrti hkrati s pulzarjem (sl. 1, gl. na ovitku). Torej svetijo podobno

kot svetilniki ob morju.

Radijski sunek, ki ga zaznamo vsakič, ko nas snop oplazi, se pojavlja

s periodo vrtenja nevtronske zvezde v izredno enakomernih časovnih inter-

valih. Ta izredna točnost pulzarjev, ki se približuje točnosti najboljših ur,

omogoča zelo natančno merjenje relativne hitrosti med Zemljo in pulzarjem

s tem, da merimo zakasnitve ali prehitevanje pulzov zaradi Dopplerjevega

pojava. Pri večini pulzarjev ta meritev ni bila preveč vznemirljiva, ker se je

pokazala le projekcija hitrosti kroženja Zemlje okrog Sonca na smer proti

pulzarju (odtod je mogoče zelo natančno izračunati nebesne koordinate pul-

zarja). Pri pulzarju PSR 1913 -- 16 pa so prvič naleteli na dodatno relativno

hitrost, ki niha s periodo 7h 45min (6,98172 £ 0,00005) s (s tolikšno natančnost-

jo je mogoče izmeriti periodo). To pomeni, da pulzar kroži okrog nekega

objekta — je član dvojnega sistema.
Dvojni zvezdni sistemi so dokaj pogosti. Za astronome so zelo zanimivi,

ker je mogoče z Dopplerjevim premikom črt v njihovih spektrih določiti

titrosti kroženja zvezd, periodo kroženja in včasih še kaj. Iz takih podatkov

pa se da izračunati npr. masa zvezd, ki je zelo pomemben podatek za astro-

fiziko. Pulzar v dvojnem sistemu pa zavzame častno mesto med dvojicami.

Frekvenca oddajanja radijskih signalov je v lastnem sistemu pulzarja nena-

vadno konstantna in je zato mogoče iz Dopplerjevega premika frekvence pul-

zov izredno natančno določiti projekcijo hitrosti pulzarja na zveznico Zemlje
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in pulzarja. Iz teh podatkov pa lahko po že preizkušenih metodah določimo

druge parametre sistema. Posebnost sistema PSR 1913 -- 16 je tudi zelo krat-

ka perioda in velika hitrost kroženja. Torej gre za sistem, pri katerem se že

dobro poznajo relativistični pojavi.

proti Zemlji

Sl. z. Geometrija dvojnega sistema

Oglejmo si na kratko, za kaj gre pri dvojnih sistemih. Zvezdi, ki krožila

okrog skupnega težišča s periodo T (sl. 2), sta ponavadi od nas tako oddaljeni,

da ju ne vidimo ločeno, ampak kot eno samo točko. Spektroskopska analiza

svetlobe pa razkrije dva sistema spektralnih črt zvezde 1 in zvezde 2. Tedaj

ko se zvezda 1 približuje, se zvezda 2 oddaljuje in spekter zvezde 1 je pre-

maknjen proti modremu delu, spekter zvezde 2 pa proti rdečemu delu. Ker

se zvezdi izmenoma približujeta in oddaljujeta, se spektra periodično prerni-

kata drug proti drugemu. Iz velikosti premika A4/% lahko določimo projekciji

hitrosti obeh zvezd na smer proti Zemlji — radialni hitrosti. Če se zvezdi

gibljeta po krogih" okrog skupnega težišča, sta omenjeni radialni hitrosti si-

nusni funkciji kraja

c Aa,/A, — v, cos (27 t/T) — u, sin i cos (24 t/T)

c Ma,/A, — v, Cos (27 t/T) — — u, sin i cos (2x t/T) (4)

Uporabimo Newtonov gravitacijski zakon za obe zvezdi:

VE, (22/7)? ti — G m, HL, (7, IT r,)EŽ

m, 2ajT)? r, —< Gm, m, (r, tr)? (5)
in upoštevamo, da je w, — 27r,/T in u, — 27r,/T. Tako dobimo za vsoto

obeh mas:

m, -- m, — (v, b v,)' T/(27 G sin?)

Merimo lahko vse razen kota i, zato dobimo za vsoto mas oceno:

m, dem, Z (v, £ v.) Tj2x G

« Gibanje po krogu smo vzeli zaradi preprostosti, Če so tiri elipse, sta radialni

hitrosti bolj komplicirani funkciji časa, iz njihovega poteka pa je mogoče razbrati

ekscentričnost elipse in trenutek prehoda skozi perihelij. Drugače pa se analiza

eliptičnih tirov po rezultatih ne razlikuje od preprostejše analize krožnih tirov.
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Iz izreka o gibalni količini dobimo še razmerje mas:

m, u, <m,u,

To je vse, kar lahko povemo o opisanem dvojnem sistemu v okviru New-

tonove teorije gravitacije. Einsteinova teorija pa vsebuje vsaj dva popravka

h gornjim sklepom. Dopplerjev premik vsebuje še transverzalni člen, ki v redu

(v/c)8 da podatek o kotu i. Razen tega pa po Einsteinovi teoriji telesi, ki se

gibljeta okrog skupnega težišča, sevata gravitacijske valove, katerih energij-

ski tok izračunamo po enačbi (1). Če telesi krožita, je rezultat lahko dobiti:

L — (2/5) (G/c5) (2J ov?) wo

Tu je o — 27/T, J pa vztrajnostni moment obeh mas okrog skupnega težišča.

