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N Z.

vrednosti je uporaba re-

Fden od mnogih nadinov racunanja funkcijskih
kurzivnih formul. Vsi ortogonalni polinomi, mnoge elementarne in specialn
funkcije zadoséajo dvo- ali vedélenskim r-ekurzivmm relacijam, ki imajo poleg
teoreticne tudi prakti¢no vrednost — namrec¢ za racunam@ vrednosti teh funkm}
Izkaze pa se, da 3@ slepo uporaham@
zrnanih mno go primerov, ko dobz no z namdeszng

umem énem im Stevilom decim
padne rezultate. Navadno pa se izkaze, da lahko rekurzwn@ um 7 en@smvn@
precdhodno analizo vedenja zaokmmxmmh napak - 1 SIm
nam dé& popolnoma zadovoljive rezultate.

Namen tegd sestavka je na zelo preprostem primeru ,vmdenske rekurzivne
formule pojasniti potrebo po predhodm analizi. |

- Vzemimo primer racunanja elementarnega integrala, kjer je integrand
cdvisen od parametra. Primer je povsem Zivljenjski in se je pojavil pm
) 1skavo m aﬁc eriala in konstrukcij SRS.

cosxdr. n=01,2... . (1)

Vzemimo, da Zelimo izradunati numeri¢ne vrednosti prmh nekaj integralowv.
Integral (1) je seveda elementaren Naj bo najprej n>1. Z dvakratno
integracijo per partes dobimo:

sin & da =

\ n—2

|

cos x dx |

I

Prfi sodem mo torej integral I, izraziti z I,, pri lihem

integrala pa je Eahko izrac¢unati:
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— § cosxdxr = 1
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9 /2 2
Ii=—- {xcosxrder=1——
T O JU

T orej imamo za racunanje integrala I, pri poljubne'm n na razpolago naslednje
formule:

, .
I =1—2 (2)

JT

I,=1—3a(m—1alers n>1
kjer je
g o= -
752
Problem je navidezno reSen. Za primer izracunajmo Ij2 po fommulah (9) Ce
racunamo s 5 decimalnimi mesti, dobimo: |

¢ = 0.81057

I, = 1.00000

L =1— 0.81057 X 1.00000 = 1 —0.81057 =  0.18943
I, = 1— 4.86342 < 0.18943 = 1 —0.92128 =  0.07872
I = 1—12.15855 X 0.07872 = 1 —0.95712 =  0.04288

Iy = 1—22.69596 X 0.04288 = 1 —0.97320 =  0.02680

Iip = 1— 36.47565 X 0.02680 = 1 — 0.97755 =  0.02245

I — 1—53.49762 X 0.02245 = 1— 1.20102 = — 0.20102

Tu smo vzeli za Stevilo a na 5 decimalk zaokroZeno vrednost, ostale faktorje

pa smo izra¢unali z mnoZenjem te vrednosti s celim Stevilom 3 n (n — 1). |
Ocitno je, da noben I, ne more biti negativen, zato je Ii2 prav gotovo

napa¢no izra¢unan. Na podobno napako bi naleteli tudi pri lihih vrednostih

indeksa n.
"~ Edini moZni vzrok te napake so zaokrozitve pri aritmetiénih operacijah,
zato poglejmo, kako se pri radunanju prenaSajo vplivi zaokrozZitvenih napak.
Denimo, da smo pri izra¢unu integrala I,_e napravili napako e,—s in tako
dobili priblizno vrednost i,—2, ki je s to¢no vrednostjo v naslednji zvezi

in—9o=1I, 9+ e,_2

Ce pri ratunanju vrednosti I, ne zagre§imo nobene dodatne zaokrozitvene na-
pake, dobimo spet priblizno vrednost
in=1—3nn—1)aig=
— 1‘”““’"“‘%72» (?’L-—-—-— 1) G»I;@wg-——- —n (n_"‘].) a€;—9 =
Ce spet zapiSemo - _ |
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napaki v naslednji zvezi

e = W%ﬂ{%__g}a@%mg

@Sfm. -
d tu napre]

ecamo n amn@ O‘Sfﬁ m@u lanja, ven ar nar

tn(n—1)a

smo storili p

To je sicer lahko precej, vendar vemo,

vzamemo np

z"]; H ==

]



dobimo

1 —-0
Iy = = 0.02742
36.47565
1 —0.027492
Ig = - = (.04285
22.69596 -
. 1-—10.04285
I, — _ — 0.07872
| 12.15855 o
- 1—10.07872 --
Iy — 0.0 — (.18943
4.86342
1—0.18943 .
I, — — 1.00000
0.81057

