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UPORABI REKU

EGON ZAKRAJŠEK

Eden od mnogih načinov računanja funkcijskih vrednosti je uporaba re-

kurzivnih formul. Vsi ortogonalni polinomi, mnoge elementarne in specialne

funkcije zadoščajo dvo- ali veččlenskim rekurzivnim relacijam, ki imajo poleg

teoretične tudi praktično vrednost — namreč za računanje vrednosti teh funkcij.

Izkaže pa se, da je slepo uporabljanje takih formul lahko zelo nevarno, saj je

znanih mnogo primerov, ko dobimo z navidezno korektnim postopkom pri

numeričnem računanju z omejenim številom decimalnih mest popolnoma. na-

pačne rezultate. Navadno pa se izkaže, da lahko rekurzivno formulo z enostavno

predhodno analizo vedenja zaokrožitvenih napak uporabimo v taki smeri, da

nam da popolnoma zadovoljive rezultate.

Namen tega sestavka je na zelo preprostem primeru dvočlenske rekurzivne

formule pojasniti potrebo po predhodni analiži.

.. Vzemimo primer računanja elementarnega integrala, kjer je integrand

odvisen od parametra. Primer je povsem življenjski in se je pojavil pri razisko-

valnem delu Zavoda za raziskavo materiala in konstrukcij SRS.

Naj bo

i,<[ (5) cosedaxa. n<0,1,2,... (1)
o | 77

Vzemimo, da želimo izračunati numerične vrednosti prvih nekaj integralov.
Integral (1) je seveda elementaren. Naj bo najprej n—1. Z dvakratno

integracijo per partes dobimo:

m]2

ej [sie 2n O x, n-L o
JI, <— (— sin x — — (Z) sin x de —

IT lo TT JI
k |

zl?

2 n 2 4, n—lze ] ] (5) sin z da —
JT IT

O

z]2 z]l2

2 (n —1 n—2
si ) | (—) COS da —

OI x
(6) |

JU JT

O

4
—1—n(n—1) —I,»

Pri sodem n; moremo torej integral [, izraziti z [, pri lihem n pa z l|,. Ta dva

integrala pa je lahko izračunati: |

al2

o <5 f[cosedr —1
O
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2 a]2 2
Ij< - (ecosedr<l—-—

LO JU

T orej imamo za računanje integrala l, pri poljubnem n na razpolago naslednje
formule:

2
hi <s1—— (2)

II

I,<1—žšža(n—ljal,a, n>l

kjer je

a < —
TE?

Problem je navidezno rešen. Za primer izračunajmo lje po formulah (2). Če

računamo s 5 decimalnimi mesti, dobimo:

a < 0.81057

Io < 1.00000

Ii, < 1— 0.81057 X 1.00000 — 1— 0.81057 — 0.18943

Ii, — 1— 4.86342 X 0.18943 — 1— 0.92128 — 0.07872

I — l — 12.15855 X 0.07872 — 1 — 0.95712 — 0.04288

Ig -: 1 — 22.69596 X 0.04288 — 1— 0.97320 — 0.02680

lo — 1 — 36.47565 X 0.02680 — 1—0.97755 — 0.02245

Ija — 1 — 53.49762 X 0.02245 — 1 — 1.29102 — — 0.20102

Tu smo vzeli za število a na 5 decimalk zaokroženo vrednost, ostale faktorje

pa smo izračunali z množenjem te vrednosti s celim številom š n (n — 1).

Očitno je, da noben I, ne more biti negativen, zato je lja prav gotovo

napačno izračunan. Na podobno napako bi naleteli tudi pri lihih vrednostih

indeksa, n.

. Edini možni vzrok te napake so zaokrožitve pri aritmetičnih operacijah,

zato poglejmo, kako se pri računanju prenašajo vplivi zaokrožitvenih napak.

Denimo, da smo pri izračunu integrala I,.2 napravili napako e,.2 in tako

dobili približno vrednost i,-2, ki je s točno vrednostjo v naslednji zvezi

in—o — I,—a S- en—2

Če pri računanju vrednosti I,, ne zagrešimo nobene dodatne zaokrožitvene na-

pake, dobimo spet približno vrednost

—I1—žn(n—l)al, as—in(n—l)ae, 2 —

— I, —šn(n—l)ae,-2

Če spet zapišemo

50



kjer je e, napaka vrednosti I,, sta obe napaki v naslednji zvezi

ey <— —šn(n—l)ae,.a

Očitno se torej že ena sama storjena napaka z naraščajočim n močno veča.

Zaokrožitvenim napakam pa se žal ne moremo izogniti. Že pri izračunu Is

napravimo napako, ki je enaka nekaj enotam na 6. decimalnem mestu (pri

računanju na 5 decimalk), saj je a iracionalno število. Tudi če bi od tu naprej

računali popolnoma točno, bi ta napaka po nekaj členih zelo narasla, kar se je

seveda tudi zgodilo. Tej težavi se sicer lahko deloma izognemo tako, da po-

večamo natančnost računanja, vendar naraščajoča napaka prej ali slej preseže

vrednost rezultata, od tam naprej pa je vsako računanje brez smisla.

Tak računski postopek, pri katerem se vpliv zaokrožitvenih napak veča,

imenujemo nestabilen računski postopek.

Pa poskusimo formulo (2) uporabiti drugače. Ker velja

l — 1,

zn(n— lja

skušajmo računati vrednosti /, v obratnem vrstnem redu. Denimo, da poznamo

približno vrednost i, integrala I,. Tedaj je

kjer je e, napaka. V formulo (3) vstavimo namesto neznanega [, znano vrednost

i, ina dobimo: |

in(n—lja

1—I, €n

zn(n—lja žn(n—ia

Ce ponovno zapišemo .
| in—2 — I, 9 v en—2

dobimo
€n

€n—9

zn(n —l)a

V tem primeru se torej vpliv napake e, na vsakem koraku občutno zmanjša.

Tak računski postopek, pri katerem se vpliv zaokrožitvenih napak manjša,

imenujemo stabilen računski postopek.

Nastane vprašanje, kako naj dobimo približno vrednost i,. Zlahka ocenimo

O JE 2 (n S l)

Če torej vzamemo

smo storili napako
JI

2(n -1l)

To je sicer lahko precej, vendar vemo, da ta napaka zelo hitro izgine. Če

vzamemo npr.

ljo <0
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dobimo

I—.

Ig — ui — 0.02749
36.47565

1 — 0.02742

Is — - — 0.04285
22.69596 |

1 — 0.04285
H < — 0.07872

12.15855 |

1 — 0.07872Ia — 0.0 — 0.18943
4.86342

1 — 0.18943
I, — — 1.00000

0.81057

Vidimo, da je napaka že po 5 korakih uporabe formule (3) popolnoma izginila.

Obrat rekurzivne formule dostikrat spremeni računsko nestabilen po-

stopek v stabilnega.

Za zaključek še napišimo za ta problem program v Algolu za računalnik
Z-23 [1]. Želimo izračunati prvih 40 integralov. Izbrati moramo še začetno

vrednost n. Ta mora biti vsaj 40, dosti več pa niti ni treba. Da ne bi ugibali,

bomo napravili takole. Začetno vrednost n bomo povečevali od 40 dalje toliko

časa, dokler se ne bosta pri dveh zaporednih vrednostih n izračunani števili l4

ujemali na 8 decimalk. Šele tedaj bomo izračunali ostale integrale I,, n < 40.

begin integer n, m;

real a, i 40; |

array il[0:1001); comment začetna vrednost n <— 100 bo vsekakor dovolj

velika;

procedure tisk (a, m, n); value a, m, n; real a;

integer m, n; code;

comment bibliotečni program za tisk v normalni obliki;

procedure newline (n); value n, integer n; code;

comment bibliotečni program za A-4 format; .

a : — 2.0/3.14159265; |

4: — dad;

i40:—<0; m: s 42;

zi i[|m—1|: < ?[m]: <— 0;

for n: — m step — 1 until 42 do

iln—2]: — (10 —i [n]/(n x (n—1) x);
i£ abs (či [40] —i240) > 5;0 — 9 « abs (i [40]) then

begin i40: — i[40]); m:x< m - 2;

so to z

end;

for n: < 41 step— 1 until 2 do |
iln—2]: < (10 —i [n)/(n x (n —1)xa):
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end

write ("VREDNOST INT!

newline (6);

for n:x« 0 step 1 until 9 do

begin for m: x 0 step 1 until 3 do

begin tisk (10. m -- n, 8, 0);
tisk (i[10x m -- n], 1, 8)

end;

newline (1)

end;

newline (— 1)

GGRALOV II[N]");

Po treh minutah je računalnik natiskal naslednje vrednosti:

1.00000000

0.36338023

0.18943053

0.11636525

0.07872037

0.05677885

0.04287506

0.03351278

0.02690998

0.02208027tO CO SI GO Gili CU bb Eu O
Vsi rezultati so pravilni na 8 decimalk.

10

11

12

13

14

15

16

17

18

19

0.01844160

0.01563251

0.01341889

0.01164371

0.01019847

0.00900626

0.00801132

0.00717244

0.00643864

0.00584623

20

21

22

23

24

29

26

27

28

29

VREDNOSTI INTEGRALOV I[N]

0.00531691

0.00485630

0.00445302

0.00409792

0.00378365

0.00350416

0.00325452

0.00303063

0.00282905

0.00264693

Literatura

30

31
32

d3

34

39

36

31

38

39

0.00248184

0.00233172

0.00219481

0.00206961

0.00195482

0.00184932

0.00175214

0.00166241

0.00157940

0.00150246

[1] E. Zakrajšek: Programiranje v Algolu, IMFM, Ljubljana, 1966.

53



O PREPROSTIH DIFERENČNIH ENAČBAH

ANDREJ KMET

Namen tega članka je prikazati uporabnost diferenčnega računa pri.

obravnavanju rekurzijskih in sumacijskih formul ter pri numeričnem reše-

vanju diferencialnih enačb. Skušali bomo poudariti analogijo med infinitezi-

malnim in diferenčnim računom.

V numerični analizi imamo v večini primerov opraviti s funkcijami, ki so

definirane na diskretni množici točk, ki pa je lahko končna ali neskončna.

Privzemimo, da so točke ekvidistantne z razmakom h, da je torej

Xi — Ko FT ih, i<0,1,

Funkcija f () naj ima podane vrednosti le v točkah r;:

f(a) < fi H
S substitucijo

ga o
h

dosežemo, da preide točka x, v koordinatno izhodišče, razmak med točkami pa

postane 1. Funkcija f(s) je sedaj definirana na množici naravnih števil in

določa neko zaporedje. Množico vseh zaporedij bomo označevali s S. Funkcije,

s katerimi se bomo ukvarjali, so torej elementi množice S.

Vlogo odvoda prevzame pri funkcijah iz množice S diferenca

4f(m) < f(n t 1) —f(n)

Analogno višjim odvodom tvorimo tudi višje diference:

4f(n)<f(n -2—2j(nr be fin)

kdo diferenco definiramo z rekurzijsko formulo

AE (m) — 4 (4 f (m)

Z metodo popolne indukcije dokažemo, da velja za k-to diferenco formula,

podobna binomskemu izreku:

AR $(n) — X Cie S f(n to) | (1)
i<0

k-ta diferenca funkcije f (n) v točki n se torej izraža s funkcijskimi vrednostmi

v točkah n,n -l,...,.n - k. |

Podobno kot pri diferencialni enačbi je diferenčna enačba zveza med

funkcijo in njenimi diferencami. V splošnem je torej

F(n,f, 4f,..,4EP <0 | (2)

diferenčna enačba reda k, če je k stopnja najvišje diference, ki nastopa v enačbi.
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Če izrazimo vsako diferenco s funkcijskimi vrednostmi v sosednjih točkah

po formuli (1), lahko zapišemo diferenčno enačbo (2) tudi v obliki

Gi(n,f(n),j (n T 1),.. »J(n T k)) <0

Zadnja oblika je pogosto primernejša za računanje.

Oglejmo si natančneje linearno diferenčno enačbo reda k

do (n)f(n) — aij(njf(n —- 1) 2... - ag(mjj(n z k) < b (n) (3)

Koeficienti a;(n) in desna stran b (n) so dane funkcije iz množice S in ax(n)

ni identično enak nič. Poiskati moramo funkcijo f (n), ki zadošča zgornji enačbi.

S tem rešitev še ni enolično določena. Iskana funkcija jim) naj zadošča še

začetnim pogojem:

KO) < Jo

fDb<fi
... (3-a)

f(k—1 — fra

Rešitev je na dlani. Iz enačbe (3) izrazimo f (n - k)

fn bk) < —— [b (m) —as(n)f(n) —...—ara(Njf(ntk—D]I
ax (n)

in postavimo n <— 0. Funkcijska vrednost v točki k se izraža z začetnimi pogoji.

Če sukcesivno nadaljujemo postopek s tem, da vstavljamo v (4) n —1,2,...,

dobimo funkcijske vrednosti pri poljubnem argumentu n, pri katerem je
ax (n — k) različen od nič.

Tako dobljeno funkcijo imenujemo partikularno diskretno rešitev.

Opisani postopek ni ugoden, če nas zanima le kaka funkcijska vrednost

pri velikem argumentu n, ker moramo računati vse funkcijske vrednosti do

iskane.

Ta metoda se uporablja tudi pri numeričnem reševanju linearnih diferen-

cialnih enačb z danimi začetnimi pogoji (Cauchyjeva naloga).

Denimo, da iščemo rešitev diferencialne enačbe reda m

do (x) yM -t-.,.. -r an (x) y — b (x) (5)

na intervalu [a, b] z začetnimi pogoji

| y%) (a) < yo' i—0,1,...,m—1, (5-a)

Najprej razdelimo interval [a, b] z ekvidistantnimi točkami na n; delov

A -< x, MV dj V... C< Xn — b Xjag —x;< h

Z že omenjeno substitucijo

X — Xo
S —

h

dosežemo, da se preslikajo točke x,, £i,..., £n V naravna števila 0,1,..., n.

Rešitev diferencialne enačbe (5) iščemo le v izbranih delitvenih točkah.

Če aproksimiramo odvode v enačbi (5) in v začetnih pogojih (5-a) z diferenčnimi

formulami reda m, dobimo diferenčno enačbo reda m z ustreznimi začetnimi
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vrednostmi. Po že opisanem postopku izračunamo nato funkcijske vrednosti

v ostalih točkah intervala [a,b]... |

Oglejmo si sedaj diferenčne enačbe v nekoliko splošnejši obliki.

Rekurzijska formula za funkcijo /' (n)

nIi(nj—T(inrl)<0

je linearna homogena diferenčna enačba prvega reda. Podobno je rekurzijska

formula za Besselovo funkcijo J, (x)

Jn (x) 2 (m k 1) dni (x) - J,.,9 (x) — 0
x

diferenčna enačba drugega reda, če smatramo J, (4) kot funkcijo indeksa.

Vemo pa, da sta funkciji 7 (z) in J7 (4) zvezni in celo analitični funkciji

kompleksnega argumenta z. Diferenčno enačbo bomo v tem smislu posplošili.

Dane funkcije kot tudi iskana funkcija naj bodo analitične. Iz diferenčne enačbe.

je razvidno, da mora biti vsaka funkcija, ki nastopa v njej, definirana v točkah

z,-ztl,z-2,...

Zato bomo za take funkcije zahtevali, da so analitične vsaj v nekem pasu

okrog pozitivnega poltraka realne osi.

Linearna diferenčna enačba reda k ima v tem primeru obliko.

ao (z) f(z) r ai(2)f(z- l)... — ap(z)f(z - k) < b (z)

pri čemer so a, (z), ai (z),..., ax (z), b (z) kot tudi f (z) analitične v nekem pasu

okrog realne osi in a; (z) ni identično nič.

Lotimo se najpreprostejše diferenčne enačbe

4f(2) < f(izt1)—ij(a<0

Če si ogledamo analogno diferencialno enačbo

y <0
in njeno rešitev

v — konst.

uvidimo, da f (z) < konst reši tudi diferenčno enačbo. Vendar pa ta rešitev ni

splošna. Enačba

f(zrl)—f(a)

je funkcionalna enačba za periodično funkcijo s periodo ena in bomo seveda

tako vzeli kot splošno rešitev.

Rešitev enačbe

Af (z) <0

je torej

f(a) < Pp (Aa

kjer je p(z) poljubna periodična funkcija s periodo ena. Odslej bomo s p (z)

vedno označevali periodično funkcijo s periodo ena.

| Naštejmo sedaj še nekaj lastnosti operatorja A, ki jih bo bralec zlahka

preveril sam.
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1. operatorja 4 in — komutirata
d z

2. A(f g) < 4f t dg

3. 4(p.])) < p4j

4. 47.9 <J(zr 1 d9(2 T 9 (2 4f (2 —
— g(zt I)4f(2 rj() 49 (A)

5. A ti MAC) Af(2) — 1 (2) 4g (2)
g g(z rl)g()

Omeniti velja, da so zgornja pravila zelo podobna pravilom za odvajanje

vsote, produkta in kvocienta dveh funkcij. Vendar pa pravilo za posredno od-

vajanje funkcij, kar nam služi kot močno orodje pri odvajanju sestavljenih

funkcij, nima analogije v diferenčnem računu.