Z upoštevanjem enačb (5), ki so dober približek, pa dobimo še:

L — (25/5)[G (m, -- m,)/c?]8 (m, - m,) oš (o/c) (m,/m,)? A - m,/m J-4

Končno lahko ugibamo, kolikšen energijski tok seva dvojni pulzar

PSR 1913 -- 16 v obliki gravitacijskih valov. Če vzamemo, da imata pulzar in

njegov spremljevalec sončno maso (M, — 2.100 kg) in da krožita drug okrog

drugega s periodo 7h 45min, dobimo za izsevani energijski tok oceno:

L — 3.108.W

kar je skoraj desetina celotnega sončnega izseva (L, — 4.10? W). Tako velika

izguba energije se mora poznati pri energijski bilanci dvojnega sistema. Ker

sistem izgublja energijo, se morata telesi približevati, zato pa se mora ob-

hodni čas krajšati. |

Kot smo omenili, so dvojni pulzarji čudovito natančne ure, zato je pri

dvojnem pulzarju mogoče zelo natančno meriti radialne hitrosti, obhodni čas

in celo transverzalni Dopplerjev pojav (razen tega pa tudi znameniti premik

perihelija [6], ki ga nismo omenili, ker smo zaradi preprostosti govorili samo

o krožnih tirih). Po štirih letih natančnih meritev so J. H. Taylor, L. A. Fowler

cin P. M. MceČulloch [7], [8] prišli do zaključka, da se sistem s pulzarjem

PSR 1913 -- 16 vede natanko tako, kot bi po Einsteinovi teoriji pričakovali od

bližnjega para zvezd. Čeprav obstajajo še nekateri problemi in dvomi, imajo

mnogi to meritev za doslej najmočnejšo potrditev Einsteinove teorije gra-

vitacije.

Andrej čČadež
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V zadnjih dvajsetih letih se je povečala dosegljiva energija pospeševalni-

kov za dobri dve velikostni stopnji. Zelo dragih velikih pospeševalnikov pri

nas ne moremo graditi. Zato je toliko pomembnejše sodelovanje naših fizikov

v mednarodnih skupinah, ki raziskujejo ob velikih pospeševalnikih. Fiziki iz

Ljubljane skupaj s fiziki iz Amsterdama, Birminghama, Daresburyja, Oxforda

in Torina sodelujejo na raziskovalnem projektu Omicron v evropskem sre-

dišču za jedrske raziskave CERN v Ženevi.

Znano je, kako poteka tipičen poskus v jedrski fiziki in fiziki osnovnih

delcev. Pospeševalnik pospeši nabite delce do dovolj visoke energije. Po

transportnih enotah pripotuje curek delcev do eksperimentalnega prostora,

kjer sodelujejo delci z drugimi delci v tarči. Merilniki zaznajo delce, ki iz-

hajajo iz tarče. Projekt Omicron je posvečen redkim pojavom. Merilna opre-

ma, ki jo v tej zvezi uporabljajo, je zanimiva zaradi nekaterih posebnosti in

novosti. Med merilniki za nabite delce so tudi večžične proporcionalne celice

in potovalne celice, ki jih je vredno nekoliko podrobneje opisati.

Skupina, ki dela na projektu Omicron, uporablja sinhrociklotron, ki je

začel delovati že leta 1957 in je pravi veteran med pospeševalniki v CERN.

Leta 1972 so ga temeljito preuredili in posodobili, tako da je še zmeraj zelo

uporaben. Sinhrociklotron se razlikuje od navadnega ciklotrona po tem, da

se spreminja frekvenca pospeševalne napetosti na elektrodah v obliki črke D.

Ob koncu pospeševalnega cikla, ko imajo delci že veliko kinetično energijo

T, se frekvenca zmanjša, kakor zahteva posebna teorija relativnosti: v —

— (e oB/Zam)/4l - T/mc?). B je gostota magnetnega polja, e, naboj delca in

m njegova masa. Tako postane za protone dosegljiva kinetična energija
600 MeV. Prav na območju teh srednjih energij iščejo fiziki odgovore na šte-

vilna vprašanja. Nekateri od njih bi lahko bistveno prispevali k boljšemu

razumevanju zgradbe snovi.

Način opazovanja iz tarče izhajajočih delcev je odvisen od njihove ener-

gije, lastnosti in toka. Opazovanje redkih pojavov je povezano z dvema po-

sebnima zahtevama. Najprej je treba opazovati dovolj velik prostorski kot

ter dovolj natančno določiti gibalno količino po smeri in velikosti. Pri pro-

jektu Omicron so našli rešitev. Tarčo in merilnike, ki sestavljajo skupaj

spektrometer, so postavili v magnetno polje. Curek delcev z znano gibalno

količino, ki prihaja iz sinhrociklotrona, zadene tarčo ter sodeluje z delci

v njej. Nastale nabite delce pa zaznajo merilniki, ki so razporejeni okoli tarče

in ki zajemajo velik prostorski kot. S tem je zadoščeno prvi zahtevi.

Magnetno polje, v katerem je ves spektrometer, sicer ni homogeno, a ga

poznajo. Tako z določitvijo nekaj točk preleta lahko rekonstruirajo tir delca.

Ukrivljenost tira je odvisna od gibalne količine. Če jo hočemo natančno do-

ločiti, moramo uporabiti merilnike z zelo dobro prostorsko ločljivostjo. Med
elektronskimi merilniki, za katere so se odločili, zadoščata pogoju dve vrsti

žičnih celic: večžične proporcionalne celice in potovalne celice. Obe vrsti spa-

data v skupino plinskih merilnikov, pri katerih določijo prehod nabitega

delca preko električnega toka v plinu [1]. V nasprotju z dosedanjimi meril-

niki te vrste, to je z ionizacijskimi celicami, proporcionalnimi števci in Gelger-

Millerjevimi števci, imata celici dobro prostorsko ločljivost in kratek mrtvi

čas (enak kot proporcionalni števec).
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Že ime pove, da je večžična proporcionalna celica sestavljena iz velikega

števila žičk — anod. Te so vzporedno vpete v okvir v medsebojni oddaljenosti,

ki meri običajno od 1 do 2 mm. Vzporedno z ravnino anod sta na obeh stra-

neh v okvir pritrjeni katodi, ki sta sestavljeni iz žic podobno kot anoda ali

pa sta kar ravni kovinski plošči (sl. 1). Celica je polnjena z argonom in izo-

butanom, etanom ali kakim drugim plinom, zapira pa jo tanko okno iz milara.

anodne žice Ža katodni plošči

Sl. 1. Zgradba večžične proporcionalne celice

Ob sodelovanju nabitega delca, ki preleti celico, z atomi plina nastanejo

primarni nabiti delci — elektroni in ioni. Elektroni se v električnem polju

anod gibljejo proti najbližji anodi. Blizu anode postane električno polje zelo

močno in elektroni dobijo dovolj kinetične energije, da ionizirajo nevtralne

atome in molekule plina. Tako nastane plaz sekundarnih elektronov, ki da

majhen napetostni sunek na anodi. Po sunku je mogoče določiti točko pre-

leta. Sunek je namreč največji na anodi, ki je točki najbližja. Za nadaljnjo

obdelavo je treba sunke ojačiti in jim dati standardno obliko.