Vidimo, da je napaka Ze po 5 korakih uporabe formule (3) popolnoma izginila.
Obrat rekurzivne formule dostikrat spremeni rafunsko nestabilen po-

stopek v stabilnega.
Za zakljucek Se napisimo za ta pro'blem program Vv Algolu za rac¢unalnik

7Z-23 [1]. Zelimo izratunati prvih 40 integralov. Izbrati moramo Se zadetno
vrednost n. Ta mora biti vsaj 40, dosti ve¢ pa niti ni treba. Da ne bi ugibali,
bomo napravili takole. Zacetno vrednost n bomo povecevali od 40 dalje toliko
¢asa, dokler se ne bosta pri dveh zaporednih vrednostih n izra¢unani stevili Iy
ujemali na 8 decimalk. Sele tedaj bomo dzradunali ostale integrale I, n << 40.

begin integer 1, m;
real a, 7 40;

array i[0:100]); comment zatetna vrednost n — 100 bo Vsekakor' dovol]
- velika;

procedure tisk (a, m, n); value a, m, n; real q;
integer m, n;, code;
comment blbhotecm program za tisk v normalni obliki;

procedure newline (n); value n; integer n; code;
| comment biblioteéni program za A-4 form"a;t; -

a: = 2.0/3.14159265:
G =ad=a;
40:=0; m: = 42;

z: 1tm—1]:=1[m]: = 0;
for n:= m step — 1 until 42 do
in—2]: = (1.0 —i [n])/(n = ('n-----l) % Q)]
if abs (i [40] —i40) > 510 — 9 « abs (2 [40]) then
begin i40: = i[40]: m:=m + 2;
g0 t0 2
end ;

| fm* n: = 41 step-—-—ul until 2 do |
in—2]: = (1.0—1i[n})/(n = (n-——-ml),aa)
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write (“VRI
newline (6

for n:=0step 1 until 9 do
begin for m: = (0 step 1 until 3 do
begin tisk (10

N

s 2

newl

newline (— 1)

i N ’

(1)

CDNOST INTEGRALOV IINFP?);

sm +n, § 0);

tisk (i [10«m + n], 1, 8)

Po treh minutah je racunalnik natiskal naslednje vrednosti:

Vsi rezultati so pravilni na 8 decimalk.

[1] E. Zakraj$ek: Programi

0.36338023
0.11636525
0.07872037
0.04287506
0.02690998

0.02208027

10
11

12

1

14
13
16
17
18

19

0.01844160

10.01563251

0.01341889
0.01164371
0.01019847
0.00900626
0.00801132
0.00717244

0.00645864
' 0.00584623

20
21

22

23
24
25

26

27
28
29

VREDNOSTI INTEGRALOV I [N]

0.00531691
0.00485630
0.00445302
0.00409792
0.00378365
0.00325452
0.00303063
0.00282905
0.00264693

L.iteratura

ranje v Algolu, IMFM, Ljubljan

30
31
32
33
34
39
36

- 37
38
39

0.00248184
0.00233172
0.00219481
0.00206961
0.00195482
0.00184932
0.00175214
0.00166241
0.00157940

0.00150246
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ANDREJ KMET

Namen tega ¢lanka je prikazati uporabnost diferen¢nega raduna pri
obravnavanju rekurzijskih in sumacijskih formul ter pri numeri¢nem rese-
vanju diferencialnih enacb. SkusSali bomo poudariti analogijo med infinitezi-
malnim in diferen¢nim racunom. |

V numeri¢ni analizi imamo v vecini primercov opraviti s funkcijami, ki so
definirane na diskretni mnoZici to¢k, ki pa je lahko konéna ali neskonéna.
Privzemimo, da so tocke ekvidistantne z razmakom h, da je torej

xi =% +ih,  i=0,1,...
Funkcija f () naj ima podanewtednofsti le v to¢kah xj:
N f (1) = T )
S substitucijo
R :
h

doseZemo, da preide toctka x, v koordinatno izhodiSée, razmak med tockami pa
postane 1. Funkcija f(s) je sedaj definirana na mnozici naravnih Stevil in
dolo¢a neko zaporedje. MnoZico vseh zaporedij bomo oznacevali s S. Funkcije,
s katerimi se bomo ukvarjali, so torej elementi mnozice S. |

Vlogo odvoda prevzame pri funkcijah iz mnozice S diferenca

Af () = f (n + 1) —F (n)
Analogno vi§jim odvodom tvorimo tudi visje diference:

ASfm)=Ffn~+2)—2f(n+ 1)+ fn

k-to diferenco definiramo z rekurzijsko formulo
A€ f (n) = 4 (4% f (n))

Z. metodo popolne indukcije dokaZemo, da wvelja za k-to diferenco formula,
podobna binomskemu izreku: | ~

| I |
A f ) =2 (=11 (Dfm+i) (1)
i=0
k-ta diferenca funkcije f (n) v toCki n se torej izraza s funkcijskimi vrednostmi
v tockah n,n + 1,...,n + k. |
Podobno kot pri diferencialni enacébi je diferen¢na enacba zveza med
funkcijo in njenimi diferencami. V sploSnem je torej |

F(n,f Af,..,4¢f) =0 (2)
diferenéna enatba reda k, ¢e je k stopnja najviSje diference, ki nastopa v enacbi.
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tockah

diferenco s funkcijskimi vrednostmi v sosednjih
diferenc¢no enacbo (2) tudi v obliki

(n + k)) =

Ce izrazimo vsako
po formuli (1), lahko zapisemo

Gm,fm),fn+1),...,f

Zadma oblika je pogosto pmm@mﬁegﬂa za rac¢unanje.

jmo si natancneje linearno diferen¢no enacbo reda k

dgo(M)f(n) +ar(m)fn+ 1 +...+taz(n)f(n+ k)=>b(n)

Koeficienti a;(n) m desna stran b (n) so dane funkeije iz mnozice S
ni identicno enak nic. " ati m mo funk C1]0 f (n), k1 zadosCa zgornji enack
S tem resitev se ni enohcno doiocena Iskana ﬂmkcu& Wz} naj zaosca se

zacetnim pogojem:

o s e <3ma>
flk—1) = fr

f(n+ k) = b)) —ae(mF(m)—...—asmFm+k—1]

@S’t v tocki k se izraza z zacetnimi pogoijl.

10 nada& Ju g emo post 0 m, da vstavljamo v (4) n=1,2,...,
a’t@rem ge

pri poljubnem ‘argumentu n, pri

in

Ce sukcesivr
d@ - 10 funkcijske vrednosti
ar (n— k) razlicen od nic.

Tako dobljeno funkecijo im
plsa,m_ postopek ni ugeden ¢e nas zanim
likem argumentu n, ker moramo mcunah vse funkcijske

enujemo part i kularno diskretno regitev.
a le kaka ﬂmkcijska vrednost
vrednosti do

S ol —

metoda se uporablja tudi pri numeri¢nem resevanju linearnih diferen-
11 pogojl (Cauchyjeva naloga).

b z danimi zacetnim

ao (x) Y™ + ... Yy = b (x) (5)

(9-a)

dosezemo, da se preslikajo tocke x,, 1, . .., Tn Vv naravna Stevila 0, 1,.. ., n.
Resitev diferencialne enaébe (5) iS¢emo ie v ]zbramh ehtvemh tockah
Ce aproksimiramo cdvode v enacbi (5) in v za cetnih pogojih (5-a) z @ Cnim

formulami reda dobim d}f eren¢no enacho reda




vrednostmi. Po Ze opisanem postopku izracunamo nato funkc:uske vrednosti
v ostalih toc¢kah intervala [a, b].
Oglejmo si sedaj diferenéne enaébe v nekoliko splogneijsi obliki.

Rekurzijska formula za funkcijo I’ (n)
nl'(n)—I'(n+1)=0

je linearna homogena diferenctna enacba prvega reda Podobno je rekurzijska
formu];a za Besselovo funkcijo Jy (x)
2(n+1)

I () In+1 () F J:n+2 (x) =0
X

diferenéna enad¢ba drugega reda, ¢e smatramo J, (x) kot funkcijo indeksa.
Vemo pa, da sta funkciji I' (2) in Jz (x) zvezni in celo analitiéni funkeciji
kompleksnega argumenta z. Diferen¢no enacbo bomo v tem smislu posplosili.
Dane funkcije kot tudi iskana funkcija naj bodo analiti¢ne. Iz diferen¢ne enacbe
je razvidno, da mora biti vsaka funkcija, ki nastopa v njej, definirana v to¢kah

z,z T 1,z-12,...

Zato bomo za take funkcije zahtevali, da so analititne vsaj v nekem pasu
okrog pozitivnega poltraka realne osi.
Linearna diferencna enacba reda k ima v tem primeru obliko.

ao(,a)f(z) al(z)f(z—F 1) . +ak(z)f(z+k)__b(z)

pri demer so a, (2), a1 (2), ..., ax (2), b (2) kot tudi f (z) analiti¢ne v nekem pasu
okrog realne osi in az (2) ni 1dent1cn0 nic.