Sestavimo tabelo diferenc elementarnih funkcij! Ker se diferenca potence

z" ne izraža preprosto, uvedimo posplošeno potenco

zb — z(z—1Il)...(z—n --1)

ki se vede pri diskretnih operacijah analogno navadni potenci pri zveznih

operacijah.

Naslednje diference elementarnih funkcij bo bralec zlahka preveril sam

1. 42) — na

1
2. 4 — — ik

z(n) (z -- 1,279

3. fa? — ačž(a—1)

4, dar? < až(a!—1)

9. 4dlinz — ln (tej
Z

: . Mm m
6. A sin mz <— 2sin — cos (rez -- 3)

2 2

7. A cos mz < — 2sin mi sin. (rz HEJ,
m. 2

8. 4 te mz — sin M

cos M (z f- 1) cos mz

sin. Mm
9. A ctg mz —

sin m (z - 1) sin mz

V diferenčnem računu je posebno važen logaritemski odvod funkcije [' (z), ki ga

označimo s

I" (z)

T iz)
v (z) —

Ta prevzame v diterenčnem računu vlogo logaritemske funkcije. Izračunajmo

diferenco za funkciji /' (z) in v (z): |

AT (Z) —T(ztI)—T()<zT(A—T(O<2E—BTre

| | 57



d
Pri diferenci za v (z) bomo upoštevali, da 4 in iz komutirata.

pa

d d d T(zt-l

dvi) 4 | MT) - Z Um) Z (m (z )-
dz | dz dz T (z)

d 1
— — (Inz) < —

dz Z

Dopolnimo našo tabelo s pravkar dobljenimi rezultati.

10. A 7 (z) < (z—1) [ (z)

1
11. 4y(z)] < —

Z

(— 1)" m!

»mt1l
Čad

12. 4 yi) (z) —

Pravilo 12. sledi neposredno iz pravila 1l. Sedaj, ko znamo poiskati diference

najpreprostejših funkcij, se lotimo obratne naloge, to je reševanja enačbe

4f(2 < az) | | (6)

Označimo s Ži inverzni operator operatorja A /

x — 4

in zapišimo formalno rešitev

f(2) —< Xa(2)

Brez težave uvidimo, da razlika dveh rešitev enačbe (6) ustreza homogeni

enačbi, torej se dve rešitvi razlikujeta za periodično funkcijo s periodo ena

(analogija z intergracijsko konstanto).

Splošno rešitev enačbe (6) bomo zapisali v obliki

(A) — F(aA Tp(3

pri čemer je F (z) neka partikularna rešitev te enačbe, p (z) pa poljubna perio-

dična funkcija s periodo ena.

Iz tabele za diference lahko takoj preberemo vsote (Ž) za nekatere

funkcije.

1. zim — ŽU 4 po)
O n rl

1
2. x — — 1 p (z)

zm) (n — 1) (z — 1)—9)

Z

3. Ži ač — -- p (z)
a —1

—I

4, Xaž— a (—1) - p (z)
a

4 |

b. xi (1 EN J — Inz t p (z)
Z
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1
sin m (z — 3) -- p (z)6. Ž cos mz -—

e m

' 2 sin FI

1
7. Ž sin mz — — cos mM (z — ž) -- p (z)

a mi
2 sin >

8. Ž(z—1)I (2) < 7 (z t p (Z

1

9. X— — v (z) t p (2)
Va

jp.x o. —- SD" pm (Z) S p (Z)

Z uporabo te tabele je mogoče reševati enačbe, katerih desne strani so

elementarne funkcije. V bolj zapletenih primerih si pomagamo z drugačnimi

metodami. Oglejmo si za primer eno. | |

Sumacijska metoda

Diferenčno enačbo

f(zrl)—fj(a<a(2 (7)

zapišimo za z—z, zl 1, z 1t2,...,. zžn |

jz ti —f() <a
f(z -2)—f(ztl <a(zt1

f(zitntlil—f(2rn<a(z -n

Seštejmo vse enačbe!

fa) —-—šaztkhtfEtntI) (8)
k<0

Denimo, da je vsota na desni strani enačbe konvergentna za vsak z iz deftinicij-

skega območja. Na nekoliko manjšem omejenem in zaprtem območju je kon-

versenca enakomerna in je limitna funkcija analitična. Označimo jo z G (z)

G (z) — —Na(z k)
ko

Takoj se lahko prepričamo, da je G (z) rešitev enačbe (7)

GEtI—5GA-—Na rk4-la S a(z -- k) — a (2)
ke k<o0

Splošna rešitev j (z) se vedno izraža v obliki |

fa) <GBtPE UR (9)

Če primerjamo enačbi (8) in (9) vidimo, da je

Dp (z) — imf(z - n - 1
nN—>oo
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periodična funkcija s periodo ena. Rešitev G (z) ima to lastnost, da je periodična

funkcija

lim G (z r n)
nN->co

identično enaka nič.

Sumacijsko metodo lahko uporabimo, če je le vrsta za G (z) konvergentna.

Zadosten pogoj za to je, da je

a (2) — o (z) a< —l1
Vendar pa je mogoče sumacijsko metodo posplošiti.

Vstavimo v enačbo (8) z< 1

n H

ji) ——žŽa(1-k)-f(n -2)
k<0

ter ju odštejmo

fe) -—Na2rbkoa17k]E£febnti) fat) 540. (10)
k < 0

Če morda sedaj vsota v enačbi (10) konvergira, se prav lahko prepričamo, da je

G (z — —Xla(z £ k) —a(1 - kl (11)
k<o

rešitev enačbe (7),

p(z) —<lim [f(z -nt-1i—j(2 LI n) f(1]
n->co

pa je periodična funkcija s periodo ena. |

Oglejmo si na preprostem primeru uporabo te metode! Poiščimo rešitev

homogene :diferenčne enačbe |

g(z bt 1) —zg(z2)—0 (12)

ki zadošča začetnemu pogoju |

| g(l) < 4)

Z logaritemskim odvajanjem privedemo enačbo v preprostejšo obliko.

(eti g( 1 |

g(zrl) | g( z
Postavimo

' (Z
ja 9

g (z)

s čimer preidemo na enačbo tipa (7).

1
fztl—j(a<-—

Z

Rešitev smo zapisali v obliki (11) | |

so 1G (z) < —Ž ( !
| kzo Iz — k 1— k

Če v splošni rešitvi

(A) < GG) T pla
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izberemo za p (z) < —C, pri čemer je C — 0,577... Eulerjeva konstanta, se bo
izražala rešitev enačbe (12) posebno preprosto. Označimo tako določeno partiku-

larno rešitev s 1y (z)

v(z) < Gla—C

Funkcijo, ki jo dobimo z integracijo |

9 (2

g (2)

in ki zadošča začetnemu pogoju g (1) < 1 imenujemo funkcijo /'.

Integrirajmo (14) o mejah od ena do z in upoštevajmo začetni pogoj!

— ap (z) (14

| 99 Z 1ln (z) —0 < —Ž (ne) —Mm(1 65) ro
ksl | k k

N

—Cz £C—lnz
Dodajmo k vsoti In k — ln k! |

Inr (a < x (Z —in late) —3 [—-—in iti ))—eete—m:
k<l 1k k, ksl Vk k

Druga vsota pa je ravno enaka Eulerjevi konstanti C, tako da se konstantna

dela uničita.

Funkcijo /'(z) lahko sedaj zapišemo v obliki neskončnega produkta

co V4 —1

F (z) — ki e-E [II ci(1 NN O)
z kel k

ki nam pove, da je /' (z) meromorfna funkcija z enostavnimi poli pri z —
—0,—I,—2, ...

Linearne diferenčne enačbe višjega reda

Lotimo se najprej homogene enačbe .

ao (z) f(z 7 n) " aj(z]f(z -n—1l -...t-a,l(ajl(a—9

Množica n linearno neodvisnih rešitev te enačbe imenujemo fundamenftalni

sistem. Vendar pa je linearna neodvisnost rešitev definirana drugače kot

običajno. Omenimo le to, da funkcija, ki je v n zaporednih točkah z,z-l,...,

z n—1 enaka nič, ne pripada fundamentalnemu sistemu.

Vsako drugo rešitev homogene enačbe zapišemo v obliki

Y() —< Puilaji(8) T PR) Pal) "... F pal), (3)

pri čemer tvorijo Ji (z), Ja (z) fundamentalni sistem, pi (z), p2 (z),..., Pn (Z) pa so

poljubne periodične funkcije s periodo ena.

Oglejmo si reševanje linearne homogene enačbe s konstantnimi koeficienti

o df(z rn) raj(zrn—li t...ra,j(iz]—0

Podobno kot diferencialno enačbo uženemo tudi to z nastavkom

fi) <— 4

g'(a, gt ta;grit...ta,)<0
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| Vsaka ničla g; karakterističnega polinoma

P(g) < aag" rt aj gt! ... TE dy

določa rešitev gž enačbe.

V primeru, da so vsi koreni različni, tvorijo

gi?, ge", 2 o, dn?

fundamentalen sistem. Kadar pa je kakšen koren npr. gi večkraten, denimo

k-kraten, so

linearno neodvisne rešitve. Če vsakemu večkratnemu korenu karakteristične

enačbe na isti način priredimo sistem linearno neodvisnih funkcij, tvorijo vse

tako dobljene rešitve fundamentalen sistem.

Obravnavajmo še nehomogeno enačbo |

do (2) f (z - n) £ au(2)f(z -n—i)t... ba, (2 f(2 < b (2

Pišimo levo stran enačbe krajše Z (f), torej

£(f) < b (z).

Način reševanja je podoben metodi variacije konstant. Partikularno rešitev ne-

homogene enačbe iščemo torej v obliki

F (z) < ci() fit al) f2(A "... t ce, (2) fa (23) (15)

pri čemer so Ji (z),..., f, (z) linearno neodvisne rešitve homogene enačbe.

Zapišimo F (z) pri argumentu (z -- 1)

n n

F(Iz-l<X%c(z]fiiz-1U -Ž(c;i(z - DD —c;(z)) fi (z - 1) (16)
isl isl |

Sedaj zahtevamo, da zadnja vsota izpolnjuje pogoj

n

ž 4ci(z]ji(z-1)—0
isl

Nadaljujmo v tem smislu!

1

F(z-2) — ci (Z) ji (z - 2)

izl

y: A ci (z) fi (z -- 2)

(17)

F(z-n—1 - Ne; (z) fi(z -n—1i V 4 ci (2) fi(z 7 n—1)
isl <1U 1

2

Fertn<šiJfizEnI
| i<1l1 z

y 4 c; (z) fi (z 7 n)
-1l

n

Pri tem naj bodo Ž 4c; (z) fi (z - r) enake nič zar<—l,2,...,.n—]1, prir<n
isl |

pa naj velja |

Y Jel) fiz bne 2
iz do (z)
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Zlahka uvidimo, da zadošča F (z) nehomogeni enačbi, ako ci (z), ca(z),..., €z (z)

izpolnjujejo zgornje pogoje. Če namreeč enačbe (15), (16), (17) pomnožimo po
vrsti z a, (z), dni (Z),..., do (Z) ter enačbe sumiramo, dobimo

m |

£(F) < Xi) £() 569
1 —

ker pa so f; (z) rešitve homogene enačbe, je res

Z (F) — b (z

Naša naloga je torej rešiti sistem n diferenčnih enačb

isl

3

žAGO)jeTn—<I—-0

$ 4 ci (2) fi (z - n) —

b (z)

de (Z)| bda |V
Ker so f;(z) linearno neodvisne, je determinanta sistema različna od nič in

lahko izračunamo diference Ac;(z). Nato rešimo n tako dobljenih linearnih

enačb prvega reda.

Funkcija F (z) je partikularna rešitev nehomogene enačbe. Splošna rešitev

se izraža v obliki

- HIDO<SFATNONMT...T pa () fn (9)

S tem bi zaključili ta kratek in bežen pogled v diferenčne enačbe. Dotaknili
smo se le najpreprostejših metod, ki so precej podobne metodam za. reševanje

diferencialnih enačb. Ta podobnost je bila ves čas vodilo tega sestavka. Seveda

pa obstaja obilo literature o tem področju kot tudi o uporabi diferenčnih

enačb v praksi.

Literatura

1. H. Meschowski, Differenzgleichungen, Gottingen 1959.
2. W. E. Milne, Numerical Calculus, Princeton. University Press, 1949,
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ASTRONOMIJA DANES"

'FRAN DOMINKO

Dosežki in problemi sodobne astronomije

Leta po drugi svetovni vojni so obogatila astronomijo s številnimi novimi

raziskovalnimi metodami, ki so omogočile širši in globiji prodor v skrivnosti

vesolja. Že danes so uspehi tako pomembni, da smemo govoriti o »revoluciji«.

Ta revolucija v marsičem spominja na čas Galileja, ki je s svojim delom in

umom odprl nove vidike in spremenil odnos ljudi do vesolja. Pogled skozi

daljnogled, ki ga je prvi v zgodovini človeštva z vprašujočim razumom nameril

v nebo (1609, mu je odkril stvari, ki so krepile domnevo, da so telesa v osončju

zgrajena iz iste snovi kot telesa na Zemlji, v nasprotju s tedaj priznanim

naukom aristotelovcev, da so ta telesa popolnoma različne snovi (iz »kvintesen-

cije« ali iz »petega elementa«) kot telesa na Zemlji in da veljajo zanjo drugačni

zakoni. Galilei je postavil zahtevo, da je treba tudi gibanja nebesnih teles

proučevati 'na podlagi zakonov zemeljske mehanike. V svojem načrtu ni po-

polnoma uspel: pred smrtjo je priznal, da se je bil zmotil v dokazovanju, da je

bibavica posledica zakona vztrajnosti in gibanja Zemlje okoli Sonca; bibavica

naj bi bila torej dokaz za Kopernikovo domnevo, da se Zemlja giblje okoli

mirujočega Sonca. Galilejeva uporaba vztrajnostnega zakona v tem primeru ni

bila pravilna, ker niti njemu ni uspelo, da bi se povsem otresel predsodkov,

zasidranih v duhu dobe. Ostal je podzavestno pri stari misli, da je vztrajnostno

gibanje pri nebesnih telesih enakomerno kroženje, in verjel, da je vesolje

zaključena krogla, v kateri je premo gibanje nesmiselno. —

Za preobrat, ki ga je doživela astronomija z Galilejem, so značilne tri

stvari: uporaba novih raziskovalnih sredstev in metod, delovna hipoteza, da

veljajo za nebesna telesa isti zakoni kot v laboratoriju, temeljno nov odnos do

vesolja in do njegovih problemov z istočasno ohranitvijo nekaterih starih

predsodkov, ki so zavirali pravilno uporabo pravkar odkritih zakonov mehanike.

Postavlja se dvoje vprašanj: v čem je pravzaprav sedanja »revolucija«

v astronomiji, in, drugo, ali ima vsaj nekatere skupne značilnosti z revolucijo

iz dobe Galileja.

Predvsem je treba pribiti, da je dobila astronomija v zadnjem dvajsetletju
popolnoma nova raziskovalna sredstva in metode.

Astronom je do nedavnega zaznaval le vidno ter delno infrardečo in

ultravijolično svetlobo z nebesnih teles. Ta pas elektromagnetnega spektra je

bil samo malo širši od ene oktave. Zemeljsko ozračje namreč vpija, preostali

del spektra, ki naj bi dal ključ za razumevanje stanja zvezdne snovi pri tempe-

raturi deset tisoč in več stopinj. (Resonančne spektralne črte atomov so v ultra-

vijoličnem območju spektra.) Med vojno so po naključju odkrili, da prihaja

s Sonca radijsko sevanje. Kasneje so postopno ugotavljali, da zemeljsko ozračje

" Prirejeno po predavanju ob otvoritvi kongresa matematikov, fizikov in

astronomov Jugoslavije v Sarajevu 4. oktobra 1965.
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prepušča radijsko sevanje z valovno dolžino od centimetra do 20 metrov, izje-

moma tudi do 30 metrov. Sevanje prihaja z mnogih mest na nebu, kjer oko

v daljnogledu ne zapazi ničesar. To odkritje je na dvanajst oktav razširilo

spektralno okno, skozi katero dobiva astronom nove številne podatke o nebesnih

objektih. Radijski teleskop sicer samo ugotovi navzočnost nebesnega sevalca

in meri energijski tok sevanja pri posameznih frekvencah, a ne daje slike

predmeta. Toda radijski teleskopi so mnogo občutljivejši od optičnih instru-

mentov in zaznavajo radijske valove s teles v mnogo večjih razdaljah kot

optični teleskop. Največja dosežena občutljivost pri merjenju gostote radijskega

energijskega toka je: 107? W/m" Hz. Radijska astronomija je povečala mejo

opazljivega dela vesolja. -

Drug nov postopek, ki je uporaben le pri opazovanju teles v osončju, je.

radarska ali radijska lokacija. Kratkotrajni sunek radijskih valov z določeno

frekvenco potuje od oddajnika k planetu, se na njem odbije in se nato vrne

k sprejemniku na Zemlji. Če poznamo hitrost širjenja valov v medplanetnem

prostoru, moremo iz zakasnitve odbitega signala bolj natančno določiti oddalje-

nost planeta od Zemlje. Tako so izmerili srednjo razdaljo Zemlje od Sonca.