/rir delca
y

Z Z ZE LAJE ČE

Sl zi) | Slo da

IZI Pisi
-0,5 - -2,5 -3kV

| oblikovalke polja

scintilacijski Stevec

SI. 2. Poenostavljena risba potovalne celice. S prekinjeno črto so označeni tiri
v sunku elektronov, ki potujejo proti eni od anod
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Krajevna ločljivost večžične proporcionalne celice je določena z razdaijo

med sosednjima anodama. Precej bojšo ločljivost, do 100 ,/m, imajo potovalne

celice. Točko preleta nabitega delca določijo v njih s časom, ki ga potrebu-

jejo elektroni za pot do anode. Trenutek preleta, ki se ujema z nastankom

primarnih elektronov in začetkom njihovega potovanja proti anodi, označi

sunek iz hitrega scintilacijskega števca pred potovalno celico ali za njo.

V teh celicah je zaželeno čimbolj homogeno električno polje po vsej prostor-

nini — razen v območju neposredno ob žicah, da je zveza med potjo in

časom preprosta. V projektu Omicron povzroča dodatne težave nehomogeno

rnagnetno polje. Tudi za ta problem obstaja rešitev: vgradijo dodatne elektro-

de — oblikovalke polja — in izbirajo na njih ustrezne napetosti (sl. 2).

Izbiri večžičnih proporcionalnih in potovalnih celic za osnovo merilnega

sistema v projektu Omicron je botrovala predvsem njihova hitrost. V na-

sprotju z mehurčnimi celicami omogočajo ti elektronski merilniki takojšnjo

potovalne potovalne

celice celice / odklonjeni curek m"

scintil. števec

absorber

914 We |—scintil. števec

JO

tarča - tekoči H,

scintil. števec

več žične Z)
proporcionalne—

celice —

scintil, števec

R curek m7

Si.3. Razporeditev merilnikov v spektrometru pri opazovanju redkega razpada

g)> et e—-. Na nastanek elektrona pri razpadu nevtralnega piona sklepamo po

sunkih v pravem časovnem zaporedju na scintilacijskih števcih in večžičnih pro-

porcionalnih celicah pred tarčo ter na potovalnih celicah in scintilacijskih števcih
na desni strani za tarčo
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računalniško obdelavo in selekcijo. Vsak dogodek je zaznamovan s standard-

nim napetostnim sunkom, kar je osnova digitalne elektronike. Lastnosti obo-

jih žičnih celic narekujejo njihovo uporabo. Potovalne celice so počasnejše

od proporcionalnih in jih ne moremo uporabljati, če je tok nastalih delcev,

ki bi jih radi zaznali, prevelik. V tem primeru so potrebne večžične propor-

cionalne celice. Pri majhnih tokovih nastalih delcev, pri katerih je potrebna

dobra prostorska ločljivost, pa uporabljajo v projektu Omicron potovalne

celice (sl. 3).

Med številnimi dogodki, ki jih zaznajo merilniki, izberejo zaželene s pri-

pravno kombinacijo žičnih celic, scintilacijskih števcev in elektronskih ele-

mentov (koincidenčnih enot, vrat ...). Tako lahko s prostorsko razporeditvijo

merilnikov pri proučevanju redkega razpada x? -> e" e- (sl. 3) spoznamo na-

stali elektron po pravem časovnem zaporedju sunkov na posameznih meril-

nikih.

Med poskusi, ki jih bodo izvedli s tem spektrometrom, je že omenjeni

izjemno redki razpad x? — e? e-. Večinoma razpade nevtralni pion namreč

na dva fotona. Zgornjo mejo za razmejitveno razmerje, to je relativno po-

gostost razpada na dva elektrona, cenijo na 2.10-%, V okviru projekta Omi-

cron bi zaradi ustrezne razporeditve, ki omogoča opazovanje velikega števila

dogodkov in s tem izboljšuje statistiko, lahko to razmerje bolj natančno

določili.

Drug poskus je merjenje razpadnega časa nevtralnega piona. Razpad lahko

opazujemo le posredno, na primer preko reakcij zp-> n'n, x'p — z'n, saj

nevtralnega piona ne moremo zaznati, pa tudi pot, ki jo prepotuje pri tem

poskusu, preden razpade, ni daljša od desetinke mikrometra. Razpadnega časa

a) zdaj ne poznamo dovolj natančno. Natančnejši podatek bi lahko potrdil

privzetek, da nastopajo kvarki v trojicah s tremi različnimi vrednostmi kvant-

nega števila, ki mu pravijo barva [2, 3]. 'fo bi utrdilo položaj kvantne kromo-

dinamike, teorije o interakciji med kvarki, s katero lahko dokaj dobro raz-

ložimo lastnosti barionov.

Peter Križan
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ZAKAJ AVTOM

Na različnih stopnjah pouka smo navajeni, da se nekatere napake v razu-

mevanju fizikalnih zakonov vedno znova pojavljajo. Če je ta pojav poleg tega

še množičen, ni mogoče prevaliti odgovornosti zanj na ramena učencev, tem-

več moramo hote ali nehote priznati, da je krivdo pripisati učiteljem. Učitelji

smo tudi dolžni, da pouk spremenimo tako, da se napaka ne bo več pojav-

ljala. V ta namen pa je potrebno pogoste in množične napake najprej ana-

lizirati.