Lotimo se najpreprostejse dlferencne enacbe
M@ =FE+1)—f@ =0
Ce si ogledamo analogno d:iférencialno enacbo '

| y =0
In njeno resitev
Yy = konst.

uvidimo, da f (z) = konst reSi tudi diferen¢no enac¢bo. Vendar pa ta resitev ni
sploSna. Enacba

flzT1)=7(2

je funkcionalna enacba za periodi¢no funkcijo s periodo ena in bomo seveda
tako vzeli kot sploSno reSitev. |
ReSitev enacbe
Af () = 0
- je torej]

f)=p)

kjer je p(z) poljubna pericdi¢na funkcija s periodo ena. Odslej bomo s p(z)
vedno oznatevali periodi¢no funkcijo s periodo ena.

- Nastejmo sedaj Se nekaj lastnosti operatorja 4, ki jih bo bralec zlahka
preveril sam. |
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: . d
1. operatorja 4 in —
d z

2. A(f-‘"g)mdf-r Ag
L) = HZ+ 1) dg (z) + g (2) 4f (2) =
=g (z T 1) 4f (2) + f(2) 49 (2)
f 92 4f(x)—7 (=) 4g (2)
g(z+1)g()

Omeniti velj?a, da so zgornja pravila zelo podobna pravilom za odvajanje
n kvocienta dveh funkcij. Vendar pa pravilo za posredno od-
kar nam sluzi kot moc¢no orodje pri odvajanju sestavljenih

funkcij, ana]ogue v diferen¢nem racunu.
Sestammo tabelo diferenc elementarnih funkcij! Ker se diferenca potence

aza preprosto, uvedimo posploseno potenco
2 =z(z—1)...(z—n 1+ 1)

komutirata

ki se vede pri _diskretnih operacijah analogno navadni potenci pri zveznih
Naslednje diference elementarnih
1. Az —= pzn—1)

1
9 4 — i
Z{?’m | {Z - 1>(n+1}

3. 4a® = a®(a—1)

funkcij bo bralec zlahka preveril sam

.om m
7. 4 cos mz = — 2 sin — sin ( mz + —

8. Adtgmz = -
cos m (z + 1) cos mz

sin m

sin m (z + 1) sin m

racunu je posebno vazZen logaritemski odvod funkcije I (2), ki ga

V diferen¢nem
oznacimo s

I (2)
I (z)

go logaritemske funkcije. Izratunajm

AT@ =T'(z+1)—T@=2I'2)—T@ =(@—1) T



d

Pri diferenci za v (2) bomo upostevali, da 4 in E—w komutirata.
74
" d i d d [, I'(z+1
Ay ) =4 |— Wl @)= —UUdInl (2) = (111 (= )) —
_dz 1 dz - dz I (2)
d 1
= — (Inz) = —
dz Z

Dopolnimo naso tabelo s pravkar dobljenimi rezultati.
10. AT'(2) = (z—1) I (2)

1
11. Ay (2) = —

<

~mM+1

St

12. Ayp™ (2) =

Pravilo 12. sledi neposredno iz pravila 11. Sedaj, ko znamo poiskati diference
najpreprostej$ih funkeij, se lotimo obratne naloge, to je reSevanja enacbe

4§(@) = a( - - ®
Oznadimo s 2 inverzni operator operatorja A /
3 = 4

in zapiSimo formalno resitev
| f(2) =2a(z)

- Brez tezave uvidimo, da razlika dveh reSitev enacbe (6) ustreza homogeni
enachi, torej se dve reSitvi razlikujeta za periodi¢no funkcijo s periodo ena
(analogija z intergracijsko konstanto!).

Splosno resitev enacbe (6) bomo zapisali v obliki

f@=F@ +p@©

pri ¢emer je F (z2) neka partikularna reSitev te enacbe, p (z) pa poljubna perio-
di¢na funkcija s periodo ena. | |

Iz tabele za diference lahko takoj preberemo wvsote (2) za nekatere
funkcije.