(astronomsko enoto) z nenatančnostjo z: 500 km. Klasične astronomske 'metoide

pa dajo kot rezultat vrste merjenj srednjo vrednost z efektivno napako 3000 km

in se posamezne serije merjenj med seboj razlikujejo celo za 30000 km.

Natančno poznavanje astronomske enote je potrebno tudi v astronavtiki.

9 tem niso izčrpane vse prednosti radarske metode. Kratkotrajeni sunek

se namreč najprej odbije od osrednjega dela planetnega površja, ki je Zemlji

najbližji, in nekoliko kasneje od sosednih krogelnih zon. Odbiti signal je

zaradi tega širši (ima rep) in je še popačen v odvisnosti od odbojnih lastnosti

planetnesa. površja in od odbojnega kota. Z analizo odbitega signala dobijo

nekatere lastnosti površja. Tako so na primer ugotovili, da površje Venere ne

more biti niti peščena puščava (F. Hoyle), niti gladina oceana (F. Whipple

in D. Menzel).

Planeti se vrtijo okoli lastne osi. Točka na planetu ima zato določeno

komponento hitrosti v smeri proti opazovalcu na Zemlji. Zaradi Dopplerjevega po-

java so v odbitem signalu poleg osnovne frekvence zastopane še nekoliko; manjše

in nekoliko večje frekvence. Razlika od osnovne frekvence je zaradi odboja

sorazmerna z dvakratno komponento hitrosti proti opazovalcu. Potem ko upošte-

vajo delež, ki je posledica oddaljevanja ali približevanja planeta kot celote,

lahko iz analize jakosti signala kot funkcije frekvence sklepajo o vrtilnem

času planeta. Optično tega ni možno ugotoviti za Venero, ker je trajno zastrta

z gostim.oblačnim plaščem, in za Merkurja, ker na njem ni stanovitnih tvorb,

katerih premike bi lahko zasledovali. S pravkar opisano radarsko metodo pa

so ugotovili, da se Venera zavrti v nasprotni smeri kot drugi planeti (nov

problem!) enkrat v 250 zr 25 naših dneh, Merkur pa v napredni (pravi) smeri

enkrat v 59 ft 2 naših dneh. Trenutno spopolnjujejo postopek kombinacije

obeh opisanih metod, ki so ga z delnim uspehom že uporabili pri proučevanju

Lune. Z lahkoto bi dokazali, da se kratkotrajni radijski sunek: odbije z enako

zakasnitvijo in enako spremembo v frekvenci samo od dveh elementarnih zon

na površju vrtečega se planeta; pri vrtenju se pa vsakič kombinirata odboja

dveh drugačnih zon. Z radijsko lokacijsko metodo bi lahko proučevali po-

samezne nadrobnosti na planetu z ločljivostjo, ki je ne samo večja od optične,

temveč še neodvisna od oddaljenosti planeta. Merili bi še lahko spremembe
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v jakosti in v; stopnji polarizacije odbitega signala. Na ta način, tako upajo,

bi sestavili mapo Marsovega povprečja, na kateri bi bile vrisane vse tvorbe

s premerom, večjim od nekaj km, medtem ko ločimo na fotografskih posnetkih

Marsa dve tvorbi, ki sta v medsebojni razdalji vsaj 200 km.

Vsa opazovanja z zemeljskih tal so možna le v omejenem obsegu in

s temeljnimi omejitvami (»ground based astronomy«), saj analiziramo sevanje,

ki je šlo skozi atmosfero. Poleg popolne absorpcije nekaterih spektralnih pasov

in delne absorpcije drugih' ter pravilnega loma valovanja nastopajo še drugi,

manj pregledni pojavi. Zaradi turbulence v ozračju in zaradi krajevnih fluk-

tuacij gostote zraka je zvezdna slika v gorišču daljnogleda večja od njene

teoretične uklonske slike. Premer zvezdne slike v gorišču velikega teleskopa

s premerom 506cm na Mount Palomaru je redko kdaj manjši od 2 ločnih

sekund, medtem ko je teoretična optična ločljivost zrcala 0,03". Umetni sateliti

Zemlje in kozmične sonde z merilnimi napravami in televizijskimi; kamerami

in z oddajniki, ki posredujejo merjenja in slike postajam na Zemlji, so osnova

»nadatmosferske« astronomije (»space astronomiy«). V satelite in sonde vgradijo

cela astronomske daljnoglede s spektrografi, ki avtomatično ohranjajo pred-

vanju Luninega površja in fizikalnih lastnosti prostora v okolici Zemlje so že

znani. Iz nepravilnosti v kroženju umetnih satelitov so natančneje določili

obliko Zemlje. Omenimo še pomemben uspeh s kozmično raketo Marinner 4,

ki je 229 dni potovala do planeta Marsa in po smotrnem popravku smeri in

hitrosti sla v oddaljenosti 9700 km mimo planeta. Napravila je 24 slik Marsovega

površja ter posredovala slike na razdaljo 220 milijonov kilometrov. Kasneje so

prenos ponovili, ko je bila sonda v razdalji 320.10" km. Okoli 137 tisoč sestavnih

elementov aparature je ves čas pravilno delovalo. Moč signala za televizijsko

sliko je bila na Zemlji komaj 10"? W. Slike so presenetile astronome. Na njih ni

bilo Marsovih »kanalov« niti drugih posebnosti na področjih, kjer so menili,

da morda uspeva nekakšno nižje rastlinstvo. Opazili pa so tvorbe, podobne

kraterjem na Luninem površju s premerom od 5km do 120 km. To je bilo

nepričakovano, saj je do tedaj samo Tombaugh objavil domnevo, da utegne

imeti Marsovo površje videz Luninega — isti Tombaughj ki je l. 1930 odkril

planet Pluton.

Sonda Marinner 4 se pri gibanju ni natančno držala izračunanih efemerid.

Kasnejši kontrolni račun stvarnega tira je pokazal, da je potovanje trajalo tri

minute manj in da se je sonda približala planetu za 800 km! manj, kot je bilo

predvideno. Razlogi za to so lahko naslednji. Astronomski elementi Marsovega

tira dovoljujejo lokacijo planeta na tiru z nenatančnostjo okoli :r 200 krn.

Zaradi omejene natančnosti, s katero je določena astronomska enota, je izraču-

nana oddaljenost Marsa lahko nenatančna za - 290 km. Največja nenatančnost

pa izvira verjetno od svetlobnega tlaka, ki bi utegnil premakniti sondo od

seometrijskega tira ob srečanju s planetom za okoli 19 000 km. Primer naj pove,

kako visoke zahtevke postavlja astronavtika: pri astronomskih konstantah

osončja je treba natančnost povečati najmanj za eno velikostno stopnjo.

Nadatmosferska metoda je pomembna še z enega vidika. Naprave na

kozmičnih raketah morejo zaznavati vsa elektromagnetna sevanja, tudi tista,

ki bi jih sicer vpilo zemeljsko ozračje. Z raketami so izsledili z mest na nebu,

na katerih oko ne zapazi ničesar, razmeroma močno ultravijolično sevanje.

Potrdili so, da seva snov v sončni koroni, s kinetično temperaturo 10$?%K ali
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večjo, žarkovje X. Odkrili so še več deset izvirov žarkov X. Najmočnejši je

izvir v ozvezdju Škorpijona z oznako Sco X-l. Le-ta je istoveten. z zvezdico

navidezne velikosti 13, ki daje na Zemlji osvetljenost 107'11x in ki je v raz-

dalji" najmanj 200 pe. Ima spremenljiv sijaj in spremenljiv spektrum. Gostota

svetlobnega toka iz, tega izvira v območju med 2 in 8A je 38.107! W/m" ali

40 fotonov/cm?.s, medtem ko zazna aparatura še 2.107ti W/m?, Izvir seva rent-

gensko svetlobo močneje od vidne svetlobe. Drugi izvir v Galaksiji je bivša

supernova iz leta 1054 -- Rakova meglica z označbo M 1 kot optični, Tau A kot

radijski izvir in Tau X kot izvir žarkovja X. Cenijo, da je v Galaksiji nekaj

tisoč podobnih izvirov in da je skupni rentgenski svetlobni tok v Galaksiji

stotisočinka skupnega vidnega svetlobnega toka (R. Giacconi).

Astronom lahko danes sprejema fizikalne informacije o nebesnih svetilih

v vseh oktavah elektromagnetnega sevanja. Ta pridobitev je izredno pomembna

za nadaljnji razvoj astronomije.

Nove raziskovalne smeri in misli so prinesli v astronomijo dosežki jedrske

fizike. Po prvi umetni jedrski reakciji v laboratoriju (Rutherford 1919) so neka-

teri znanstveniki (Harkins, J. Perrin, A. S. Eddington) objavili domnevo, da

nastane sevanje zvezd ob jedrskih reakcijah v njihovi notranjosti. Atkinson in

Houtermans sta 1929 dokazovala, da lahko pride ob trkih pri temperaturah, ki

bi morale po plinski enačbi biti v notranjosti zvezd, do jedrskih reakcij med

atomi gežjih prvin. Pri temperaturi, 20. 105 "K ima vsak desetmilijonski delec

in jedrom litij a. Trdila sta, da so zaradi velike mase zvezd tudi počasne reakcije
navzlic majhni verjetnosti pomembne za zvezdno sevanje. Toda šele deset let

kasneje so dovolj dobro poznali efektivne preseke in energijske bilance reakcij

lažjih jeder s protoni, da so podrobneje določili možne reakcije v zvezdah. To je

predvsem zasluga C. F. von Weizsackerja (1937), H. Betheja (1938) in delno

še J. Gamova (1938). V Soncu in v zvezdah glavne veje potekajo reakcije, pri

katerih se štirje protoni zlijejo v jedro helija, pri čemer se 28 tisočink mirovne

mase pojavi kot cenergija sevanja. Pri reakciji 1 g vodika se sprosti

0,007.9.108 J z 6,3.10!1 J energije. Pretvorba 4,4.10"% gramov na sekundo krije

energijski tok Sonca 3,8.10?6 W, Privzemimo, da je Sonce zadnji dve milijardi

let sevalo enako! V tem času je izgubilo manj kot 2/0 svoje mase in se je 5 %s

vodika pretvorilo v helij, če tvori danes vodik 35 %o sončne mase.

Kemijski sestav zvezde se torej s časom spreminja, hitrost; spreminjanja

pa je odvisna od mase zvezde. Po Vogt-Russellovem izreku je notranja zgradba

obstojne zvezde odvisna le od teh dveh količin. Če se ena od njiju spreminja,

se spreminjajo tudi zvezdni parametri, predvsem radij in temperatura. Zvezda

troši svojo poglavitno sestavino vodik in pri tem se spreminjajo sestav, gradba

in drugi fizikalni parametri. Ko uporabi zvezda dobršen del vodika, stopi

v reakcijo helij. in nato v novih okoliščinah še težja jedra. Toda te reakcije

zadoščajo za vse krajši čas, saj imajo zvezde komaj en odstotek atomov, ki so

težji od helija. Po vojni so z računalniki dobili pregled o razvojnih poteh

zvezd z različnimi masami in kemijskimi sestavi, če so privzeli čisto radiativen

ali delno konvektiven prenos energije. Vsaka zvezda ima torej svoje posebno

življenje od nastanka do radiativne smrti.

W. Baade je ugotovil (1944), da so začetne fizikalne značilnosti zvezd

odvisne od njihove lege v zvezdnem sestavu ali galaksiji, ki ji pripadajo.

€ 1pe — 1 parsek <— 3.10" m x 3,26 sv.leta; 1 kpe — kiloparsek, 1 Mpe — 10" pe.
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Vpeljal je pojem »zvrst zvezdnega prebivalstva«. Poglavitne razlike med

zvrstmi so v starosti in kemijskem sestavu. Najstarejša zvezdna zvrst ima do

200-krat manj atomov težjih prvin relativno na vodik, kot najmlajša zvrst.

V naši Galaksiji in verjetno v vsem vesolju se torej s časom spreminja kon-

centracija atomskih jeder posameznih prvin. A za zdaj imamo še zelo nejasne

predstave o razvoju galaksij in kemijskih prvin. |

Res je: že I. Kant je razmišljaj (1755) o razvoju osončja in je skušal
z zakoni mehanike pojasniti, kako naj bi bila njegova sedanja struktura nastala

iz neke bolj enostavne. Vendar so se šele po prodoru jedrske fizike začeli

zavedati pomena časa v astronomiji. Vse — zvezde, zvezdne skupine, galaksije,

opazljivi del vesolja in celo snov: — je v nenehnem razvoju ali evoluciji. To

spoznanje je temeljito spremenilo odnos astronomov do vesolja. Pomislimo samo

na poljudne knjige iz astronomije pred letom 1920, ki so opisovale zgradbo

vesolja kot zgled za, večni red in ustaljeno hierarhijo med njegovimi člani.

V starogrškem pojmu kozmosa je vključen tudi pojem reda.

— Druga skupina vprašanj, ki priteguje vse več fizikov k proučevanju
astronomskih problemov, je v zvezi z odkritjem objektov v vesolju zi izredno

močnim eruptivnim sevanjem. Nekateri znanstveniki so prepričani, da stojimo

pred fundamentalnimi odkritji o snovi, ter iščejo nove ideje. Drugi menijo, da

je za neuspeh v tolmačenju teh pojavov kriva mehanična razširitev veljavnosti

znanih zakonov na okolnosti, o katerih nimamo izkušenj, na ogromne mase

in gravitacijske potencialne energije z velikostno stopnjo mirovne energije.

Tretji opozarjajo, da ne poznamo vseh rešitev enačb splošne relativnostne

teorije in dopuščajo možnost, da je formulacija močno pomanjkljiva (R. H. Dicke).

S temi vprašanji so se astronomi prvič srečali pri proučevanju supernov.

To so zvezde, katerih sijaj se v enem dnevu ali morda celo v nekaj sekundah

stomilijonkrat poveča. Največji energijski tok je 10% do 10%W. Svetilnost

zvezde se šele čez mesece ali leto zmanjša na prvotno vrednost. V nekaterih

primerih je supernova ob maksimumu žarela močneje od galaksije, ki ji pri-

pada. Vsa energija se sprosti v enem sunku, zato govorimo o eksploziji. Izraču-

nali so, da je izsevana energija 10€ do 108 J, kolikor izseva Sonce v dveh

milijardah let. V zvezdnem sestavu, ki ima več desetin milijard zvezd, se pojavi

poprečno po ena supernova vsakih 400 (po najnovejših ugotovitvah morda celo

vsakih "70 let). Po letu 185 naše ere je bilo v naši Galaksiji zanesljivo šest

supernov: v letih 185, 369, 1006, 1054, 1572 in 1604. Ob eksploziji izvrže zvezda za

desetinko do tri sončne mase snovi. Snov se širi v prostor okoli zvezde. Še

dandanes vidni ostanek supernove je meglena tvorba v ozvezdju Bika, znana

kot Rakova meglica (M |). Zvezda je po zapiskih v kitajskih kronikah zažarela

leta 1054 (sl. 1). Radialna hitrost širjenja plinov od zvezde je 1000 km/s, na-

videzna hitrost na nebesnem svodu pa 0,21" na leto. Po primerjavi obeh po-

datkov ugotovimo, da je supernova oddaljena od nas 1100 pe. Meglica ima

zvezen emisijski spektrum z emisijskimi črtami, od katerih so najizrazitejše

vodikove. Energijski tok vidne svetlobe je 1,2.10?% W, Meglica oddaja še radijske

valove, katerih skupni energijski tok pri frekvencah od 9 do 10000 MHz je

2,62.10% W, ter žarke X. Poizkusi, da bi pojasnili te pojave, niso uspeli, dokler

SL1. Meglica Rakovica M1, posledica eksplozije supernove. Z goraj: posnetek skozi
optični filter, ki prepušča samo pas svetlobe okoli emisijske črte H in sosedne

dušikove. Spodaj: posnetek v svetlobi zveznega spektra po izključitvi svetlobe

| emisijskih črt H in dušikove.
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se ni Il. S. Škljovskij zatekel (1953) k idejam N. Herlofsona in H. Alfvena (1950).

Izrazil je domnevo, da je zvezni spektrum od zavornega sevanja relativističnih

elektronov v magnetnem polju, tako imenovanega sinkrotronskega sevanja.