Zgled za takšno množično napako najdemo v odgovoru na naslednje vpra-

šanje:

Na parkirišču je avtomobil. Voznik požene motor in zapelje na cesto.

Katera sila je povzročila, da se je avto premaknil z mesta? Avtu se je pri spe-

ljevanju povečala kinetična energija. Zakaj?

Pogosto dobimo takle odgovor: Avto se je premaknil s parkirišča zato, ker

ga je pognala sila motorja. Sledi učiteljevo blagohotno opozorilo, da je motor

del avtomobila. Njegova sila na kolesa je potemtakem notranja sila. O gibanju

avta pa naj bi odločale zunanje sile. Če tako akademsko prigovarjanje v učen-

cu ne vzbudi nobenih dvomov o pravilnosti razlage s silo motorja, ga učitelj

opozori: »Pa si predstavljajmo, da so avto v garaži z dvigalom pridvignili.

Mehanik v njem preskuša motor. Ko pritiska na plin, se kolesa sicer divje

vrte, vendar se avto ne premakne z mesta. Prav podobne izkušnje imamo tudi

z avtom na poledeneli cesti. Sila motorja potemtakem le ne premakne avto-

mobila z mesta.«

Zdaj večina učencev in študentov popusti. »Da, prav imate. Avto poganja

sila ceste.« Mefistovsko razpoloženi učitelj lahko dalje rije po fizikalnem od-

delku učenčeve duše. »Če vlečemo klado po vodoravni cesti, deluje nanjo sila

ceste. To silo lahko razstavimo na komponente. Ena je pravokotna na cesto,

druga pa vzdolž ceste. Prva na gibanje klade po vodoravni cesti ne vpliva. To

lahko uvidimo, če se ozremo na množico avtomobilov, ki parkirani stoje ob

pločniku. Navpična komponenta sile ceste uravnoveša težo avta. Zato avtomo-

bili mirujejo. Tudi klada se iz istega razloga v navpični smeri ne premika.

Komponenta, ki je vzporedna s cesto, pa gibanje klade zavira, saj je usmerjena

v nasprotni smeri gibanja klade. Pravimo ji trenje. Katera od obeh naštetih

komponent potemtakem potiska avto naprej? Navpična komponenta sile

ceste, za katero smo pravkar ugotovili, da navadno na gibanje avta ne vpliva,

če ne zapeljemo v živo blato ali pa nam kak nepridiprav ne prevrta gum? Ali

pa avto potiska naprej trenje, za katerega vsakdo ve, da gibanje teles zavira?«

Vsak kolikor toliko spodoben učenec je zdaj že čisto zmeden. Le kak

dlakocepski bodoči pravnik bo še ujel rešlno bilko. »Če voznik ni speljal s pol-

nim plinom in cvilečimi gumami, v našem primeru ne gre za trenje, temveč

za lepenje. Na prvi pogled lepenje ni kdo ve koliko boljši kandidat za poga-

njanje avtomobilov kot trenje. Vendar na njegov rovaš vsaj nismo še poslu-

šali obtožb, da gibanje zavira. Čeprav tudi nihče še ni rekel, da gibanje pospe-

šuje in da pomaga spraviti avto v gibanje, obstaja vsaj formalna možnost, da

je tako. Vendar vas je, tovariš učitelj, treba obtožiti, da ste primerjavo s klado
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napak izbrali. Tam namreč gre za trenje, pri avtu pa za lepenje. Izbrana pri-

merjava je lahko le namerna demagogija ali pa neznanje. Ne eno ne drugo ne

povečuje vašega pedagoškega ugleda.«

Tu se učitelju nekoliko zatakne v grlu, vendar se lahko izgovori, da sicer

prizna, da je grešil, vendar se tej pregrehi vdaja v številni družbi vrstnikov,

ki ne delajo kakih tankovestnih razlik med trenjem in lepenjem. V spokorni-

škem slogu nadaljuje: »Kvantitativno sta si trenje in lepenje zares lahko pre-

cej podobna. Kvalitativna razlika pa je popolna. Irenje je povezano z negativ-

nim delom, zaradi katerega se telesu zmanjšuje kinetična energija. Delo lepe-

nja pa je nič, ker se prijemališče sile ne premakne. Zato gibanja ne zavira.

Lepenje prijema na tistem delu gume, ki se tišči ceste. Kakor hitro pa se

guma malo zasuče, je prijemališče trenja že na drugem delu gume. Tako je

delo lepenja pri speljevanju avtomobila enako nič. Ni težko tudi uvideti, da

ima sila lepenja smer, v katero se avto premika. Potemtakem bo najbrž le

lepenje tista sila, zaradi katere je avto speljal s parkinišča.« Razred že skoraj

soglaša s takšno razlago, ko se oglasi Tomaž: »Toda, tovariš učitelj, pri

speljevanju se je kinetična energija avtomobila povečala. Potemtakem je mo-

rala na avto delovati neka sila, ki mu je oddala delo. Saj vemo, da se telesu

kinetična energija poveča za toliko, kolikor dela prejme od teles iz okolice.

Za lepljenje pa smo dejali, da avtomobilu ne dovaja dela. Torej lepenje ne

more biti vzrok za to, da se je avto premaknil, saj z njim ni mogoče razložiti

povečanja njegove kinetične energije.«

»Že, že, dragi Tomaž...,« se oglasi učitelj, pa ga prekine zvonec. »Vpraša-

nje, ki smo ga danes načeli, naj bo za domačo nalogo«. Dobro se je izmazal

stari. Sam ne zna odgovoriti. Zdaj se bo doma učil, da bo drugič spet videti

pameten,« se muzajo učenci v zadnjih klopeh. »Za najboljši odgovor obljub-

ljam odlično oceno,« učitelj presliši godrnjanje in odpeketa iz fizikalnice.