Losam = 20
o n T 1
1 _

2. 2 = ! + 0 (2)

2n) (n— 1) (z — 1)

2
3. St — —o + p (2)
a—1 _
| —1
4, 2 g% = q~* (}—-—-— 1) D (2)
( |
5. 21114(1 + _.__) =Ilnz 4+ p(2)
| z _
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1

6. 2 CcOS Mz = sinm (z—3) + p (2)
- 2 gin |
>
_ . 1 ,
7. Xsinmz = — - cosm (z—3) + p(2)
2 sin ﬁ |

8. E(ZMDP{Z) F(z? 0 (2)

&EEmw®+pw

0.y L&D

zm+1 m!

p™ (2) + p (2)

Z, uporabo te tabele je mogoce reSevati enacbe, katerih desne strani so
elememafme funkcije. V bolj zapletenih primerih si pox agamo Z drugadénimi
netodami. Oglejmo si za pmmey eno. |

Sumacijska metoda

Diferenc¢no enacbo

fz+1)—Ff(2)=a(z) (7)
0 za 2z = 2, z+1gz +2, .2t n '

fe+1)—Ff@) =a()
f@wﬂywﬂw+nwa@+ﬂ)

zapisim

fz+n+1)—f(z+n)=a(z+ n)

SeStejmo vse enacbe!

ﬂammga@+m+f@+n+n " (8)

k=90

Denimo, da je vsota na desni strani enacbe konvergemna za vsak z iz definicij-
skega obmocja. Na nekoliko manjsem omejenem in zaprtem obmocju je kon-
vergenca enakomerna in je limitna funkecija analiti¢na. Oznac¢imo jo z G (2)

G(z)mmga(z-{*k)

k=0

Takoj se lahko - je G (2) resitev enacbe (7)

G+ 1)—G(2) = m).a(z+k+1)+?a(z+k)—a(z)
k=1 k=0

SploSna resitev f (z) se vedno izraza v obliki | |
f@=G@+pa (9)
Ce primerjamo enacbi (8) in (9) vidimo, da je

p()=1limf(z+n+1

n>oo
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periodicna funkcija s periodo ena. ResSitev G (z) ima to lastnost, da je periodi¢na
funkcija |
lim G (z T n)

n—>0<
identi¢no enaka nic¢.

Sumacijsko metodo lahko uporabimo, ¢e je le vrsta za G (z) konvergentna.
Zadosten pogoj za to je, da je

0 (2) — o (29 o< —1

Vendar pa je mogoce sumacijsko metodo posplositi.
‘Vstavimo v enacho (8) z =1

f(l)_—-—Za(l —i—k} —l—f(n—l—2)
k=0
ter ju odstejmo

n | |
f@=—2Z2a@Ez+tEk—al@+KR]F+fe+Fn+1)—Ffn+2)+ @) @10)
k=0 | |
Cé morda sedaj vsota v enacbi (10) konvergira, se prav lahko prepricamo, da je

G()=—23la(z+ k)—a(l+ k) (11)
k=0
resitev enacbe (7),

P =lmf+nt1)—Ff@+mn+ ]

M—>00

pa je periodicna funkcija s periodo ena.

Oglejmo si na preprostem primeru uporabo te metode7 Pois¢imo resitev
homogene diferen¢ne enacbe

gz + 1) —zg(z) =0 ‘ (12)
ki zadoS¢a zatetnemu pogoju o
‘ g (1) = (1)
Z logaritemskim odvajanjem privedemo enaébo v preprostejSo obliko.
' ¢+l g@ I '
gz+1)  g@ =z

Postavimo
g (2
fey =22
g2
s ¢imer preidemo na enacbo tipa (7).
1
fzT+1)—f(x)=—
74
Resitev smo zapisali v obliki (11) - S
| 2 1
G(R)=—2x ( : | )
| k=0\z2+k 1+ &k

Ce v splosni regitvi
f(2) =G(2) + p(?)
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izberemo za p(z) = — C, pri Zemer je C = 0,577... Eulerjeva konstanta, se bo
izrazala reSitev enatbe (12) posebno preprosto. Oznac¢imo tako dolofeno partiku-
larno resitev s vy (2)

w(z) =G (z) —

ki jo dobimo z integracijo

Funkcijo,

(14)

W W

in ki zadosca
orirajmo U 4) o

Druga vsota pa je ravno enaka Eulerjevi konstanti C,
dela unicita. |
Funkcijo I' (z) lahko sedaj zapiSemo v obliki ne

'_- ove, da je I (2)
0, —1, —2, ...

ey

Linearne erendéne enacbe viSjega reda

Lotimo se najprej homogene enacbe

@R fletn) ra@EfErn—1)+...+a (ZH"'{Z}

Mnczico n linearno neocdvisnih regitev te enacbe im ndamentalni
sistem. Vendar pa Je linearna neodwmast msﬂc@v‘ deﬁmm 13 C ga@e kot
obicajno. Omenimo le to, da funkecija, ki je v n zaporednih to¢kah z, z + 1,
z -+ n— 1 enaka ni¢, ne pripada fundamentalnemu sistemu.