Relativistični elektroni so elektroni s kinetično energija, mnogo večjo od mi-

rovne energije 0,51 MeV. Tako sevanje so fiziki odkrili že prej v pospeševal-

nikih. Zavorno sevanje pa je polarizirano. Zares je V. A. Dombovskij dokazal

(1953), da je vidna svetloba zveznega spektra meglice močno polarizirana in da

se videz meglice pri vrtenju polarizatorja opazno spreminja (sl. 2). Nekaj let

pozneje so isto potrdili za radijske valove z valovno dolžino od centimetra do

decimetra. Danes imamo o pojavu to-le sliko: bivša supernova naj bi bila

izvir magnetnega polja, ki ima v plinskem plašču okoli zvezde gostoto med
105 in 10? gaussa. To je le privzetek, ker zaradi šibke svetilnosti: meglice
neposredno merjenje ni možno. To je pač najmanjša vrednost, s katero shajajo
pri razlagi. Za primerjavo povejmo, da so odkrili komaj opazen Zeemanov

razcep spektralnih črt pri mejni ločljivosti aparature v sevanju nekaterih

najgostejših oblakov. medzvezdne snovi v Galaksiji. Iz tega so sklepali, da

doseže. gostota polja samo na nekaterih mestih v Galaksiji največjo vrednost

5.10—% gaussa. Ob eksploziji supernove nastanejo zelo hitri elektroni in protoni,

ali pa se morda pri neznanem procesu še pozneje pospešujejo. Ti delci se

gibljejo po vijačnicah okrog magnetnih silnic in pri tem oddajajo polarizirano

sevanje z električnim vektorjem v pritisnjeni ravnini tira. Razmeroma po-

časnejši elektroni sevajo radijske valove, hitrejši vidno in še hitrejši ultravijo-

lično in morda celo rentgensko. svetlobo. Tako se je prvič pojavila v astronomiji

misel, da so nekatera nebesna telesa močni izviri netermičnega sevanja. V na-

sprotju s sevanjem črnega telesa porazdelitve gostote svetlobnega toka po

frekvencah ne moremo niti približno opisati z eno samo temperaturo. S to

razlago sta vezani dve predpostavki. Po prvi nastane ob neznanem pojavu pri

eksploziji supernove magnetno polje. Po drugi pa neznan mehanizem nenehno

vbrizguje v prostor hitre delce in jih pospešuje do relativističnih hitrosti (saj

je preteklo že. 900 let od eksplozi ije opisane supernove). |

| Še, resnejše so težave pri poskusu, da bi z zavornim sevanjem razložili
podobne ' pojave pri nekaterih galaksijah. Galaksije so organizirani sestavi
zvezd, zvezdnih skupin in medzvezdne snovi. Vsaka ima od več desetin mili-

jonov do dvesto milijard zvezd. Galaksije so druga. od druga večinoma toliko
oddaljene, da so zanemarljivi medsebojni gravitacijski vplivi. V splošnem so

galaksije ploščate in se vrtijo okrog najkrajše osi. Sonce, vse zvezde, vidne

s. prostim očesom. ter zvezde V Rimski cesti tvorijo. zvezdni sestav. z okoli

dišče leži v smeri proti ozvezdju Strelca V oddaljenosti 10 kpe od Sonca. Gosto |
jedro Galaksije ima premer okoli 750 pe (v njem je še gostejše jedrce) in maso

pet milijonov sončnih mas. Oblaki medzvezdne snovi zastirajo jedro našim

očem, toda nevidno sevanje priča, da so v njem izviri radijskih valov in

žarkov X. Iz jedra nenehno teče snovni tok okoli ene sončne mase na leto.
J. 'Oort (njegova Leydenska šola z vsemi metodami raziskuje zgradbo in di-

namiko Galaksije) meni; da so to morda šibki odmevi davne eksplozije v jedru

Galaksije, namigujoč na možnost dogodka, o katerem bo še govor.

Z najzbližje galaksije M31 v ozvezdju Andromede V razdalji 600 kpe bi
opazili našo Galaksijo kot medlo megleno tvorbo. V. močnem daljnogledu bi
razpoznali poglavitne obrise in morda še posamezne zvezde velikanke, medtem
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ko Sonca ne bi razločili. Radijski teleskop bi nam pa še odkril, da seva Galaksija

radijske valove s skupnim energijskim tokom, ki je samo milijoninka skupnega

optičnega energijskega toka 5.10" W, Podobno je z večino drugih galaksij.

To so normalne galaksije (1950). |
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V milijardi galaksij, ki so vidne po površni oceni s palomarskim zrcalnim

teleskopom, je nekaj desetin galaksij, pri katerih je energijski tok v 12 oktavah

radijskega območja več kot tisočinka energijskega toka v oktavi vidne svetlobe,

ali celo temu enak. To se radiogalaksije (1954). Najbližja radiogalaksija je

'Cygnus A v razdalji 170 Mpc. V vsakem od omenjenih območij seva energijski

tok 5.107 W. To ne more biti posledica visoke temperature. Radijsko sevanje

namreč ne prihaja iz vidnega objekta (optične galaksije), temveč iz dveh ločenih

izvirov, ki ležita simetrično glede na vidni objekt v medsebojni razdalji 80 kpc.

Vsak ima premer 20 kpce. Ta dvojnost radijskih izvirov (»doubling«) je značilna

za večino radiogalaksij. Velika oddaljenost onemogoča nadrobno proučevanje.

Spektrum je šibek, zvezen z emisijskimi črtami večkrat ioniziranih. atomov

kisika, dušika in neona ter s posebno izrazito črto Ha. Kaže, da je svetloba delno

polarizirana. Privlačna je misel, da gre za zavorno sevanje, ki je posledica

davne eksplozije. Galaksija bi morala eksplodirati pred časom, ki bi ga po-

trebovali sevajoči delci, da bi prišli do sedanje razdalje 40 pc od optične

galaksije. Šlo bi torej za podoben pojav, kakor pri supernovah, vendar v mnogo

večjem obsegu. |

Domnevo so sprejeli šele potem, ko sta C. R. Lynds in A. R. Sandage
zasledila galaksijo v stanju eksplozije in ko sta temeljito analizirala njene

optične lastnosti (1963). To je galaksija M 82 v ozvezdju Velikega Medveda. Na

navadnih fotografijah v integralni svetlobi na »normalnih« ploščah (sl. 3) ima

Sl. 3. Galaksija M 82; 30-minutni posnetek s teleskopom na Mt Palomaru (D < 506 cm);

skozi fotovizuelni filter na plošče 103 a-0 (Lynds in Sandage).

galaksija obliko nepravilnega; vretena s komaj naznačenimi vlaknastimi tvor-

bami ob robovih. Galaksija je oddaljena 3 Mpc in ima premer 7 kpc. Zaradi

razmeroma majhne oddaljenosti jo je možno proučiti podrobneje. V njej ne

moremo razločevati posameznih zvezd, zato jo prištevamo k nepravilnim ga-

laksijam. Iz radialnih hitrosti posameznih svetlih vozlov sledi, da je njena masa

enaka 20 milijardam sončnih mas. Na fotografijah z optičnim filtrom, ki pre-
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pušča 80 A širok pas svetlobe okoli črte Ha, so najbolj izrazite vodikove vlak-

naste tvorbe. Le-te se raztezajo v obe strani znotraj dvojnega stožca vzdolž

vrtilne osi galaksije (torej vzdolž najkrajše osi na sl. 3) do razdalje 4 kpe od

jedra (sl. 4). Omenjena avtorja sta najprej določila naklon vrtilne osi proti

Sl. 4, Galaksija M 82; 180-minutni posnetek na plošči 103a—E skozi interferenčni
filter Ha s polširino 80A. (Lynds in Sandage)

zveznici z Zemljo in ugotovila, da se snov oddaljuje od galaksije in da gre

torej za eksplozijo in ne za implozijo. Hitrost oddaljevanja je sorazmerna

z razdaljo od središča galaksije. Pri merjenju je bila reža spektrograia vzpo-

redna z vrtilno osjo. Na vrhu najdaljšega vlakna meri hitrost 2700 km/s. Iz te

enačbe 2700 km/s. t — 4 kpce sledi, da je jedro eksplodiralo pred 1,5.10$ leti. Ob

upoštevanju navzočnosti prepovedanih črt drugih elementov v spektru dobijo iz

jakosti črte Ha za koncentracijo vodika v vlaknih 10 protonov/cm?, Iz prostornine

dvojnega stožca, ki ga zajemajo plini, dobijo skupno maso 5.10% sončnih mas

in za skupno kinetično energijo 3.10€ J,

Snov v prostoru med vlakni seva zvezen spektrum in svetloba je za 15 %

polarizirana z električnim vektorjem v ravnini, pravokotni na, vrtilno os ga-

laksije. Gre torej verjetno za zavorno sevanje v magnetnem polju, ki je

vzporedno z vrtilno osjo. Po analogiji z našo Galaksijo privzamemo, da je

magnetna poljska gostota 5.107% gaussa ali manjša. Skupna energija je po-

razdeljena na elektrone z največjo kinetično energijo do" 5.10!" eV in je enaka

9.107 Js; to je enako skupnemu svetlobnemu toku pri vseh frekvencah, po-

množenemu z dosedanjim trajanjem, to je 1,5.10$ let. Upoštevajoč majhne učin-

kovitosti procesov, pri katerih se mehanična energija pretvarja v energijo

sevanja, cenijo, da se je ob eksploziji sprostila energija 10505! J, Le-ta ustreza.

energiji istočasne eksplozije nekaj milijonov supernov. |

Dokazano je torej, da lahko jedra galaksij eksplodirajo, da nastaja pri tem

netermično sevanje in da so posledice vidne še milijone let. Podobne pojave:

% Enačba za frekvenco najmočnejšega sinkrotronskega sevanja je: j, —

— 4,610" B, W". Močno seva M 82 še pri frekvenci 10'"s-' <— 3000 A; B, je nor-

malna komponenta gostote magnetnega polja V gaussih in W kinetična energija
elektronov v ev.
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so kasneje zasledili še pri številnih drugih galaksijah. V. A. Ambarzumjan

je prvi astronom, ki je že leta 1958, oslanjajoč se na različne argumente, uteme-

ljeval domnevo, da imajo jedra pomembno vlogo ter da določajo notranjo gradbo

in razvojno pot galaksije."

Galaksija M 82 je šibkejši radijski izvir in oddaja energijski tok 4. 10: W.
Če je pojav radiogalaksije Cygnus A, ki ima 105-kratno moč radijskega sevanja,

tudi posledica eksplozije njenega jedra pred milijonom let, se je tedaj sprostila

energija najmanj 10% J.

Ob tej razlagi pojava je treba poudariti, da so nerazvozlana še vprašanja
G izviru energije, načinu sproščanja hitrih delcev, nastanku magnetnega polja

in tudi razlog, zakaj se največ energije javlja kot netermično sevanje.

Manj pregledna so dogajanja pri nedavno odkritih posebnih objektih.
V tretjem cambridgškem katalogu (3 C) točkastih radijskih izvirov so številni

radijski izviri, za katere dolgo niso mogli na nebu najti ustreznega optičnega

objekta. Šele ko je Hazardu v Manchestru uspelo z interferenčno metodo

z radijskima teleskopoma v razdalji do 180 km določiti lege radijskih izvirov

z natančnostjo 1", so vsaj za nekatere ugotovili, da so šibka svetila z videzom

zvezdic. Zato so jih imenovali »guasi stellar radio sources«, to je, zvezdoliki

radijski izviri, skrajšano GSS5, ali v strokovnem žargonu »kvazarji«. Njihov

navidezni premer je odvisen od valovne dolžine in'je v nekaterih primerih pri

metrskih valovih celo manjši od 0,02" (zaradi turbulence je praktična meja

optične ločljivosti 1"). Optični spektrum je zvezen in najsvetlejši v območju

kratkih valov (»blue excess«). Vsebuje emisijske črte in redko kdaj manj

izrazite absorpcijske črte, ki po svoji valovni dolžini ne ustrezajo znanim črtam

v atomskih spektrih. M. Sehmidt je s srečno intuicijo uganil (1963), da pripadajo

znanim lažjim atomom, da pa so močno premaknjene proti rdečemu delu

spektra (»redshift«). To je posledica Dopplerjevega pojava zaradi velike hitrosti,

s katero se ti izviri oddaljujejo od nas. Gre torej za zelo oddaljene galaksije

posebne vrste.

Zaključek sloni na empiričnem opravilu, ki ga je odkrilE. Hubble (1920),
namreč, da se oddaljujejo jate galaksij od nas in druga od druge s hitrostjo,
ki je sorazmerna z njihovo oddaljenostjo: v— H.r. Linearnost zakona so po-

trdili do razdalje okoli 100 Mpc. Najverjetnejša vrednost Hubblove konstante

je H <— 100 km.s"! ((Mpc)"! — 3,2.10-% (em/s)/cm. Za vsak Mpe razdalje se hitrost

odmikanja zveča za 100 km/s. Iz opazovanj dobimo relativno spremembo va-

lovne dolžine /44/2. Če je radialna hitrost majhna proti svetlobni, je ta ulomek

enak razmerju v/c. Iz enačbe izpeljemo radialno hitrost v in iz Hubblovega

pravila razdaljo r. Pri hitrostih, ki niso majhne proti c, je treba uporabiti

relativistično obliko zveze med /)% in v. Tudi zveza med v in r ni več linearna

in je odvisna še od privzetka o geometrični strukturi sveta. IM

Že pri najbližjem kvazarju 3 C-273 je //) — 0,158 in v — 0,15c. Raz-

daljo cenijo na približno 660 Mpe. Pri zelo oddaljenem kvazarju 3C-9 je

AMA — 2,0 in v — 0,8c, razdalja pa je znana zelo nezanesljivo in je morda dva

tisoč ali več Mpe, posle; največja opazovana relativna sprememba valovne

dolžine je 42/4 — 2,2; vodikova črta L, z laboratorijsko valovno dolžino 1216 A

". Novejše ugotovitve potrjujejo Ambarzumjanovo misel. Prav zato mu je na
kongresu Mednarodne astronomske unije v Pragi leta 1967 Karlova univerza podelila
častni doktorat, »for his insight«, kakor je v svoji utemeljitvi navedel A, Sandage.
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je v spektru premaknjena do valovne dolžine 3900 A. Danes poznamo okoli

150 kvazarjev, radialno hitrost pa so izmerili le pri 90 od njih.

Kotni premer kvazarja je odvisen od valovne dolžine, pri kateri merimo.

Očitno so. kvazarji grajeni v plasteh. Merjenim kotnim premerom ustrezajo

navzlic velikim razdaljam nepričakovano majhni linearni premeri z velikostno

stopnjo 100 pc, medtem ko je poprečni linearni premer normalnih galaksij

okoli 10 kpe. Kvazarji so torej izredno kompaktne galaksije; ki niso večje od

jedra pri normalnih galaksijah. Danes je v veljavi naslednja delovna hipoteza

o njihovi zgradbi: v zunanjem plašču s premerom 100 pc ali več oddajajo

relativistični elektroni v magnetnem polju z gostoto 1075 do 107" gaussa radijsko

sevanje v območju metrskih valov. V tem plašču so še nevtralni atomi vodika

in v njem nastajajo morebitne optične absorpcijske črte. Premer vmesne plasti

je 40 pec ali morda samo 1pce: tu oddajajo hitrejši relativistični elektroni

radijsko sevanje v območju centimetrskih valov in tu nastajajo optične emisijske

črte. V vmesni plasti so tudi protoni. Privzamejo še obstoj notranjega jedra

s premerom 0,1 pc ali manj. V jedru naj bi bilo magnetno polje z večjo gostoto,

morda do sto gaussov. V njem bi bila snov v še neznanem stanju.

Izsevani energijski tok vidne svetlobe doseže pri kvazarjih okoli 10? W,

kar ustreza 50 do 100-kratnemu skupnemu energijskemu toku naša Galaksije.

Radijski energijski tok je stotinka energijskega toka vidne svetlobe. Kvazarji

so najsvetlejša telesa v vesolju. Na moremo razložiti, kako naj bi razmeroma

majhno telo oddajalo tolikšen energijski tok. Če gre za eksplozijo jedra pred

poldrugim milijonom let, kot pri galaksiji M 82, pri čemer se je pretvoril 1 %/6

mirovne energije v sevanje, se je tedaj sprostila energija 10% ali celo 10% J.

Ob privzetku, da ima kvazar maso največje galaksije, okoli 4.10" kg, in da

sestoji iz čistega vodika, je razpoložljiva jedrska energija enaka 2,5.10"5 J,

Dobršen del te energije bi se moral sprostiti ob eksploziji v enem sunku. Ta

možnost je po današnjem znanju izključena. Pri kvazarjih nastopajo procesi,

ki so učinkovitejši od jedrskih."

Trenutno raziskujejo, če sevajo vsi kvazarji približno enak energijski tok

in če je disperzija posameznih vrednosti dovolj majhna. Če bi bilo tako, bi po

primerjavi z navidezno optično ali radijsko svetilnostjo, ki jo izmerimo z

aparati na Zemlji, dobili njihovo stvarno razdaljo neodvisno od Hubblovega

pravila. Tako bi utegnili priti do formulacije tega pravila, ki bi veljala tudi

za razdalje, večje od 100 Mpc. Na drugi strani poskušajo določiti nagostnost

kvazarjev v odvisnosti od razdalje. Po tej odvisnosti pri zelo velikih razdaljah

bi lahko izbrali pravega med predloženimi matematičnimi kozmološkimi modeli.

in spoznali tako geometrično strukturo prostora. Zamisel je dobra, toda najbrž

neizvedljiva. Statistične metode terjajo namreč množico, kvazarji pa so redki;

po eden pride na več deset milijonov galaksij.