V eni od prihodnjih številk bomo zapisali odlično oceno za vse bralce, ki

bodo rešili domačo nalogo. Odlično oceno za učiteljevanje pa bo dobil tudi

učitelj, ki bo najbolje analiziral, katere napake so v zapisu in kako bi se jim

pri pouku ognili. Vsaj povzetke najboljših učenčevskih in učiteljskih odgovo-

rov bomo objavili in jih komentirali.

Janez Ferbar

NOVE KNJIGE

J. R. Gibson, Electronic Logic Circuits, Edward Arnold, London 1979, 114 str.

Knjiga J. R. Gibsona je dokaj elementarno napisan učbenik o elektronskih lo-

gičnih vezjih. Obravnava analizo in tudi sintezo decizijskih in sekvenčnih logičnih

vezij. Vsebina knjige je nekoliko popestrena z enostavnimi primeri iz uporabe ter

z opisom nekaterih težav pri praktični realizaciji vezij. Snov je podana preprosto,

zelo pregledno, brez nepotrebnih podrobnosti.

Čeprav je knjiga namenjena študentom elektrotehnike, bo koristno služila fi-

ziku, ki uporablja pri eksperimentalnem delu digitalna vezja. Priporočam jo tudi

vsem tistim, ki se nameravajo ukvarjati z računalništvom in jih zanimajo osnovni

principi gradnje računalnikov.

Tomaž Slivnik
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FINANČNO POROČILO KOMISIJE ZA TISK DMFA SRS ZA LETO 1979

V lanskem koledarskem letu se je promet komisije povečal za 50%. K temu so

delno prispevale višje cene, delno pa večje število izdanih in prodanih publikacij.
Seznam publikacij je izšel v Obzorniku (27 (1980) 64—65). Pri povečanem obsegu

dela pa so narasli tudi režijski stroški. Periodične publikacije so izhajale z manjšo

zamudo, ki smo jo do inventure lahko nadomestili. Pri Obzorniku za matematiko
in fiziko zamudo opravičuje pomanjkanje člankov, ker v letu 1979 ni bilo semi-

narja. Pri knjižnih izdajah pa nam ni uspelo, da bi nadomestili zamude. Ponatisniti

pa smo morali več učbenikov iz Izbranih poglavij iz matematike in Izbranih po-
glavij iz fizike. Saldo na žiro računu ob koncu koledarskega leta je le navidezno ve-

lik. Polovico sredstev je namenjenih za ponatis priročnika Štirimesečni logaritmi in

druge tabele. Vsi drugi pozitivni saldi so prav tako strogo namenski za plačilo
stroškov pri še neizdanih publikacij iz tekočega leta iz prejšnjih let. Negativni

saldi pri posameznih partijah v splošnem niso poseben problem, saj imamo že
sklenjene avtorske pogodbe in odobreno ali obljubljeno subvencijo.

Nadzorni odbor je 28. 2. 1980 pregledal poslovanje Komisije za tisk DMFA SRS
in potrdil urejenost poslovanja in zaključni račun.