Vsako drugo reSitev homogene enadbe zapiSemo v obliki

F)=p1(2)f1(2) + p2(2) fo 'é(z} + 0T R (2) fr (2)
s Pl {Z), p'2' ézj 9 0 o a5 I {ZE pa SO

o enta Ini sistem

pri ¢emer ‘Womw 11 (2), fo QZ}
polj ubne peri
no si msevame hnearne omogene enache s konstantnimi k

ao f(z +n) +arflz -+ n--—-—-—-—«H + ...t a, f(2) =0

oeficienti

Podobno kot diferencialno enac¢bo uZzenemo tudi to z nastavkom

f(2) =
g (ao g" T a1 g™t ... T ay) =0




- Vsaka ni¢la g; karakteristi¢nega polinoma
P(q) =a,q™ T a4 qn_1*+ “ e -E—'an

dolo¢a resSitev q;# enacbe.
V primeru, da so vsi koreni razliéni, tvorijc

in’ q?z: e s ey q??iz

fundamentalen 31stem Kadar pa je kakSen koren npr. qi: vecCkraten, denimo
k-kraten, so

qlz’ Zq 2', ~2 ql R Zk""':l qlz

~ linearno neodvisne reditve. Ce vsakemu veckratnemu korenu karakteristi¢ne
enactbe na isti na¢in priredimo sistem linearno neodvisnih funkeij, tvorijo vse
tako dobljene resitve fundamentalen sistem.

Obravnavajmo Se nehomogeno enacbo

6@ fE+n+au@fEe+rn—1)+...+ a,(2)f () = b

Pisimo levo stran enacbe krajse £ (f), tGre[j
L(f) = b(2).

Nacin re$evanja je podoben metodi variacije konstant. Partikularno regitev ne-
homogene enacbe is¢emo torej v obliki

F()=ci(®fir) tca@fe(x)+ ... T ca(a)fn(2) (15)

pri ¢emer so fi(2), ..., fr (2) linearno neodvisne resitve homogene enacbe.
ZapisSimo F (z} pri argumentu (z + 1)

n n
Fz+1D)=2Zc@fi+1D)+2(E+1D)—c@)fiz+1) (16)
i=1 i=1 | | |
Seda] zahtevamo, da zadnja vsota izpolnjuje pogoj
n
2A4¢c(@)fi(z+1)=0
i=1

Nadaljujmo v tem smislu!

Fz+2) = S (z)fg(z—f-Z)+2Acg(z)fz(z+2)

i=1 1=
' (17)
F(z+nm1)che(z)fz(4—l—n--—-1)—I—Edcz(z)fz(z—}—n-—l)
i=1 i=
F(z—i—n):Zci(z)fi(z-l—n)+EACg(z)fi(z+n)
| i = i=1
Pri tem naj bodo ? Aci(2) fi(z+ r) enake ni¢ za r=1,2,..,n—1 prir=n
i=1
pa naj velja |
2 dci(2)fi(z+ n) = b ()
i=1 | a'o(Z)
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Zlahka uvidimo, da zadosca F neh geni enacCbi, ako c¢1(z), c2(2), ..., cn (2)
1zpoln3u;;e30 zgornje pogoje. Ce namreeé % enacbe (15), (16), (17) pomnozimo po
vrsti z a, (2), a1 (2), .. ., ao (2) ter ena.cbe sumiramo, dobimo

) = % Ci {z) L (fi) + b (2)

i=1

£ (F

ker pa so f; (z) resitve homogene enacbhe, je res
F) = b (2)

Nasa naloga je torej resiti sistem n diferenc¢nih enacb

T
i
id@g

@ fic+1) =0

2 dei(2)fi(z+ n— 1) =0
1 |

b (2)

a,@ (2)

S dei®) fi(z
=1

Ker so f;i(z) linearno neodvisne, je determinanta sistema razlitna od ni¢ in
lahko izra¢unamo diference 4 c; (z). Nato reSimo n tako dobljenih linearnih
enacb prvega reda. '

Funkcija F' (z) je partik
se izraza v obliki

- f(2) = F éZE T 01 (2) 1 (2) + + Pr (2) In (2)

S tem bi zakbumh ta kratek in bezen pogled v d1fearencne- enacbe. Dotaknili
smo se le najpreprostejs$ih metod, ki S0 precej podoibne metodam za resevan;;e
diferencialnih enac¢b. Ta podobnost je bila ves cas voa ﬂ.o tega sestavka. Seveda
pa obstaja obilo literature o tem podro¢ju kot tudi o uporabi dﬁ@mmcmh
enacb v praksi. |

Splosna reSitev

ularna resitev nehomogene enacbe.