A. Sandage se je vprašal (1965), kaj so zvezdam podobni in modrikasto

svetlikajoči se objekti okrog pola Galaksije. V tej smeri ima namreč svetloba

najkrajšo pot skozi Galaksijo do osončja in so izgube zaradi absorpcije v med-

" Da bi se izognili tem težavam, so nekateri predložili drugačne razlage.

Za vsako od njih govori nekaj argumentov, prav tako močni so pa nasprotni argu-

menti. Na kongresu Astronomske unije v Pragi 1967 se je pokazalo, da zastopa večina

najuglednejših znanstvenikov navzlic kopičenju novih težav »kosmološko« teorijo

kvazarjev, ki smo jo skušali pojasniti v tem članku. Izjema je morda šola okrog

F. Hoyla, ki skuša reševati lastno teorijo o stacionarnem vesolju (»steady state

cosmology«).
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zvezdni snovi najmanjše. Zato sega tu naš pogled najgloblje. Na te objekte! so

bili opozorili G. Haro, F. Zwicky in drugi. Nagostnost teh objektov kot funkcija

njihove navidezne svetilnosti, ki je približna mera za razdaljo, ima nepravilen

potek na intervalu navideznih svetilnosti, torej razdalj, med 12 in 15. Pri še

šibkejših objektih od 16" naprej pa je spet gladka. Sandage je sklepal, da gre

pri slednjih za objekte zunaj naše Galaksije. Videz spektrov to potrjuje: svetlejši

objekti do 122 so večinoma zvezde — bele pritlikavke — v Galaksiji. Spektri

šibkejših objektov pa so po omenjenem modrem presežku (»blue excess«) in po

zelo velikem premiku emisijskih črt proti rdečemu delu spektra podobni

spektru kvazarjev. Tudi ti objekti so torej kompaktne zvezdolike galaksije

(»guasi stellar galaries« ali skrajšano OSG), ki pa ne oddajajo radijskega

sevanja (nekateri jim pravijo »radio guiet galaxies«)." Ker so v vesolju stokrat

nagostnejši od kvazarjev, so primernejši predmet v statističnih metodah.

A. Sandage pričakuje, da bodo že v bližnji prihodnosti na podlagi opazovanj

izbrali pravo teorijo med vsemi možnimi kozmološkimi teorijami. Z današnjimi

napravami lahko namreč merijo Dopplerjev premik pri galaksijah do /14/2 — 5.

Temu ustreza premik ultravijolične črte vodika La v infrardeče območje. Ne-

jasno se kaže, da radialne hitrosti zelo oddaljenih galaksij vse počasneje na-

raščajo z razdaljo. Če je tako, se mora širjenje vesolja nekoč zaustaviti in mu

znova slediti krčenje. To bi se skladalo z enim od predloženih matematičnih

modelov. | | |

Optimizem pa se močno maje ob pomisleku, da so objekti GSS, ASG in

radiogalaksije morda le posamezne stopnje v razvoju določenih tipov galaksij.

Pogled v globine prostora je hkrati pogled v davno preteklost. Galaksijo v raz-

dalji na primer 5 milijard svetlobnih let vidimo takšno, kakršna je bila v mlajši

dobi svojega razvoja pred petimi milijardami let, ko Zemlja še ni obstajala.

Fizikalne značilnosti galaksij pa so odvisne od njihove starosti. Dokler ne bodo

znane poti njihovega razvoja, ne bo mogoče primerjati in statistično obdelovati

galaksij v različnih razdaljah. Vrtimo.se torej v krogu. |

O teh skrivnostnih objektih bi se dalo še povedati marsikaj. Toda to ni

namen tega članka. Povzemimo pomembnejša in splošno sprejeta dognanja!

Notranja zgradba in sestav zvezd ter organizacija zvezdnih skupin so v ne-

nehnem spreminjanju. Razvojne poti zvezd z različnimi masami so dokaj pre-

gledne. Nejasen je potek zadnje faze pred svetlobno smrtjo; močno problema-

tičen je proces nastanka posamezne zvezde. Tehtna je vloga magnetnih polj tako

pri zvezdah kot pri galaksijah, a verjetno še ni dokončno ocenjena. Ob eksplo-

zijah supernov nastajajo pri še neznanih procesih magnetna polja in relativi-

stični delci ter močna netermična sevanja. Netermično sevanje je v vesolju zelo

pogostno. V večjem merilu se dogaja to pri eksploziji jeder nekaterih galaksij,

ko se sprosti ogromna energija, ki je ne morejo kriti samo jedrske reakcije.

Iščejo bogatejše energijske izvire in učinkovitejše procese. Odkrili so nove

zvrsti zelo kompaktnih galaksij in razširili radij opazljivega vesolja do razdalj

nekaj milijard parsekov. Možnosti, da bi spoznali strukturo vesolja kot celote,

so se povečale. Jate galaksij se oddaljujejo druga od druge in vesolje se širi

tako, kakor da bi bila vsa snov pred 10.10? leti zbrana v zelo gosti kepi. Galaksije

naj bi bile nastale ob eksploziji tega prajedra. Števila atomov težjih prvin proti

" Nedavno so ugotovili, da oddajajo komaj merljivo radijsko sevanje z gostoto .
toka na Zemlji okoli 107" W/m? Hz.
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številu vodikovih atomov se v galaksijah s časom spreminjajo. Vesolje kot

celota je v spreminjanju, v evoluciji.

Vsi ti izsledki imajo tudi spoznavno teoretski in splošno filozofski pomen:

o lastnem mestu v vesolju razmišljujoči duh ne more mimo njih. V tej zvezi je

razumljivo, da je na primer filozofski inštitut Sovjetske akademije znanosti

vključil v delovni načrt za prihodnja leta razpravljanje o »revoluciji v razisko-

valnih metodah sodobne astronomije in njenem filozofskem pomenu«, oj »filo-
zofskih aspektih pojma vesolja« in o »sodobnera postavljanju kozmološkega

problema«.

Sodobna astronomija je odprla popolnoma nove vidike in terja od astro-

nomov in od drugih ljudi preusmeritev v odnosih do kozmosa. Vendar kot

sodobniki težko dojamemo in pravilno ocenimo pomen dogajanj in odkritij za

prihodnost. Morda je tudi v tem pogledu' globlja sorodnost s problematiko, ki

sta jo sprožili Galilejevi knjigi »Nuntius sidereus« (1609) in »Razgovori o dveh

svetovnih sestavih, ptolemejskem im kopernikanskem« (1632), namenjeni stro-

kovnjakoim in vsem razumnikom tiste dobe.
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NOVICE

NOVA DOGNANJA O FOURIEROVIH VRSTAH

Nedavno sta bila rešena dva problema o Fourierovih vrstah, ki sta bila

že dlje časa odprta. Preden o tem kaj več povemo, naj omenimo nekaj

znanih dejstev.

Če je funkcija f(x) na intervalu [0,2 77] integrabilna, obstoje integrali

1 2x

a; — — |f(r)cosnadr; n<—0,1,2,..

z o

1 27 ()
b, <— — (f(r)sinnedre; ns<1,2,3,...,

udKO ,

in je formalno možno zapisati funkciji f (x) prirejeno Fourierovo vrsto

z do F (aj cosxa - bjsina) - (aacos2x bosinža) -... (2)

Seveda nas zanima, ali je narejena vrsta pri kakšnem x konvergentna, in če je,

ali je njena vrednost kar f(x). Iz same integrabilnosti funkcije f(x) se glede

tega ne da nič dognati. To vemo, odkar je Kolmogorov podal primer integrabilne

funkcije, katere Fourierova vrsta divergira v vsaki točki. Če naj bo torej

Fourierova vrsta funkcije f (r) konvergentna, je treba privzeti, da ima funkcija

j (x) močnejše lastnosti, kot je integrabilnost. Bralcu so znani raznovrstni

izreki, ki o tem govore.

Obrnimo se zdaj k prvemu problemu. Med raznimi tipi funkcij, ki jih ima

matematika na zalogi, so prav vsakdanje zvezne funkcije. Zato se je že zdavnaj

zastavljalo vprašanje, kako je s konvergenco Fourierove vrste za funkcijo j (x),

ki je zvezna na intervalu [0,2 7]. Vendar kakšnih izsledkov o tem dolgo ni

bilo. Pred približno štiridesetimi leti je L. N. Luzin izrekel domnevo, da je

v takšnem primeru Fourierova vrsta skoraj povsod konvergentna. Ko tej

domnevi precej časa niso našli potrditve, se je že dozdevalo, da domneva morda

ni pravilna. Rešitev je prinesel neki izrek, ki ga je leta 1966 dokazal švedski

matematik L. Carleson. Po tem izreku je Fourierova vrsta vsake funkcije iz

prostora La [0,2 7] skoraj povsod konvergentna. Kot je znano, so v La [0,2 zz] vse
27

funkcije s sumabilnim kvadratom, tj. tiste, za katere je 4J"' (x) dx < oo. Ker na
O

intervalu [0,2 z] zvezna funkcija ustreza navedeni zahtevi, je s Carlesonovim

dokazom potrjena tudi pravilnost Luzinove hipoteze. Naj še pripomnimo, da je

v Luzinovi hipotezi obseženo največ, kar je mogoče trditi. To sta degnala tudi

leta 1966 J. P. Kahane in Y. Katznelson. Pokazala sta namreč tole: Če vzamemo

na intervalu [0,2 z] poljubno množico M z mero nič, lahko vedno dobimo na tem

intervalu zvezno funkcijo, katere Fourierova vrsta divergira na množici M,

drugje pa konvergira.

Opišimo nekoliko še drugi problem. Denimo, da poznamo Fourierove

koeficiente (1) neke zvezne funkcije f (x) in nas zanima vrednost funkcije f (x)

pri posameznih x. Ali lahko iz znanih Fourierovih koeficientov zvezne funkcije
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najdemo funkcijo samo? Če bi bilo to možno, bi morala vrsta (2) za vsak x

med 0 in 2 konvergirati proti j (6). Da ni tako, vidimo med, drugim iz vsega,

kar je bilo povedano zgoraj ob Luzinovi domnevi. Na to dejstvo je pred skoraj

sto leti že tudi opozoril z ustreznim primerom Du Bois-Reymond. Vidim tedaj,

da je ortonormirani sistem 1/ V2 1, COS x/ Vo, sin x/ Va, cos: 2 x/ V a, sin 2 x/ V TT, »..
takšen, da v njem iz znanih Fourierovih koeficientov zvezne funkcije ne moremo

rekonstruirati te funkcije. Tu se je pojavilo vprašanje, ali se vsi ortonormirani

sistemi obnašajo na ta način. Določneje: Ali je kakšen tak ortonormiran sistem,

v katerem Fcourierova vrsta zvezne funkcije f (x) konvergira povsod: proti J (x)?

To je drugi problem, ki je bil prav tako l. 1966 rešen. A. M. Olevskij je dokazal,

da je odgovor negativen. Ni omejenega ortonormiranega sistema, v katerem bi

Fourierova vrsta vsake zvezne funkcije konvergirala k tej funkciji v vseh

točkah.

J. Grasselli
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NOV POSKUS K TEORIJI GRAVITACIJE

Teorijo gravitacije naj bi potrdili trije pojavi: premik frekvence svetlobe,

ki prihaja z zvezd, proti rdečemu delu spektra, odklon svetlobnega curka

z zvezde pri prehodu mimo Sonca in sukanje Merkurjevega perihelija. Za zdaj

rezultati pri teh poskusih ne potrjujejo nedvoumno nobene teorije gravitacije.

Zaradi tega vneto iščejo možnosti za nadaljnje poskuse. V zadnjem času je

zanimanje za take poskuse močno naraslo zaradi dvomov v splošno teorijo

relativnosti. Predlaganih je več poskusov, a večina od njih je z današnjimi

merilnimi napravami in sredstvi komaj izvedljiva. Izredno pomemben bi bil

poskus, ki bi nedvoumno potrdil ali Einsteinovo splošno teorijo relativnosti ali

Dickejevo tenzorsko-skalarno teorijo. To bi zahtevalo nenavadno dobro na-

tančnost, saj se napovedi obeh teorij razlikujeta samo za nekaj odstotkov. Zato

je dobrodošel vsak nov poskus, čeprav se njegov rezultat v okviru dosegljive

natančnosti sklada z obema navedenima teorijama in po njem ne moremo

sklepati, katera od njiju je prava.

Tak je poskus, o katerem je ob koncu februarja poročal I. I. Shapiro na

sestanku ameriškega fizikalnega društva v Bostonu.) Predhodni rezultati se

v okviru dosežene natančnosti skladajo tako s splošno teorijo relativnosti kot

s tenzorsko-skalarno teorijo.

Pred štirimi leti je Shapiro predlagal, da bi merili zakasnitev radarskih

valov v gravitacijskem polju.6) V teoriji gravitacije ima elektromagnetno valo-

vanje hitrost co (< 3,0.108 m/s) samo v praznem prostoru, v katerem ni gravita-

cijskega polja. V gravitacijskem polju je hitrost tem manjša, čim večja je

absolutna vrednost gravitacijskega potenciala. Curek radarskih valov naj bi

usmerili proti Merkurju ali Veneri in merili čas, ki ga potrebujejo valovi do

planeta in nazaj na Zemljo. Gravitacijsko polje planetov je zanemarljivo v pri-

meri z gravitacijskim poljem Sonca. Zato je treba upoštevati samo zakasnitev
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valov v gravitacijskem polju Sonca. Zakasnitev je tem večja, čim bliže Sonca.

gre curek radarskih valov, saj je gravitacijski potencial obratno sorazmeren

z razdaljo od središča Sonca. Največja bi bila zakasnitev, ko bi bil planet skoraj

na nasprotni strani Sonca kot Zemlja, to je blizu zgornje konjunkcije, in bi

curek valov šel mimo Sonca v majhni razdalji (sl. 1, lega 1). Ko je planet med

VA f NI

VA , hi N Ž h N

J LAN .. —
U N v, X a

Sl. 1. Lega Zemlje, Merkurja in Sonca blizu zgornje konjunkcije (1) in v spodnji

konjunkciji (2).

Soncem in Zemljo, v spodnji konjunkciji (lega 2), se curek najmanj približa

Soncu in je zakasnitev najmanjša. Račun po splošni teoriji relativnosti da za

največjo zakasnitev okoli 160,s in za najmanjšo manj kot 20,s. Potovanje

radarskih valov do Merkurja in nazaj traja največ približno 25 minut. S so-

dobnimi napravami je izvedljivo merjenje časov več deset minut z relativno

natančnostjo okoli 10"$, | |

Planetne razdalje merijo z odbojem radarskih valov že več let." Vendar

radarji, s katerimi so merili planetne razdalje v letu 1964, za Shapirov poskus

niso bili uporabni. Pri prehodu mimo Sonca mora namreč curek valov skozi

sončno korono. V njej je množica elektronov, ki prav tako zmanjšajo hitrost

valov. Na srečo je to zmanjšanje obratno sorazmerno s kvadratom frekvence

in se mu pri dovolj visoki frekvenci izognemo. Pri radarskih valovih s frekvenco

0,43 GHz (1 GHz < 10" s-i), kakršne oddaja na primer radar postaje v Arecibu

v Porta Ricu, bi bila zakasnitev zaradi elektronov v koroni več sto mikro-

sekund. Pri valovih s frekvenco na primer 10 GHz pa bi bila ustrezna za-

kasnitev manjša kot 1 us. | |

V Lincolnovem laboratoriju pri massačhusettskem tehnološkem inštitutu

so se lotili izdelave radarja, ki bi seval valove s frekvenco 8,35 GHz in ki bi

v sunkih izseval energijski tok do 500 kW. Ta radar je začel delovati proti koncu

leta 1966."" Zaradi raznih zaprek je dosegel sprva samo polovični pričakovani

energijski tok in oddaja v zadnjem času največ energijski tok 350 kW. Valo-

vanje, ki se odbije na planetu in vrne do sprejemne antene, ojačijo v maserskem

k Glej članek F, Dominka: Astronomija danes v tej številki Obzornika!

'" Pravijo mu kar radar haystack (senena kopica), ker je na robu inštitutskega

ozemlja v lopi ob travnikih.
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RIKI

ojačevalniku. Le-tega hladijo s tekočim helijem, da ima čim nižji šum in lahko

zaznava še energijske tokove okoli 107" W.

Merijo zakasnitev zaradi gravitacijskega polja dt < 1—(, pri čemer je t

čas, ki ga potrebujejo valovi za pot do planeta in nazaj, in to izračunani čas

za isto pot, če bi bila hitrost svetlobe konstantna in enaka co. Čeprav poznajo

razdalje planetov precej natančno, ne morejo izračunati to z relativno natanč-

nostjo 107%, Vendar to ne moti, ker merijo spreminjanje zakasnitve dt v od-

visnosti od navidezne lege planeta proti Soncu. Glavna podatka nista na

primer dt; in ote vsak zase, ampak njuna razlika v odvisnosti od navidezne

lege planeta. Pri tem se nanaša indeks na lego planeta (sl. 1).