Dohodki Izdatki Saldo

Presek 1652.613,05 1438.760,95 -- 213.852,10

Obzornik za matematiko in fiziko 537.154,70 467.871,15 - 69.883,55

Matematika-Fizika 654.174,00 656.964,00 — 2.790,00

Sigma. 438.534,00 331.114,00 — 92.580,00

Zbirka izbranih poglavij iz matematike 266.356,00 397.119,20 — 112.763,20

Postdiplomski seminar iz matematike 102.000,00 102.000,00

Publikacije IMEM 157.772,70 44.079,30 -- 113.693,40

Zbirka izbranih poglavij iz fizike 113.283,25 119.734,80 — 6.451,55

Postdiplomski seminar iz fizike 12.752,70 17.348,30 — 4.595,60

Letno poročilo DMFA 4.500,00 4.500,00 —

Vega 15.339,00 14.557,70 -- 60.781,30

Učbeniki za osnovne in srednje šole 126.130,00 169.480,00 — 43.350,00

Prodaja knjig, skript in značk 1265.208,55 891.106,30 - 374.102,25

Plemelj 81.887,85 19.632,50 - 62.255,35

109/0 režija 586.277,35 476.201,35 -- 110.076,00

Skupaj 6074.583,15 5332.469,55 -- 742.113,60

Obzornik mat. fiz. Presek

Dohodki št. 1—6/79 št. 2—5/VI, 1, 2, 5/VIL

Saldo 1978 84.588,10 535.723,15

Subvencije: RSS 152.600,00 289.688,00
ISS 29.720,00 124.152,60

Naročnine 257.846,00 689.049,90

Oglasi 10.000,00 14.000,00

Drugi dohodki 3.000,00

Skupaj 537.754,70 1652.613,05



Izdatki Obzornik mat. fiz. Presek

Tisk 243.572,00 994.311,00

Avtorski honorarji 165.837,45 313.641,70

Članarina DMFA za 1978 17.572,50

10/0 režija 40.936,20 130.808,25

Skupaj 467.871,15 1438.760,95

Saldo -- 69.883,55 -- 213.852,10

V minuli poslovni dobi smo prodali naslednje število publikacij iz posameznih

zbirk: |
Število knjig v vrednosti din

Sigma 23.760 989.043,00

Matematika-Fizika 1.275 216.468,00

Zbirka izbranih poglavij iz matematike 1.784 147.048,00

Postdiplomski seminar iz matematike 95 4.344,00

Index 1 1.512,00

Seminarji 79 3.244,00

Zbirka izbranih poglavij iz fizike 328 13.795,00

Postdiplomski seminar iz fizike 149 2.160,00

Razne knjige 2.167 196.896,00

Plemelj 3.413 34.506,00

Vega 6.310 54.067,00

Skupaj 40.027 1663.083,00

Režija

Dohodki Izdatki

Saldo 1978 92.332,85 OD 203.259,45

OME 40.936,20 Intelektualne storitve 81.285,25

Presek 130.808,25 Jubilejne nagrade 33.961,15

Prodaja 303.046,20 Bančni stroški 9.165,90

PTT OMF in Presek 41.743,30

Materialni stroški pisarne KT 87.632,45

Skupaj 567.123,50 457.947,50

Saldo -- 110.076,00
Dolžniki

OME (večina iz leta 1979) 40.190,00

Presek (VII. letnik) 421.856,00

Sigma in druge knjige 291.227,50

Skupaj 153.273,50

V skladišču imamo še knjig, značk in drugih predmetov v vrednosti 1192.554,00

Gotovina na žiro računu 742.113,60

Skupna vrednost našega premoženja je 1934.667,60
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SEZNAM DIPLOMANTOV PRVE, DRUGE IN TRETJE STOPNJE IZN IATEMATIKE
IN FIZIKE TER RESUMEJI DOKTORSKIH DISERTACIJ V LETU 1979"

497.

498.

499,

500.

501.

502.

503.

504.

505.

506.

507.

299,

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

182.

183.

184.

185.

186.

187.

. Jarc Marija

189.

190.

191.

192.

193.

194,

195.

. Grubelnik Nada

197.

198.

Matematika-fizika

Kukovec Marija

Veršec Alberta

Šošter Ivanka

Kazenmali Elizabeta

Gostenčnik Angela

Močivnik Branko

Rutar Maksi

Novak Jana

Kauran Zlatko

Zorman Zorica

Erjavec Albina

Gorišek Angela

Lešnik Angela

Pirnovar Ana

Roršek Angela

Matematika-fizika

Bezek roj.

Žižek Danica

Butina Marta

Glazerin roj.

Koncilja Majda

Golob Zlatka

Grom Ivana

Grzinič Vanda

Hribernik roj.

Zibelnik Francka

Justinek Ivan

Kač Viljemina

Knap Zofija

Koren Marijan

Pedagoška akademija Maribor

199. Zrim Jože 188. Pucelj Anton

200. Kuster Marija 189. Zavec Stanislav

201. Jerovšek Jožica 190. Madžarac Darko

202. But Tanja 191. Čober Marija

203. Tomažič-Žuran 192. Brumec Stanislav

Kristina 193. Žibrat Igor

204. Pintar Terezija 194. Jerenec Rudolf

205. Hamer-Frangež 195. Hribernik Marija
Stanislava 196. Knez Ernest

206. Zver Marija 197. Šegovc Daniela

207. Šteger Milena 198. Slukan Drago

208. Pezdirc Doroteja 199. Postružnik Božo

209. Prajndl Marija 200. Najžar Zdenka

210. Petrič Angela 201. Krautberger Oskar

e NI 202. Bregar Ivan
Tehniški pouk-fizika 203, Sovič Janez

186. Rus Marijan 204. Jazbec Janez

187. Soršak Anton 205. Dereani Jože

Pedagoška akademija Ljubljana

Verčnik Frančiška508. Krasnik Vesna 520.
Zupan Zinka509. Meden Antonija 521.

510. Medved Lilj
ne. Meovec ui Jama Tehnična vzgoja-fizika

511. Merjasec Vilma 416. Antolovič Rezik

512. Močnik roj. . ADLOlOVIC KEZIKA

Pisovec Zvonka 471. Bajc Marko
4718. Bončina Milena

sn PN zanka 4719. Čufer Stanko
nike 480. Jankovič Jože

515. Rehar Marta 481. Korošec Rudi
516. Rogič Marija 482. Kurnjek Ivo

517. Sešlar roj. 483. Perič Egon

Polanec Tatjana 484. Slejko Iztok
Švab Viktor 485. Vencelj roj.

Gnjezda BožaUriUH oGo Trampuž Marinka

Fakulteta za naravoslovje in tehnologijo

Matematika — pedagoška smer

Čer Jasna

Pupis Vesna

Kavčič Branka

Zorc Nika

Umek Marja

Hrovatin Greti

Leskovšek Anton

Polanc Srečko

Gamse Darinka

Marčič Miran

Košuta Mara

Kobe-Razpotnik

Mojca

Mobiusove transformacije

Izrojena hipergeometrijska diferencialna enačba

Razdružitve (particije)

Problem Hilberta in Kamkeja

Jordanov izrek v ravninski diferencialni geometriji

Globalni izreki v elementarni diferencialni geometriji
Trigonometrijske funkcije

Konveksne množice in konveksne funkcije

Pozicijske igre med dvema igralcema

Linearna algebra in nekateri problemi planimetrije
Dieudonnejeva planimetrija

Metrični aksiomi za evklidsko in neevklidsko ravnino

« Seznam diplomantov iz leta 1978 je bil objavljen v Obzornik mat. fiz. 26 (1979)
4, str. 113—117.
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51.

22.

53.

54.

291.

292.

293.

294.

295.

296.

128

188.

189.