Literatura

1. H. Meschowslg leferenzglelchungen Gottmgen 1959
2. W. E. Milne, Numerical Calculus, Princeton Umvemmy Pre&g 1949.
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! FRAN DOMINKO

Dosezki in problemi sodobne astronomije

Leta po drugi svetovni vojni so obogatila astronomijo s Stevilnimi novimi
raziskovalnimi metodami, ki so omogocile Sirsi in globlji prodor v skrivnosti
vesolja. Ze danes so uspehi tako pomembni, da smemo govoriti o »revoluciji«.
Ta revolucija v marsi¢em spominja na ¢as Galileja, ki je s svojim delom in
umom odprl nove vidike in spremenil odnos ljudi do wvesolja. Pogled skozi
daljnogled, ki ga je prvi v zgodovini ¢lovestva z vpradujoéim razumom nameril
v nebo (1609), mu je odkril stvari, ki so krepile domnevo, da so telesa v osoncju
zgrajena iz iste snovi kot telesa na Zemllji, v nasprotju s tedaj priznanim
‘naukom aristotelovcev, da so ta telesa popolnoma razli¢ne snovi (iz »kvintesen-
cije« ali iz »petega elementa«) kot telesa na Zemlji in da veljajo zanjo drugacni
zakoni. Galilei je postavil zahtevo, da je treba tudi gibanja nebesnih teles
proucevati na podlagi zakonov zemeljske mehanike. V svojem nadrtu ni po-

polnoma uspel: pred smrtjo je priznal, da se je bil zmotil v dokazovanju, da je
blbavma. posledica zakona vztrajnosti in gibanja Zemlje okoli Sonca; bibavica
naj bi bila torej dokaz za Kopernikovo domnevo, da se Zemlja glbl;}e okoli
mirujo¢ega Sonca. Galilejeva uporaba vztrajnostnega zakona v tem primeru ni
bila pravilna, ker niti njemu ni uspelo, da bi se povsem otresel predsodkov,
zasidranih v duhu dobe. Ostal je podzavestno pri stari misli, da je vztrajnostno
gibanje pri nebesnih telesih enakomerno krozenje, in verjel, da Je vesolje
zakljudena krogla, v kateri je premo gibanje nesmiselno.

Za preobrat, ki ga je dozivela astronomija z Galilejem, so znaéilne tri
stvari: uporaba novih raziskovalnih sredstev in metod, delovna hipoteza, da
veljajo za nebesna telesa isti zakoni kot v laboratoriju, temeljno nov odnos do
vesolja in do njegovih problemov z istofasno ohranitvijo nekaterih starih
predsodkov, ki so zavirali pravilno uporabo pravkar odkritih zakonov mehanike.

Postavlja se dvoje vprasanj: v cem je pravzaprav sedanja »revolucija«
v astronomijj, in, druge, ali ima vsaj nekatere skupne znacﬂnolstl z revolucijo
iz dobe Galileja. |

Predvsem je treba pribiti, da je doblLa astronomija v zadnjem dvajsetletju
popolnoma nova raziskovalna sredstva in metode. | |

Astronom je do nedavnega zaznaval le vidno ter delno infrardefo in
ultravijoli¢no svetlobo z nebesnih teles. Ta pas elektromagnetnega spektra je
bil samo malo §ir§i od ene oktave. Zemeljsko ozra¢je namre¢ vpija ' preostali
del spektra, ki naj bi dal klju¢ za razumevanje stanja zvezdne snovi pri tempe-
raturi deset tisoC in vec stopinj. (Resonanc¢ne spektralne ¢rte atomov so v ultra-
vijolicnem obmocju spektra.) Med vojno so po naklju¢ju odkrili, da prihaja
s Sonca radijsko sevanje. Kasneje so postopno ugotavljali, da zemeljsko ozradjs

* Prirejeno po predavanju ob otvoritvi kongresa matematlkov fizikov in
astronomov Jugoslavije v Sarajevu 4. oktobra 1965.
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v jakosti in v stopnji polarizacije odbitega signala. Na ta nadin, tako upajo,
b1 sestavili mapo Marsovega povpredja, na kateri bi bile vrisane vse tvorbe
s premerom, ve¢jim od nekaj km, medtem ko lo¢imo na fotografskih posnetkih
Marsa dve tvorbi, ki sta v medsebojni razdalgjl vsaj 200 km. |