Radar ne oddaja v zelo kratkotrajnih sunkih, kakor na primer oddajajo ra-

darji, ki zaznavajo letala. Oddaja daljše valovne poteze, v katerih pa se spreminja

faza valov na: določen način. Zaradi tega lahko z obdelavo ojačenega odbitega

curka dobijo informacije o trajanju potovanja in še nekatere druge podatke.

Signale vodijo iz elektronske naprave naravnost na računalnik, ki avtomatično

upošteva relativno gibanje antene glede na planet in druge popravke in za-

beleži končni rezultat.

Merili so cb času zgornje konjunkcije Venere 9. novembra. 1966 in med

zgornjimi konjunkcijami Merkurja 18. januarja, ll. maja in 24. avgusta 1967.

Predhodni rezultati kažejo, da se merske točke lepo ujemajo s krivuljo, ki jo

da za zakasnitev dt v odvisnosti od lege Merkurja splošna teorija relativnosti."

Poprečje izmerjene zakasnitve (8t)izm je |

(Ot)izm — (0,9 t 0,2) (Št);

pri čemer je (0t); izračunano poprečje po splošni teoriji relativnosti. Po Dickejevi

tenzorsko-skalarni teoriji je (0t)p <— (1 — s) (0t), < (1 — 0,06) (ot); <— 0,94 (ot),.

Pri tem skalarni del gravitacijskega polja ne vpliva na hitrost elektromagnet-

nega valovanja in je delež skalarnega dela gravitacijskega polja s <— 0,06.40

V okviru negotovosti dobljenega rezultata sta tako vrednost 1.(0f); po splošni

teoriji relativnosti kot tudi vrednost 0,94 (dt); po tenzorsko-skalarni teoriji.

Zaradi velike negotovosti rezultat ne daje prednosti prvi ali drugi.

Negotovost več kot 20 '/« ima dva vzroka. Najprej se je pokazalo, da je

bila napaka v vezju računskega stroja. Medtem so del obdelanih podatkov že

zavrgli in so ustrezni popravek lahko upoštevali le naknadno, kar je bilo zvezano

z dodatno negotovostjo. Drugi vzrok za veliko negotovost je resnejši. Pri mer-

jenju planetnih razdalj z radarjem v Arecibu in z novim radarjem Lincolnovega

laboratorija so opazili naključne spremembe zakasnitev za deset in več us. Teh

sprememb za zdaj še ne znajo pojasniti.

Navzlic negotovosti je rezultat poskusa pomemben, saj potrjuje pre-

pričanje, da je veljavna teorija gravitacijskega polja ali Einsteinova splošna

teorija gravitacije ali Dickejeva tenzorsko-skalarna teorija. Upajo celo, da bodo

morda lahko natančnost toliko izboljšali, da bodo mogli izbrati pravo izmed

obeh navedenih teorij."

" Pri tem je za ameriške fizike nenavadna in nova trditev, da zadnja izpopolni-

tev zaradi pomanjkanja denarja verjetno še ne bo izvedljiva tako kmalu.
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Po statičnem gravitacijskem polju se širi elektromagnetno valovanje kot

po sredstvu z lomnim kvocientom n — (1 -- 2 V/c,?)-4, pri čemer je V gravita-

cijski potencial. Hitrost valovanja je tedaj

— co (1 - 2 V/co?)"4

Poleg tega je treba upoštevati, da teče ura v gravitacijskem polju počasneje kot

v prostoru brez gravitacijskega polja ali z zanemarljivim gravitacijskim poljem,

na primer na Zemlji. Pri računanju časa potovanja t, ki ga merimo z zemeljsko

uro, je treba zato upoštevati zvezo z lastnim časom 7

dz — dt(1 2 V/c))-4

Prirastek poti je ds — cdr in dobimo

dt — ds/co (1 - 2 V/ce?) — (1 — 2 V/cs?) ds/co — ds/co (2 x mg/$).. ds/r

Upoštevali smo, da je gravitacijski potencial 'Sonca V <— — x mg/r, z gravita-

cijsko konstanto x -- 6,7.10—4 Nmž/kg?, maso Sonca mg < 2.10) kg in razdaljo

od središča Sonca r. Člen 2 V/c,? je tako majhen, da smol. se lahko: zadovoljili

z linearnim približkom. V prvem členu na desni strani ds/c, — dts spoznamo
prirastek časa to, ki bi ga potrebovalo elektromagnetno valovanje za isto pot,

če bi bila njegova hitrost povsod enaka c,. Tako dobimo

s?"

Ot — t— to — 2 (2 x mg/co) | ds/(ro? -- s?)"2 —
— s?

— (4 x ms/ce?) In [(s"2 -- re)% -- s"]/[s? - ra) — s]

Pri tem je r? — ro? - s" in je Tr, razdalja; središča Sonca od curka, ki ga vza-
dla x" daja ol daliri 1 Zodobnih računih v geometrijski optiki, ko je

l u | ] L. l l H

20 30 10 20 30 10 20 30

MAJ JUKU JULIJ AVGUST SEPTEMBER

Sl. 2. Zakasnitev dt radarskih valov v gravitacijskem polju Sonca po odboju na

Merkurju. Krivuljo so izračunali z enačbo, ki je navedena na koncu sestavka. Točke

so dobljene kot poprečja posameznih merjenj. Navpične črtice pri dveh točkah

kažejo tipično efektivno napako. Manjše zakasnitve kot nekako 60 us (v bližini spodnje
konjunkcije) zaradi vse večjih relativnih napak niso vnesene v diagram"
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lomni kvocient majhen. s' je razdalja od Zemlje do točke, v kateri je curek

najbližji Soncu, in s" razdalja od te točke do planeta. S faktorjem. 2 smo

upoštevali, da opravi valovanje pot dvakrat.

Naš račun še ni popolnoma v duhu splošne teorije relativnosti. Tak račun
da k zgornjemu rezultatu še majhen dodatek

— % (4 x mslco$) [s"/(s"? -- rež) - (2s' s")/(s? - ro?)"]

Pri zgornji konjunkciji je razdalja s" približno enaka radiju planetnega tira a"

in s približno radiju Zemljinega tira a' ter je 1, dosti manjši kot a' ali a". Tako

dcebimo (80t), <— 4 x mg/c,$) [In 4 a'/rs? — 3 (3 -- a"/a)]. Pri spodnji konjunkciji je

s — a in s! — —a", tako da dobimo (0t)2 — (4 x mg/c,5] [In a" — 3 (1 — a'/a'l.

Za oceno računamo s podatki: a' — 1,5.11!! m, a" <— 0,57104 m ter ro — 2 rg —

— 2,71.10% m in dobimo (dt), < 150 us in (0t)s < 13 us. Pri tem vzamemo, da gre

v prvem primeru curek mimo Sonca v razdalji dveh sončnih radijev rg od

središča. Zaradi kotne ločljivosti radarske antene okoli 1% namreč ne morejo

usmeriti curka dosti bliže Soncu. |

| J. Strnad
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ŠOLA

LIPRIMER UPORABE KVADRATNE FUNKCIJ!

Prof. I. Vidav navaja na strani 35l. prvega dela svoje knjige Višja ma-

tematika, Ljubljana 1949 dokazljivost naslednje trditve: Če imata kvadratna

trinoma aa? - ba -t c in da? - ex ft f realne koeficiente in je vsaj eden, na,

primer da? -- ex - f, realno nerazcepen, potem je vedno mogoče dobiti taki

realni števili u in pe, da preideti trinoma po substituciji x < (ut t h)/(t " €)

v binoma oblike At? - B in Ct - D.

Če naj po izvršeni substituciji odpadeta linearna člena trinomov, mora

biti au -buorbt2co—0 in 2žduteue re z2fe<9. Po elimina-

ciji neznanke o dobimo za ,x enačbo (ae — bd) yu? -- 2(af — cd) u - (bf — ce) — 0

z diskriminanto Dj; — 4 [(af — cd)? — (ae — bd).(bf — ce)]. Če smatramo c za

spremenljivko, je Di kvadratna funkcija te spremenljivke. Uredimo jo in dobimo

D; —4d?c? —4(2adj — ae? - bde)c - 4(a?f? — abef r b?'dj

Diskriminanto te kvadratne funkcije lahko pretvorimo na obliko

Ds — 16(ae — bd)?.(e? —4 df)

Ker je trinom da? -- ex - f realno nerazcepen, je e' —4 dj <0 in zato tudi

Ds < 0. Ker ima kvadratna funkcija z negativno diskriminanto za vsako vred-
van, zb a am ale mm sm Zž mim m um tim rosa z D MO S ai nad) 1 i ča h

nost spremenljivke predznak koeficienta kvadratnega člena, je D; > 0, iz česar

sledi, da ima enačba za v realna korena.

I. Molinaro

ANIZOTROPNOST LESA ZA MIKROVALOVE

Polarizacija svetlobe je za začetnika eno izmed težjih poglavij valovne

optike. Razumevanje tega pojava pa olajšamo, če uvajamo polarizacijo postopno.

Prvič obravnavamo polarizacijo in razliko med linearno polariziranim in ne-

polariziranim valovanjem že pri transverzalnem valovanju po prožni vrvi. Pri

tem služi kot polarizator ozka reža. Pozneje ugotovimo pri elektromagnetnem

valovanju, da so radijski valovi linearno polarizirani. Pri zelo kratkih radijskih

valovih z valovno dolžino okoli centimetra, to je pri mikrovalovih ali radarskih

valovih, lahko pokažemo preprost polarizator. To je mreža vzporednih žic

v razmiku, ki je precej manjši od valovne dolžine. Če so žice vzporedne z vek-

torjem električne poljske jakosti v valovanju, mreža ne prepušča valovanja,

če so pravokotne na ta vektor, pa je mreža prepustna. Pri mikrovalovih imamo

možnost omeniti tudi dvolomnost in dikroizem, kar je zlasti ugodno, ker ni

treba posebej poskrbeti za linearno polarizacijo.

Snov, ki je dvolomna za mikrovalove, je kar les. To je posledica njegove

vlaknate zgradbe. Optična os ima smer vlaken, tako da ima les za curek

mikrovalov, ki vpadajo pravokotno na vlakna, dve različni vrednosti za lomni

kvocient. Linearno polarizirani valovi so po prehodu skozi kos lesa v splošnem

eliptično polarizirani. Poleg tega je les za mikrovalove tudi dikroitičen.

Absorpcijski koeficient za linearno polarizirano valovanje, v katerem niha
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vektor električne poljske jakosti vzdolž vlaken, je večji kot za valovanje, v ka-

terem niha električna poljska jakost pravokotno na vlakna.

V primeri s poskusi pri svetlobi so poskusi z mikrovalovi mnogo nazor-

nejši in jih zlahka pripravimo tudi za praktikum. Čeprav srednješolcem o polari-

zirani svetlobi ni treba veliko vedeti, so poskusi tako preprosti, da jih lahko

napravijo dijaki sami v fizikalnem krožku. Zadnje čase si je namreč že več

šol nabavilo opremo za demonstracijske poskuse z mikrovalovi. Naprave obsegajo

generator, ki proizvaja mikrovalove z valovno dolžino 3 cm, modulirane s ire-

kvenco 300 do 1000 Tiz, oddajno in sprejemno anteno (to sta dela valovnega

vodnika s tubusom), ter sprejemnik z zvočnikom za indikacijo. Sprejemno

anteno lahko priključimo tudi naravnost na občutljiv cevni voltmeter, namesto

zvočnika pa uporabimo miliampermeter. Tukaj je opisanih nekaj poskusov,

ki jih lahko napravimo s tako opremo."

Mikrovalovi so linearno polarizirani. Pri opisani napravi niha vektor

električne poljske jakosti vzporedno s krajšo stranico preseka valovnega vodnika

na oddajni anteni. Podobno je pri sprejemni anteni: antena zaznava le pro-

jekcijo električne poljske jakosti na smer krajše stranice svojega valovnega

vodnika. Ugodno je, če sprejemno anteno vpnemo tako, da je vrtljiva okoli

vzdolžne osi. Tako lahko s sprejemno anteno valovanje tudi analiziramo.

Sprejemna antena je s sprejemnikom povezana prek kristalne diode. Signal, ki ga

dobimo, je sorazmeren s povprečnim kvadratom projekcije električne poljske

jakosti na sprejemno smer antene (E'"?). Karakteristiko sprejemne antene lahko

dobimo s poskusom. Obe anteni postavimo drugo proti drugi na skupni osi.

Oddajna antena naj bo nepremična, sprejemno pa vrtimo okrog vzdolžne osi.

Signal iz sprejemne antene se pri tem spreminja po enačbi

I — I,cos g

kjer je g kot med smerjo, v kateri niha električna poljska jakost in sprejemno

smerjo sprejemne antene. Potek, ki je značilen za linearno polarizirano valo-

vanje, kaže sl. 1.

| POLO do kO EI h

go m A % i6 Sb 60 ZO 80 SO MO Mo 20? Pl

sli

Postavimo sedaj med anteni pravokotno na zveznico nekaj centimetrov

debelo smrekovo desko, rezano vzporedno z vlakni. Vlakna naj tvorijo kot

Hi Pri poskusih je bila uporabljena naprava, ki služi za demonstracijske poskuse
z mikrovalovi na katedri za' fiziko.
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45% s smerjo, v kateri niha vektor električne poljske jakosti. Linearno polarizi-

rano valovanje postane po prehodu skozi ploščo eliptično polarizirano. Vrtimo

počasi sprejemno anteno okrog osi in merimo jakost signala! Potek signala

pri 3,1 cm debeli, suhi deski kaže sl. 2. Opišemo ga z enačbo:

I/A

10:

0.6—

d.2 —

LILLILLLILLLLA ILA LA oj
0 10 2 30 (40 50 60 70 60 SO 100 16 T20 130 w0 150 160 170 180. $

3l.2

I< A—(A—B)cos?(p—g)

kjer sta A in B največja in najmanjša jakost, p kot med smerjo električnega

peclja v vpadajočem valovanju in sprejemno smerjo antene, p pa je fazni

premik. Vrednost faznega premika razberemo z diagrama. Razmerje B/A da

fazno razliko med nihanjema projekcij električne poljske jakosti vzdolž optične

osi in pravokotno nanjo:?

č — 29 — 2arctg (B/A)A

V našem primeru je 8 — (7/9) x/2, od koder je razlika lomnih količnikov:

te — Njg < (o/2 7) a/d — 0,2

Poprečni lomni količnik lesa je za mikrovalove približno 1,4. Hitrost valovanja

se v pravokotnih smereh razlikuje torej za 3.104 km/s. Plošča lesa, za katero

bi bila fazna razlika /2 (četrtinska ploščica ali ploščica 4/4), bi morala biti

debela 4cm. Ko bi les ne bil dikroitičen, bi dobili v tem primeru krožno

polarizirano valovanje. Vrtenje sprejemne antene bi tedaj ne prineslo spre-

memb v jakosti signala.

Dikroizem lahko kompenziramo, če ploščico zasučemo tako, da sta kom-

ponenti električnega polja po prehodu enako veliki. Vlakna lesa tvorijo tedaj

s smerjo električnega polja v vpadlem valovanju kot 45'— 9, kjer je p fazni

premik, ki smo ga opazili pri prejšnjem poskusu, to je v našem primeru 109.

Kot g' lahko tudi izračunamo, če poprej izmerimo oba absorpcijska koe-

ficienta. Oddajno in sprejemno anteno postavimo vzporedno in mednju po-

stavimo merjenec; prvič z vlakni vzporedno z električnim poljem, drugič pa

pravokotno nanj. Definirajmo še absorpcijska koeficienta x, in u,:

d je debelina plošče. Absorpcijska koeficienta sta močno odvisna od vlažnosti

lesa. Pri zračno suhem lesu je ,, — 0,20 cmr! in x, <— 0,09 cmr!. Če naj pri
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naših poskusih kompenziramo dikroizem, mora biti v vpadlem linearno polari-

ziranem valovanju E,,/E,, — exp(u,; —yuj,)d in morajo biti torej vlakna

nagnjena za kot p — arctg (E,,/Eo,) proti smeri električnega polja v vpadlem

valovanju. Če sta E,, in E,, v vpadlem valovanju enaka (g <— 45%, je elipsa,

ki jo dobimo po prehodu, zasukana za kot g < 45% — aretg (EoylE« 1), proti

smeri električnega polja v vpadlem valovanju. V našem primeru je ta kot 9,79,

kar se dobro ujema z izmerjenimi 109,

M. Hribar
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REPUBLIŠKO TEKMOVANJE MLADIH MATEMATIKOV

21. aprila 1968 je bilo v prostorih II. gimnazije v Ljubljani dvanajsto

republiško tekmovanje mladih matematikov. Udeležba je bila nekoliko večja

kot prejšnja leta — naloge je oddalo 163 tekmovalcev. Še vedno pa nas moti

dejstvo, da dobra polovica slovenskih srednjih šol ne pošlje na tekmovanje

nobenega svojega dijaka. Vabilu, ki ga je poslalo Društvo matematikov, fizikov

in astronomov SRS vsem srednjim šolam v Sloveniji, so se odzvale: I. gimnazija

v Ljubljani (35), II. gimnazija v Ljubljani (24), V. gimnazija v Ljubljani (20),

Gimnazija v Kopru (15), Gimnazija v Škofji Loki (10), Gimnazija v Trbovljah

(9), Poljanska gimnazija v Ljubljani (8), Gimnazija v Kranju (6), Gimnazija

v Stični (6), Gimnazija v Novi Gorici (5), Gimnazija na Ravnah (3), Gimnazij

v Kamniku (3), 1. gimnazija v Mariboru (2), Gimnazija v Ptuju (2), Gimnazij

v Velenju (2), Gimnazija v Celju (2), Pedagoška gimnazija v Celju (2); p

enega tekmovalca so poslale naslednje šole: II. gimnazija v Mariboru, Gimnazij

v Idriji, Piranu, Tolminu, na Jesenicah, TŠE v Ljubljani ter ljubljanski

gimnaziji z Viča in Most.