91: Duplančič Zvonko

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

. Felda Darjo

. Benčina Jože

. Kranjc Bojan

. Cestnik Igor

. Rebolj Irena

. Lesjak Danilo

. Ipavec-Babnik Breda

. Stanonik Anica

. Zgonik-Cestnik Lea

. Bogatič Irena

. Bon Mirjam

Funkcije matrik

Diferencialne enačbe v kompleksnem

Linearno programiranje

Osnove ravninske geometrije po Choguetu

Simetrija v algebri

Numerično reševanje algebraičnih enačb

Celoštevilčne rešitve enačb in sistemi enačb

Bilinearne forme in ortogonalna geometrija

Planarni ternarni kolobar v afini ravnini

Dvorazmerje pri nekomutativnih obsegih

Triangulacija gladkih mnogoterosti

Matematika — tehniška smer

Kancilija Slavko

Germ Miroslav

Šivic Stanislav

Mestek Alojz

Špacapan Nada

Bren Matevž

Radalj Zoran

Marolt Vida

Gorenjec Ivan

Vister Barbara

Velkovrh Nada

Košmelj Katarina

Kirn Miran

Šoštarič Davor

Marčetič Dušan

Štublar Jože

Ipavec Pavel

Šorli Barbara

Razdrtič Andrej

Lemut Zoran

Berce Janez

Herga Janko
Potnik Alenka

Mohar Bojan

Nihanje sestavljenih lupin

Izrek Cauchy-Kovalevske

Pretakanje tekočin po omrežju

Sortiranje

Ergodijski sistemi

Integralna geometrija

Sprejemna kontrola po kvalitativnem kriteriju

Gladka aproksimacija podatkov in metoda najmanjših

kvadratov z dodatnimi omejitvami

Celoštevilske upodobitve končnih grup

Numerično odvajanje

Baze v Hilbertovih prostorih

Numerično reševanje linearnih Volterrovih integralskih

enačb

Grupiranje časovnih vrst

Linearni modeli s končnim številom parametrov
Numerično reševanje robne naloge s kolokacijo

Transcendentnost nekaterih števil

Nesimetrična nihanja sestavljenih lupin

Aproksimacija podatkov z racionalnimi funkcijami

Dualnost v lokalno kompaktnih Abelovih grupah

Cela algebraična števila in ciklotomski obseg

Ciklični trendi časovnih vrst

Informacijski sistem za analizo, kontrolo in upravljanje
z voznim parkom

Povezanost v grafih in Mangerjev izrek

Trendi in izravnavanje časovnih vrst

Robni problem z lastnim parametrom v robnem pogoju

Fizika — pedagoška smer

Kukman Iztok

Munih Marko

Golja Radovan

Oršič Jerko

Uporaba fotografskega filma pri prikazovanju delčnih
lastnosti svetlobe

Fizika — tehniška smer

Lukaž Matjaž

Cencič Boris

Podgornik Rudolf

Mučevič Igor

Arh Stanko

Ajlec Bojan

studij kinetike hidratacije cementne paste z ultrazvo-
om

Merjenje majhnih premikov s holografsko metodo

Vpliv površinskega naboja na fazni prehod v dvojni li-
pidni plasti

Temperaturna odvisnost frekvence jedrske kvadrupolne

resonance klora v NaCIO; in KCIO; pod 77 K

Študij Comptonovega pojava z uporabo polprevodniške-

ga detektorja

Transport naboja v pogojih, ko je prosta pot elektronov

majhna



297. Krivokapič Zoran Temperaturne Greenove funkcije in koeficient toplotne
prevodnosti za enostavne tekočine

298. Kranjc Miran Optimizacija impulznega Nd:YAG laserja

299. Babič Matjaž Faradayev efekt v mikrovalovnem področju

300. Hodošček Milan Laminarno gibanje viskozne tekočine ob polravnini

301. Cvetič Mirjam Sistem dveh nukleonov v modelu kvarkov

302. Zužič Dušan Občutljivost termoluminiscentnih dozimetrov na nev-
trone

303. Zavrtanik Danilo Izbira metode za identifikacijo nabitih delcev v območju
gibalnih količin okrog 300 MeV/c

304. Krivec Rajmund Struktura SBe

305. Logar Marjan Visokoločljivostna spektroskopija gama rudarskih vzor-
cev

306. Križanič Franc Akustooptični pojav in meritve hitrosti in absorpcije
ultrazvoka v tekočinah

307. Srebotnjak Egon Merjenje barvnih komponent pri svetilih
308. Remec Igor Štetje sledi v detektorjih sledi z iskrnim števcem
309. Cindro Vladimir Študij globinske porazdelitve fluora v tankih plasteh

s pomočjo reakcije "E(p, ay)50

310. Topič Bogdan Študij feroelektričnega faznega prehoda v psevdoenodi-

menzionalnem CsDsPO, s pomočjo jedrske magnetne

resonance devterija

311. Koželj Matjaž Študij faznega prehoda v (C;oH2,N H3).CuCl,

Meteorologija

30. Štucin Filip Tok zraka čez gorske pregrade
31. Mezgec Igor Nevihte na Primorskem
32. Žigon Tanja Kinetična energija v prizemni plasti atmosfere

12. čibej Jože Andrej

Matematika — II!.stopnja

Holomorfni dvig

Delo obravnava naslednji problem: ali pri danih Frechetovih (Banachovih) pro-
storih E in O, zvezni linearni surjekciji p: E — O, omejenem območju G < C" in
holomorfni preslikavi f:G->O vedno obstaja takšna holomorfna preslikava
2:G—E (imenujemo jo holomorfni dvig preslikave f), da je za vsak z€G izpol-
njena enačba p g(z) <— f(z)? V prvih dveh poglavjih pripravimo orodja (predvsem
epsilonski produkt lokalno konveksnih prostorov), s pomočjo katerih lahko v tret-
jem poglavju pritrdilno odgovorimo na postavljeno vprašanje. Ker se izkaže, da
niti v primeru Banachovih prostorov E in O iz omejenosti holomorfne preslikave

f ne sledi nujno omejenost njenega dviga, obravnavamo v četrtem poglavju tiste

dvige, ki so sicer neomejeni, vendar je naraščanje (ob robu območja G) počasnejše
od rasti neke znane (npr. potenčne ali logaritemske) funkcije. Dokazanih je več
izrekov, ki za različne vrste območij (krogle, polidiski, enotni krog...) in za raz-
lične tipe Banachovih prostorov E in O (refleksivne, separabilne dualne prosto-

re...) dajejo izboljšane ocene za hitrost rasti norme dviga. Za poljubno območje

in poljubna Banachova prostora E in O pa je mogoče k omejeni holomortni presli-

kavi f najti le holomorfen dvig, ki narašča počasneje od d(z,O0G)-", pri čemer

pomeni d(z, O0G) razdaljo točke z od roba območja G.