Dijaki so imeli na voljo dve uri za reševanje naslednjih nalog:

kriiknkii

I. razred

1. Prvi delavec opravi delo v osmih urah. Ako mu pomaga prve tri ure drugi

delavec, opravi delo v nadaljnjih dveh urah, V koliko urah bi opravil delo drugi

delavec sam?

2. Produktu poljubnih štirih zaporednih naravnih števil prištej enoto. Dokaži,

da je ta vsota vedno popolni kvadrat!

3. Načr taj trikotnik, če poznaš stranico a, kot y in kot med stranico b in fe-
ča

kd db A

stranicama enaki težiščnici!

II. razred

1. Nekdo je seštel dve praštevili, ki sta se razlikovali za 2, in, ugotovil, da je

vsota deljiva z 12. Ali velja ta lastnost za vsoto poljubnih dveh praštevil, ki se

razlikujeta za 2, ali so izjeme? Odgovor utemelji!

O7



2. Izračunaj log V527, če poznaš log 459 Z dl!

3. Trikotniku s stranicami 16cm, 25cm in 39cm je včrtan krog, temu pa
trikotnik, ki ima za oglišča dotikališča stranic danega trikotnika z včrtanim krogom.

Poišči stranice včrtanega trikotnika!

4. Izrazi prostornino V pokončnega stožca s polmerom r osnovne ploskve in

površine P. Nato pokaži, da velja odnos

Pri kakšnem stožcu velja enačaj?

III. razred.

rumene luči. Koliko različnih kombinacij svetlobnih signalov lahko sreča, če ni

zelenega vala?

2. Pokaži, da moremo vse ničle polinoma (x 4: 1)" — (x — 1)" zapisati v obliki

k m
—icig ——. k << 1,2,...n—1!

n

3. V enakostraničnem trikotniku načrtaj najkrajšo daljico, ki razdeli ta tri- |
kotnik na dva ploščinsko enaka dela!

d. V pravilni četverostranični piramidi z osnovnim robom da je stranska

ploskev za kot 2 a naklonjena proti osnovni ploskvi, Izračunaj ploščino lika, ki ga do-

bimo, če piramido presekamo z ravnino, ki ta naklonski kot razpolavlja!

IV. razred

1. V aritmetičnem zaporedju je vsota prvih p členov enaka S, — dg, vsota prvih g

pa S, < p. Izračunaj vsoto prvih p -- ag členov S, 4g!

2. Vsota pozitivnih števil a in b je enaka 1, torej a -- b — 1. Dokaži, da velja

za taki števili neenačba

a -— —| >—

d b 2

Kdaj dobimo enakost? |

3. V pravokotnem trikotniku razdelita simetrala pravega kota in težiščnica iz
vrha pravega kota hipotenuzo na tri odseke, ki tvorijo aritmetično zaporedje. Ko-

likšne vrednosti imajo tangensi notranjih kotov takega trikotnika?

4. Stranice nekega trikotnika so tri tangente na parabolo y' <— 2 px. Dokaži, da

gre krožnica, ki je očrtana temu trikotniku, skozi gorišče parabole!

Na tekmovanju so se najbolje odrezali prvošolci, najbrž na račun nekoliko

lažjih nalog. (1. in 3. nalogo je rešilo blizu 70 %o tekmovalcev v tej skupini,

4. pa nihče.) Najslabši uspeh je bil v tretji skupini, kjer ni nihče dosegel niti

polovice možnih točk. |

Tekmovalna komisija, ki jo je vodil prof. Ivan Vidav, je na posebnem

skupnem sestanku sklenila, da dobe nagrade naslednji dijaki:

I. nagrada

Legiša Peter — 4. razred, IL. gimnazija v Ljubljani,

Zagorc Oton — 2. razred, Gimnazija v Novi Gorici.
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HI. nagrada

Fettich Janez — 1. razred, I. gimnazija v Ljubljani,

Klepej Tanja — 1. razred, I. gimnazija v Ljubljani,

Kuščer Samo — 1. razred, I. gimnazija v Ljubljani,

Mervič Igor — 1. razred, Gimnazija v Novi Gorici,

Stare Jurij — 2. razred, I. gimnizija v Ljubljani.

III. nagrada

Bajc Vladimir — l. razred, I. gimnazija v Ljubljani,

Hadži Sašo — l. razred, I. gimnazija v Ljubljani,

Jamšek Janja — 1. razred, II. gimnazija v Ljubljani,

Košir Ada — 1. razred, Gimnazija v Novi Gorici,

Markelj Karel — 2. razred,

Šuc Lojze — 2. razred, I. gimnazija v Ljubljani,

Urbančič Silvan — l. razred, Gimnazija v Ptuju,

Žitko Tomo — 4. razred, II. gimnazija v Ljubljani.

Pohvale

Banič Borut — 1. razred, Poljanska gimnazija v Ljubljani, Bočko Marjeta —

l. razred, Gimnazija v Trbovljah, Briški Janez — l. razred, Poljanska gimnazija

v Ljubljani, Debeljak Meta — l. razred, V. gimnazija v Ljubljani, Detela Andrej

— 4. razred, II. gimnazija v Ljubljani, Hafner Izidor — 4. razred, II. gimnazija

v Ljubljani, Kos Andrej — 1. razred, V. gimnazija v Ljubljani, Kusterle Dušan

— 1. razred, Gimnazija v Kranju, Loštrek Olga — 2. razred, I. gimnazija

v Ljubljani, Ložar Bojan — 1. razred, Gimnazija v Stični, Mele Miloš — 4. raz-

red, I. gimnazija v Ljubljani, Mezek Boža — 1. razred, Gimnazija v Škofji Loki,

Mihelčič Franc — 1. razred, Poljanska gimnazija v Ljubljani, Ostan Iztok —

1. razred, Gimnazija v Kopru, Ovsenik Avgust — 2. razred, Gimnazija v Kranju,

Pustovrh Bojan — 1. razred, Gimnazija v Kranju, Špacapan Nada — 2. razred,

Gimnazija v Kopru, Štajdohar Ivan — ll. razred, I. gimnazija v Ljubljani,

Urlep Tomaž — l. razred, Poljanska gimnazija v Ljubljani, Velkavrh Nada —

l. razred, II. gimnazija v Ljubljani, Vidmar Marjanca — 1. razred, V. gimnazija

v Ljubljani, Volarič Marija — 1. razred, Gimnazija v Kopru, Vukman Ivan —

4, razred, V. gimnazija v Ljubljani.

Za zvezno tekmovanje mladih matematikov v Beogradu so bili izbrani

naslednji dijaki:

Golli Bojan, Guid Niko, Legiša Peter, Stare Jurij, Zagorc Oton, Žitko

Berto in Žitko Tomo.

F. Marinček

ZVEZNO TEKMOVANJE MATEMATIKOV

Najbolje uvrščeni dijaki na republiških tekmovanjih so se letos 12. maja

že devetič srečali na zveznem tekmovanju mladih matematikov v Beogradu. Kot

vsako leto so tudi tokrat tekmovali le dijaki drugega, tretjega in četrtega

razreda srednjih šol. Da bi bilo mogoče tekmovanje čim bolje izvesti, je

Zveza društev matematikov, fizikov in astronomov Jugoslavije kot organizator

tekmovanja določila zgornjo mejo za število udeležencev iz vsake republike
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tako, da naj bi tekmovalo skupno največ petdeset dijakov. Kaže pa, da teh

navodil ni treba jemati dobesedno, saj je tekmovalo kar triinšestdeset mladih

matematikov, presežek pa gre na račun tekmovalcev iz SR Srbije in Hrvatske

(Sr Srbija — 28 tekmovalcev, SR Hrvatska — 19, SR Slovenija — 7, SR Ma-

kedonija — 5 in SR Bosna in Hercegovina — 4 tekmovalci).

Tekmovalna komisija — predsedovala ji je prof. Milica Ilič-Dajovič — je

iz predlogov republiških društev izbrala za posamezne skupine te-le naloge:

Drugi razred

1. Poišči cele rešitve enačbe

1 1 VS
— o — V5V: po PY—5

2. V ravnini (7) so dane štiri točke A, B, C, D. V tej ravnini konstruiraj krož-

nico, ki gre skozi točki A in B tako, da sta dolžini odsekov na tangentah, potegnjenih
iz točk C in D enaki.

3. Krogla se dotika vseh treh osnovnih robov ftristranične piramide v njih

razpoloviščih, stranske robove pa seka tudi v njih razpoloviščih.

a) Pokaži, da je ta piramida pravilna!

b) Izračunaj polmer te krogle, če sta osnovni rob in stranska višina oba

enaka a!

4. Določi vsa realna števila a, pri katerih nobena vrednost x, ki zadošča ne-

enačbi

ax? - (1—a) x—a>0

ne presega po absolutni vrednosti števila 2.

Tretji razred

1. Reši sistem enačb

x loga x
xm — yn ; loga —

y | logay

2. Določi v ravnini x0 y množico točk, katerih koordinate (x, y) —0 < x < 2g—

zadoščajo relaciji

(Vi sina —V1—sinx) <V<143(V; 4 sinaa s Vi —sinar)
3. Vrh pravega kota je v koordinatnem začetku, njegova kraka pa drsita po

paraboli y"' < 2 px, ki jo sekata v točkah X in Y. |

a) Kakšno množico določajo razpolovišča daljice XY?

b) Pokaži, da sredo vse premice XY skozi isto točko!

tij

4. Dokaži, da velja identiteta

(£ - y -- 2)" < šl (e— v" - (y— 2)" b (Z— x'I 8 (ey - vz - za),

potem pa ugotovi, kakšne naj bodo zveze med 4, y, z, da bo imel izraz xy -- yz -- zx

pri konstantni vsoti x -- y -- z z: s, največjo vrednost.

Na podlagi dobljenega rezultata reši naslednji problem: vrednost diamanta je

proporcionalna kvadratu njegove teže. Diamant razrežemo na tri dele, ki imajo

težo x, y, z. Pokaži; da je skupna vrednost vseh treh delov vedno manjša od vrednosti

celega diamanta in da je najmanjša, če razrežemo diamant na tri enako težke dele.

Četrti razred

1. Naj bosta p in g dve praštevili, število g' —1 deljivo s p, število p—1 pa

deljivo s g. Dokaži, da je p<14g-gd'!
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2. Dokaži, da od 25 učencev, kolikor jih je v razredu, ne moremo sestaviti več

kot 30 košarkaških ekip po 5 igralcev tako, da imata katerikoli 2 ekipi kvečjemu

enega skupnega igralca.

| 3. V pravokotnem trikotniku ABC (<z B <— 90% sta podana kot a pri oglišču A

in višina na hipotenuzo BA, < hg. Iz točke Aj; potegni normalo A, B;, na BC, iz

točke B; normalo B, Az na AC, iz točke As normalo AsBa na BC itd., a v vsak

trikotnik ABA;, BA; Bi, AiBi As, Bi AsB3:,... včrtaj krog.

a) Izračunaj vsoto ploščin vseh teh krogov!

b) Določi kot a tako, da bo ta vsota maksimalna!

4, Isto kot četrta naloga v tretjem razredu.

Za reševanje nalog so imeli tekmovalci na voljo štiri ure.

Skupno je bilo podeljenih 5 prvih, 1 druga in 7 tretjih nagrad, pohvaljenih

pa je bilo 27 tekmovalcev. Naši predstavniki so dosegli naslednje uspehe:

Tomo Žitko in Peter Legiša, oba dijaka 4. razreda II. gimnazije v Ljubljani

sta dobila edina v četrtem razredu prvi nagradi. Pri tem je dosegel Žitko

najvišje število možnih točk (25), Legiša pa 24.

V skupini drugih razredov sta bila pohvaljena Oton Zagorc, dijak gimna-

zije v Novi Gorici (17,5) in Jurij Stare, dijak I. gimnazije v Ljubljani (13).

Tomo Žitko in Peter Legiša sta določena v ekipo, ki nas bo zastopala na

matematični olimpiadi. Ta bo 10. in 11. julija letos v Moskvi.

F. Marinček

REPUBLIŠKO TEKMOVANJE MLADIH FIZIKOV

5. maja je bilo v Ljubljani že tradicionalno republiško tekmovanje srednje-

šolcev v reševanju računskih nalog iz fizike. Tekmovanja so se udeležili 104

dijaki gimnazij in tehniških srednjih šol iz vse Slovenije. Največ dijakov so

poslale naslednje šole: I. gimnazija iz Ljubljane (18), gimnazija Poljane (18),

gimnazija Nova Gorica (12), |. gimnazija iz Ljubljane (7) ter gimnaziji iz Celja

in Škofje Loke (po 5). Tekmovalci so bili razdeljeni v tri skupine in so tekmovali.

iz snovi, ki jo poslušajo v tekočem šolskem letu. V prvi skupini (IL razred

gimnazije) je tekmovalo 38 dijakov, v drugi skupini (III. razred gimnazije)

26 dijakov in v tretji skupini (IV. razred gimnazije) 40 dijakov.

Med tekmovanjem, ki je trajalo 2 uri, so morali dijaki rešiti naslednje

naloge (pri vsaki nalogi je v oklepaju navedeno relativno število pravilnih

rešitev):

Naloge za prvo skupino

1. Majhno kroglico vržemo navpično navzgor z začetno hitrostjo 20 m/s. V višini

12 m zadene kroglica v vodoraven strop in se od njega prožno odbije. Kolikšen čas

preteče od: trenutka, ko kroglico vržemo, do trenutka, ko spet pade na tla? Za

koliko je ta čas krajši od tistega, ki bi ga kroglica porabila, ko bi ne bilo stropa? (49 %

2. V kos lesa z maso 2kg, ki miruje na vodoravnih tleh, prileti v vodoravni

smeri izstrelek z maso 10g in v njem obtiči. Les z izstrelkom se po trku premakne

za 0,5 m. Kolikšna je bila hitrost izstrelka? Koeficient trenja med lesom in tlemi

je 0,4. (50,5 %) |

3. Na vodoravni podlagi sta drug poleg drugega dva enaka kockasta zaboja, med

njima pa je tanka toga palica, ki je dvakrat višja od zabojev. V vodoravni smeri

— pritisnemo z roko na zgornji del palice tako, da zabaja malo razmaknemo. Kateri

od. zabojev se bo premaknil, če je trenje s tlemi za oba zaboja enako? Kolikšna. mora

biti sila roke, da bomo lahko razmaknili zaboja, ki sta po 30kg težka, če je

koeficient trenja med zabojema in tlemi 0,3? (16,8 %)
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4. Prvi konec lahke ravne palice je privezan na tla z bakreno žico s prožnostnim

modulom 10.000 kp/mm". V razdalji 20 cm od konca je palica privezana še na strop
z enako dolgo in enako debelo jekleno žico s prožnostnim modulam 20.000 kp/mm?.

Žici sta spočetka izravnani, toda nenapeti.

V kolikšni razdalji od privezanega konca moramo na palico obesiti utež, če

hočemo, da se bosta žici podaljšali za enako dolžino? (29,4 %)

Naloge za drugo skupino

1. Dve enaki posodi s prostornino po 100 cm" povežemo s tekočinskim mano-

metrom, ki ima krake s presekom 20 mm" in je napolnjen s tekočino z gostoto

1,2 kg/dm?'. V posodah je spočetka plin s temperaturo 18,3%C in tlakom 1,02 atm.

Eno od, posod nato segrejemo. Za koliko stopinj se je povečala temperatura v tej

posodi, če je razlika sladin v krakih manometra 10 cm, temperatura v drugi posodi

pa je ostala nespremenjena? (15,8 %)

2. Prosti konec zelo dolge ravne vrvi začne nihati s frekvenco 3s7! pri čemer

naraste v 15 nihajih. amplituda enakomerno od 0 do 10 cm. Valovanje se širi po Vrvi
s hitrostjo 1mj;s. S kolikšno amplitudo niha 4s po pričetku valovanja točka vrvi,

ki je 3,5 m od konca? (18,3 %)

3. V sredi 20 cm debele steklene plošče z lomnim: kvocientom. 1,52 je svetilo, ki

sveti enakomerno na vse strani. Kolikšen del svetlobnega toka izstopa iz plošče

v zrak? Kolikšen pa je ta del, če ploščo obdaja voda z lomnim kvocientom 1,33?