V zadnjem delu naloge je dokazan obstoj holomorfnega dviga v primeru, ko

je p:G—I(E,O) takšna holomorfna operatorska funkcija, da je za vsak zZEG
preslikava p(z): E — O zvezna linearna surjekcija; pri tem je treba privzeti, da je

G c Cn domena holomorfnosti.

Fizika — II. stopnja

58. Sever Franc Odvisnost presekov za reakcije (p,y) in (y,p) od izbire
optičnega potenciala

Reševanje dvogrupne difuzijske enačbe v dvodimenzio-
nalni diferenčni aproksimaciji

Vpliv ionske raztopine na fazne prehode v lipidnih mem-

branah

Modeliranje difuzije bora iz implantiranih izvorov

59, Ravnik Matjaž

60. Cevc Gregor

61. Runovc Franc



Matematika — doktorska disertacija

21. Rakovec Janez Grupe ploskev v grupah trirazsežnih mnogoterosti

Predmet obravnave je orientabilna ireducibilna 3-mnogoterost M, ki vsebuje
kakšno inkompresibilno ploskev F (vključitev F v M inducira monomorfizem
I14(F) — I14(M)). V bistvu je M določen z inkompresibilnimi ploskvami, ki jih vse-

buje. Določen pa je tudi s svojo fundamentalno grupo 4/,(M), ki jo zopet določajo
grupe inkompresibilnih ploskev Z/,(F) kot podgrupe v //1(M).

Prav v povezavi z lego ploskve F v M je smiselno obravnavati //,(F) kot pod-
grupo v //1(M). Tako je npr. G. P. Scott pokazal za poljubno sklenjeno inkompre-

sibilno ploskev F c M: če je Z/41(F) < G < II44(M) in je indeks (G://,(F), končen,
potem je bodisi G < //4(F) bodisi je |G : //1(F), — 2 in F omejuje takšno kompaktno
podmnogoterost X <c M, da je Z/,(X) konjugiran h G v //;(M). — W. Heil pa je
pokazal, da razen v nekaterih natanko določenih primerih ne more biti //,(F)
podgrupa edinka v //,1(M), temveč je //,(F) celo enak svojemu normalizatorju

V izrekih te vrste pri W. Heilu, G. P. Scottu in G. A. Swarupu je inkompresi-
bilna ploskev F sklenjena. V tem delu pa so ti izreki smiselno razširjeni na primer,
ko je Fc M kompaktna inkompresibilna ploskev z robom. Tedaj se npr. izkaže,
da je //,(F) enak svojemu normalizatorju v //;(M), razen ko ima F sodo število
robnih krožnic in ima tudi prav posebno lego v M. Če je nadalje //4(F) < G < IhM)
in je indeks |G:://,(F)| končen, je bodisi G < 7/,(F) bodisi |G: 2/14(F), — 2, slednje
pa le v prejle omenjem primeru. MN

Če je F c M ploskev z robom, je dokazovanje takšnih izrekov precej zahtevnejše
kakor tedaj, ko je ploskev F sklenjena. Tukaj namreč v določenih primerih obstaja

nad M krovni prostor M, ki je homeomorfen F X 1; prav to je za dokazovanje zelo

ugodno. Če je F ploskev z robom, pa v splošnem namesto M zF X 1 dobimo M,
ki sestoji iz produkta F X 1 in iz nekompaktnih koncev s fundamentalno grupo Z.

Fizika — doktorske disertacije

65. Pavšič Matej Enotna teorija gravitacije in elektromagnetizma na osno-
vi konformne grupe SO (4,2)

V disertaciji je pokazano, da je mogoče zakone gravitacije in elektromagnetizma
obravnavati na enotni osnovi, če privzamemo, da velja lokalna konformna grupa
namesto Poincargčjeve grupe. Čeprav lahko opisujemo konformno grupo tudi v okvi-
ru običajnega štirirazsežnega prostora, pa je znano, da je opis v šestrazsežnem
prostoru matematično mnogo preprostejši. Ena izmed ugotovitev disertacije je, da
lahko gravitacijske in elektromagnetne pojave pojasnimo z ukrivljenostjo tega
šestrazsežnega prostora.

66. Čopič Martin Strižni valovi v KH;(SeO;). v okolici feroelastičnega
prehoda

K H5(SeOs5)2 ima feroelastičen strukturni fazni prehod pri 212 K. Z Brillouinovim

Sipanjem je preučeval obnašanje strižne elastične konstante v okolici faznega pre-

hoda in ob navzočnosti zunanje strižne napetosti. Elastična konstanta ima klasično

Curiejevo odvisnost vsaj od 10 mK od prehoda. Rezultatov pod prehodom ni mo-

goče popolnoma zadovoljivo opisati s prosto energijo, v kateri primarni para-

meter reda ni deformacija, temveč mikroskopska spremenljivka. Odvisnost strižne

elastične konstante od strižne napetosti kaže, da so členi višjega reda v razvoju

proste energije pomembni.

67. Sega Igor Dinamične lastnosti Isingovega modela v prečnem polju

Isingov model v prečnem polju je eden osnovnih teoretičnih modelov za fiziko

faznih prehodov (feroelektriki, redke zemlje, Jahn-Tellerjevi sistemi itn.) in nemalo

truda je bilo vloženega v raziskave njegovih statičnih in dinamičnih lastnosti. V di-

sertaciji so te lastnosti analizirane z metodami računalniške simulacije Monte Carlo

oziroma molekulske dinamike. Podani sta sistematična analiza in primerjava po-

datkov in rezultatov z različnimi analitičnimi načini; tako je mogoče sklepati o za-

nesljivosti teh metod. V tezi obravnava avtor tudi lastnosti modela s primesmi

(»izotopska mešanica«), ki so odgovorne za izredno ozek centralni vrh v dinamič-

nem strukturnem faktorju vrste snovi.
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