Absorpcije v steklu ni! (15 %)

4. Tanko lečo iz stekla z lomnim kvocientom 1,5 posrebrimo po konkavni strani

s krivinskim radijem 0,5 m. Kakšna naj bo druga ploskev in kolikšen njen krivinski

radij, da bo leča delovala kot ravno zrcalo, če posvetimo na njeno neposrebreno

stran? (0 %)

—i

Naloge za tretjo skupino

1. 10 m dolgo žico s presekom 0,1 mm" iz cekasa s specifičnim uporom

1 ohm.mm'"/m priključimo na vir z gonilno napetostjo 100 V. Z voltmetrom, ki ima

upor 1000 ohmov izmerimo napetost na d m dolsem odseku te žice. Kolikšno napetost
kaže voltmeter? (55 %)

2. 10cm dolga kovinska palica, ki je ves čas pravokotna na homogeno magnetno
polje z gostoto 2 Vs;/m", se giblje po plašču valja z radijem o cm. Izračunaj in nariši

časovni potek inducirane napetosti med krajiščema palice, če je velikost njene hitrosti
konstantna in se vrne palica vsako stotinko: sekunde v začetno lego? Kolikšna je
največja napetost? (89 %)

3. Ploščati kondenzator z razmikom plošč 0,5 cm im ploščino po 100cm" pri-
ključimo na generator z enosmerno napetostjo 250 V in nato odstranimo. priključka.

Kolikšno delo opravimo, ko plošči počasi razmaknemo do razmika 1 cm, če je vsaka
od plošč med razmikanjem izolirana? (57,6 %)
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4, Curek elektronov usmerimo skozi sredino prečno postavljene tuljave s pre-

merom 8cm. V razdalji 25cm od osi tuljave zadene curek fluorescentni zaslon,

postavljen pravokotno na prvotno smer curka. Kolikšna naj bo gostota magnetnega

polja v tuljavi, da se bo svetla pika na zaslonu premaknila za l cm, če pretečejo

elektroni pred vstopom v magnetno polje napetost 500 V? (50,8 %)

Pri ocenjevanju je štela pravilno rešena naloga 5 točk, delno rešena pa

ustrezno manj. V prvi skupini je bilo rešenih 36,4% vseh nalog, v tretji

skupini pa 63 %. Presenetljiv je izredno slab uspeh v drugi skupini. Komisija se

je po pregledu izdelkov odločila, da zadnje naloge, ki je ni pravilno rešil nihče,

ne bo upoštevala; pravilno rešenih je kljub temu le 16,4 %/s nalog.

Nagrade in pohvale je komisija podelila takole:

V tretji skupini so dobili prvo nagrado Peter Legiša in Andrej Detela iz

II. gimnazije, Ljubljana ter Svitan Gaborovič iz gimnazije Tabor, Maribor.

Vsi so dosegli po 20 točk. Drugo nagrado je dobil Milan Fužir, gimnazija Celje

(19 točk). Tretjo nagrado so dobili Otorepec Jože, I. gimnazija Ljubljana, Regent

Aleksander, TŠ KMRL Ljubljana, Slivnik Božo, gimnazija Nova Gorica in

Žitko Tomo, II. gimnazija Ljubljana. Vsi so dosegli po 18 točk. Naknadno so bili

pohvaljeni naslednji tekmovalci, ki so dosegli po 16 in 17 točk: Pušnik Franc,

gimnazija Tabor, Maribor, Rankel Karel, gimnazija Ljubljana-Št. Vid, Seliškar
Drago in Krumpak Ivan, gimnazija Kranj, ter Tomažič Borut, Soban Bogdan in

Kenda Ivan, gimnazija Nova Gorica. |

V drugi skupini je bila podeljena le tretja nagrada. Dobil jo je Vedlin

Janez, I. gimnazija, Ljubljana. Dosegel je 12 točk.

V prvi skupini je zasedel z 18 točkami prvo mesto in dobil drugo nagrado

Nedeljkovič Miran, II. gimnazija, Ljubljana. Tretjo nagrado je dobil Špiler

Jure, II. gimnazija, Ljubljana (17 točk). Pohvaljena sta bila Markelj Karel,

gimnazija Tabor, Maribor (16 točk) in Šuc Lojze, I. gimnazija, Ljubljana

(15 točk).

M. Hribar

ZVEZNO VEK MOVANJE MLADIH FIZIKOV

Zvezno tekmovanje mladih fizikov je bilo 19. maja, tudi letos v Beogradu.

Udeležilo se ga je 40 tekmovalcev, najbolje uvrščenih na republiških tekmo-

vanjih. Iz Slovenije je bilo na tekmovanje poslanih 7 tekmovalcev, in sicer:

Peter Legiša, Andrej Detela, Svitan Gaborovič, Milan Fužir, Jože Otorepec,

Aleksander Regent in Tomo Žitko. Ostale republike so bile zastopane takole:

Bosna in Hercegovina s 3 tekmovalci, Hrvatska z 12, Makedonija z 1 in Srbija

s 17. Tekmovalci so bili razdeljeni na tri skupine. V prvi skupini so tekmovali

iz mehanike in toplote, v drugi iz elektrike in magnetižma in v tretji iz optike

in atomike. Slovenski dijaki so tekmovali vsi v drugi skupini.

Naloge za posamezne skupine so bile naslednje

Prva skupina

1. Pokončna posoda z maso M in s površino dna S stoji na vodoravni podlagi.

Ob dnu sega iz posode kratka vodoravna cev s presekom A in s pipico na koncu. Do

kolikšne največje višine smemo v posodo. naliti vodo, če nočemo, da. bi se potem,

ka odpremo pipico, posoda premaknila? Diskutiraj dobljeno rešitev: ali je višina

vode v posodi vedno omejena? |

2. V klanec z nagibom 45' vržemo navzgor z začetno hitrostjo 10 m/s majhno

tela tako, da drsi po klancu. Za koliko % je hitrost telesa, ko pridrsi nazaj, manjša

od začetne hitrosti? Koeficient trenja med telesom in podlago je 0,05.
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3. 3cm dolgo epruveto potopimo z dnom navzgor z morske gladine, kjer je

temperatura 30" C in tlak 1 kp'cm"'" tako globoko, dia je stolpec zraka v epruveti še

1,8 cm dolg. V kateri globini je tedaj epruveta, če je temperatura tam 17? C?

4. Dve enaki uteži po 1,3 kg visita na neraztegljivi vrvici, obešeni prek škripca.

S kolikšno največjo silo smemo vleči eno od uteži navzdol, ne da bi se vrvica

pretrgala? Vrvica vzdrži največ 3 kp. |

5. Na kroglastem planetu, katerega premer je 10-krat manjši od premera Zemlje

in ki sej zavrti okoli svoje osi v 6 urah, so telesa na ekvatorju za 10 % lažja kot na

polih. Kolikokrat je težni pospešek na tem planetu manjši od težnega pospeška na

Zemlji? Premer Zemlje je 12 600 km.

Druga skupina

1. V električni krog je na narisanem mestu priključen ampermeter z obsegom

2mA in uporom 5 ohmov. Kako je treba shuntirati instrument, če hočemo meriti

tok v njegovi veji pri poljubni legi drsnika? Notranji upor vira napetosti zanemari!

, 9582

A

509 |
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|
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. V magnetnem polju z jakostjo 8.10" Am se v vakuumu nahaja žična zanka
S prese om 10€ in z uporom 1 ohm, tako da je ravnina zanke pravokotna na smerDVA te a A m AV cm ba azaa m iu duletiuda?; VVUIL7 a S

magnetnega polja. Kolikšen naboj preteče po zanki, ko se magnetno polje zmanjša
enakomerno od, začetne vrednosti do 0.

3. Pa dušilki z neznani im ohmskim uporom, ki je priključena na izmenično

napetost 20 V s frekvenco 50s"', teče tok 3 A. Ko dušilko zvežemo zaporedno z upor-
nikom za 5 ohmov in ju skupaj priključimo na 20 V, teče tok 2 A. Kolikšna je

induktivnost dušilke in kolikšen je njen ohmski upor? Kolikšna je pri eni in drugi
vezavi električna moč, ki se troši na dušilki?

4. Kondenzator ima v razmiku 2cm vertikalni plošči v obliki kvadrata s stra-

nico 10cm in je priključen na enosmerno napetost 5000 V. V prostor med plošči

vlivamo olje tako, da raste gladina vzporedno z vodoravnim robom plošče s hitrostjo

5 mm/s. Kolikšen tok teče pri tem skozi izvir napetosti? Dielektričnost olja je 3.

5. V vakuumu se nahaja ploščat kondenzator z 10 cm širokima ploščama v raz-

miku 3cm. Curek elektronov, ki jih pospešuje napetost 100 V, prileti tik ob robu

pozitivne plošče s kotom 30" proti plošči. Med katero spodnjo in katero zgornjo mejo

mora biti napetost med ploščama, da pride curek elektronov neovirano skozi

kondenzator?

Tretja skupina

1. Na ploščico iz volframa z izstopnim delom 4,5 e€V pada curek UV svetlobe

z valovno dolžino 900 A. Ploščica je v vakuumu v homogenem magnetnem polju, ki

je z njo vzporedno in ima gostoto 0,001 Vs/m?'. V kolikšni največji oddaljenosti od

ploščice zadenejo elektroni, ki izhajajo iz ploščice pravokotno, fotografsko ploščo,

ki je v ravnini ploščice?

2. Kolikšna naj bo napetost na rentgenski cevi, da bomo iz nje dobili svetlobo

z valovno dolžino 0,01 A? Kolikšna je de Brogliejeva valovna dolžina elektronov tik
preden udarijo v tarčo?
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3. Milnično opno z debelino 0,05 mim osvetljujemo z enobarvno svetlobo z va-

lovno -dolžino 5000 A. Pri vpadnem kotu 45% dobimo ojačen odboj. Kolikšen je lomni

kvocient milnice, če vemo, da je le malo večji od lomnega kvocienta čiste vode?

Iomni kvocient čiste vode je 4/3,

4. Na vodoravnem dnu velikega rezervoarja, v katerem je ogljikov disuliid

z lomnim kvocientom 5/3, je točkasta luč, ki sveti enakomerno na vse strani. Do

kolikšne višine je napolnjen rezervoar, če je premer temnega kroga okrog luči na

dnu 6 m. V kolikšni razdalji od luči so na dnu rezervoarja točke, v katerih je osvetlje-

nost enaka polovici maksimalne vrednosti? Absorpcijo in sipanje svetlobe zanemari!

5. Na prizmo iz kronskega stekla z lomečim kotom 30% vpada pravokotno curek

bele svetlobe. Nastali spektrum opazujemo na zaslonu, ki je vzporeden z vpadno

ploskvijo prizme in je od prizme oddaljen za l m. Kolikšna je širina spektra med

valovnirma dolžinama 6563 A in 4861 A? Kronsko steklo ima za svetlobo z valovno

dolžino 6563 A lomni kvocient 1,513, za svetlobo z valovno dolžino 4861 A pa lomni
kvocient 1,521. Kolikšna bi bila ta širina v spektru prvega reda, ki bi ga dajala

v enakih okoliščinah mrežica z 8000 zarezami na cm?

Za reševanje so imeli tekmovalci 4 ure časa. Za pravilno rešeno nalogo je

dobil tekmovalec 4—6 točk, maksimalno število točk je bilo 25.

Tekmovalcem je komisija podelila dve prvi, tri druge in pet tretjih

nagrad ter šest pohval.

V prvi grupi so bili nagrajeni: Jankovič Vladimir, Matematična gimnazija

Beograd (II. nagrada, 19 točk), Pribeg Zdravko, Elektrotenniška šola Zagreb

(II. nagrada, 19 točk) in Prišlin Igor, Matematična gimnazija Zagreb (III. na-

grada, 18,5 točke). Pohvaljen je bil Djordjevič Antonije, XIV. gimn. Beograd.

V drugi grupi so bili nagrajeni: Dorešič Miroslav, Matematična gimnazija,

Zagreb (I. nagrada, 24 točk), Mattes Neven, Matematična gimnazija, Zagreb

(II. nagrada, 23 točk), Legiša Peter, II. gimnazija, Ljubljana (IH. nagrada, 21,5

točke) in Detela Andrej, ll. gimnazija, Ljubljana (IIL. nagrada, 21,5 točke).

Pohvaljeni so bili Fužir Milan, gimnazija Celje, Gaborovič Svitan, gimnazija

Tabor, Maribor, Senjanovič Goran, XIV. gimnazija, Beograd ter Kadelburg

Zoran in Grozdanov Tasko, oba iz Matematične gimnazije Beograd.

V tretji grupi so bili nagrajeni: Najman Branko (Il. nagrada, 21 točk), Galič

Hrvoje (IL. nagrada, 18 točk) in Plenkovič Dinko (III. nagrada, 18 točk). Vsi so

dijaki gimnazije B. Ogrizovič, Zagreb.

Izmed nagrajenih in pohvaljenih iz druge in tretje skupine bodo na po-

sebnem izbirnem tekmovanju izbrani trije dijaki, ki bodo zastopali Jugoslavijo

na ll. mednarodni šolski olimpiadi iz fizike, ki bo od 23. VI. do 1. VIL. 1968

v Budimpešti.

M. Hribar

SEMINARJA ZA FIZIKO ZA UČITELJE OSNOVNIH ŠOL

NA DOLENJSKEM 1967/68

Medobčinski zavod za prosvetno pedagoško službo v Novem mestu je

organiziral dva dvodnevna seminarja za učitelje fizike na osnovnih šolah. Prvi

je bil v začetku šolskega leta in je bil posvečen eksperimentiranju pri pouku

v sedmem razredu osnovne šole." W gimnazijskem laboratoriju je bilo po-

stavljenih kakih 60 poskusov za sedmi razred, ki so jih udeleženci tečaja

po vrsti sami morali izvesti. Predavatelj je propagiral tudi množično eksperi-

i Vodil ga je podpisani.
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mentiranje pri pouku. Zato so nekatere vaje (hitrost enakomerno pospešenega

gibanja, zmesna temperatura, specifična toplota, vodoravni met in še nekatere)

bile izvedene množično. Nekatere važnejše poskuse je predavatelj sam demon-

striral, pri čemer je zlasti opozarjal na načine za dosego čimboljše vidljivosti

vseh efektov.

Drugi seminar je bil v semestralnem odmoru. Tokrat so se udeleženci

seznanili tudi z uvodom v funkcije, o čemer je predaval prof. Ivan Štalec,

ostali del pa je bil namenjen fiziki. Ing. Janez Ferbar je poročal o seminarju,

ki mu je prisostvoval v Angliji. Nekatere poskuse, ki jih je tam videl, so udele-

Ženci seminarja sami izvedli, in sicer zopet v obliki množičnega eksperimenti-

ranja (Brownovo gibanje, merjenje velikosti molekule, tehtanje lasu na »mikro-

tehtnici«, vezave žarnic, uporov itd., umerjanje improviziranega ampermetra

na »vezavni deski«). Pribor za izvedbo seminarja so izdelali dijaki novomeške

gimnazije pri tehničnem pouku. Udeleženci so videli tudi dva poučna filma:

enega, ki je propagiral sodobna učila za množično eksperimentiranje pri pouku

elekromagnetizma (sami so izvedli poskuse z magnetnimi polji tokovodnikov in

naravnih magnetov), drugi pa je bil namenjen elektromagnetnim nihanjem.

Mehansko valovanje, mikrovalove in valovne pojave pri svetlobi je pokazal

podpisani eksperimentalno.

Pri obeh seminarjih je bila udeležba zadovoljiva, čeprav bi bila lahko

še boljša. |

Dušan Modic
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OBZORNIK ZA MATEMATIKO IN FIZIKO

Tehnični in odgovorni urednik

iivaternik Franc, Gimnazija Poljane, Ljubljana

Uredniški odbor

Blinc Robert, FNT univerze v Ljubljani

Bohte Zvonimir, FNT univerze v Ljubljani

Cokan Aleksander, VII. gimnazija v Ljubljani

Moljk Anton, FNT univerze v Ljubljani

Pahor Jože, Nuklearni inštitut »J. Štefan« v Ljubljani

Pivk Valentin, Gimnazija v Škofji Loki

Rosina Mitja, FNT univerze v Ljubljani

Strnad Janez, FNT univerze v Ljubljani

Uršič Stanko, Zavod za šolstvo SR Slovenije

Vidav Ivan, FNT univerze v Ljubljani

Izdaja drustvo matematikov, fizikov in astronomov SRS 4-krat letno. Članarina
je l0 din in jo nakazujte na čekovni račun Obzornika. Člani društva prejemajo

Obzornik za matematiko in fiziko zastonj.

Naročnina je

za nečlane 15 din

za dijake 5 din

za ustanove in podjetja 20 din

za inozemstvo 25 din (2 $)

posamezna številka 5 din

Dopise pošiljajte in list naročajte na naslov: Obzornik za matematiko in fizika