Vsa opazovanja z zemeljskih tal so mozZna le v omejenem obsegu in
s temeljnimi omejitvami (»ground based astronomy«), saj analiziramo sevanje,
ki je #lo skozi atmosfero. Poleg popolne absorpcije nekaterih spektralnih pasov
in delne absorpcije drugih' ter pravilnega loma valovanja nastopajo Se drugi,
manj pregledni pojavi. Zaradi turbulence v ozra¢ju in zaradi krajevnih fluk-
tuacij gostote zraka je zvezdna slika v goris¢u daljnogleda ved¢ja od nijene
teoreticne uklonske slike. Premer zvezdne slike v gori$éu velikega teleskopa
s premerom 506 cm na Mount Palomaru je redko kdaj manjsi od 2 lo¢nih
sekund, medtem ko je teoreti¢na opti¢na loc¢ljivost zrcala 0,03”. Umetni sateliti
Zemlje in kozmicéne sonde z merilnimi napravami in televizijskimi; kamerami
in z oddajniki, ki posredujejo merjenja in slike postajam na Zemlji, so osnova
»nadatmosferske« astronomije (»space astronomy«). V satelite in sonde vgradijo
celo astronomske dalj’noglede S spektrografi' ki avtomaticno chranjajo pred-
plszmu smer proti izbrani toc¢ki na nebu na 1”7 natan¢no. Rezultati pri proucde-
vanju' Luninega povr$ja in fizikalnih lastnosti prostora v okolici Zemlje so Ze
znani. Iz nepravilnosti v kroZenju umetnih satelitov so natanc¢éneje dolod¢ili
obliko Zemlje. Omenimo Se pomemben uspeh s kozmiéno raketo Marinner 4,
ki je 229 dni potovala do planeta Marsa in po smotrnem popravku smeri in
hitrosti $la v oddaljenosti 9700 km mimo planeta. Napravila je 24 slik Marsovega
povrsja ter posredovala slike na razdaljo 220 milijonov kilometrov. Kasneje so
prenos ponovili, ko je bila sonda v razdalji 320.10% km. Okoli 137 tiso¢ sestavnih
elementov aparature j& ves ¢as pravilno delovalo. Mo¢ signala za televizijsko
sliko je bila na Zemlji komaj 102 W. Slike so presenetile astronome. Na njih ni
bilo Marsovih »kanalov« niti drugih posebnosti na podrocéjih, kjer so menili,
da morda uspeva nekaksno nizje rastlinstvo. Opazili pa so tvorbe, podobne
kraterjem na Luninem povr§ju s premerom od 5km do 120 km. To je bilo
nepricakovano, saj je do tedaj samo Tombaugh objavil domnevo, da utegne
imeti Marsovo povrsje videz Luninega — isti Tombaughg ki je 1. 1930 odkril
planet Pluton.

Sonda Marinner 4 se pri gibanju ni lla‘taIICD.O drzala izraC¢unanih efemerid.
Kasnejsi kontrolni rac¢un- stvarnega tira je pokazal, da je potovanje trajalo tri
minute manj in da se je sonda priblizala planetu za 800 km! manj, kot je bilo
predvideno. Razlogi za to so lahko naslednji. Astronomski elementi Marsovega
tira ‘dovoljujejo lokacijo planeta na tiru z nenatan¢nostjo okoli -+ 200 km.
Zaradi omejene natancnesti, s katero je doloCena astronomska enota, je izracu-
nana oddaljenost Marsa lahko nenatan¢na za =+ 290 km. Najvec¢ja nenatané¢nost
pa izvira verjetno od svetlobnega tlaka, ki bi utegnil premakniti sondo od
geometrijskega tira ob sredanju s planetom za okoli 19 000 km. Primer naj pove,
kako visoke zahtevke postavlia astronavtika: pri astronomskih konstantah
osoncja je treba natancnost povecati najmanj za eno velikostno stopnjo.

Nadatmosferska metoda je pomembna Se z enega vidika. Naprave na
kozmi¢nih raketah morejo zaznavati vsa elektromagnetna sevanja, tudi tista,
ki bi jih sicer vpilo zemeljsko ozracje. Z raketami so izsledili z mest na nebu,
na katerih oko ne zapazi nidesar, razmeroma moc¢no ultravijoliéno sevanje.
Potrdili so, da seva snov v sonc¢éni koroni, s kineti¢no temperaturo 10¢°K -ali
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Odkrili so Se ved degefr; izvirov zarkov

vecjo, Zarkovje X. Qd] X. Najm
1Zvir v @ZV@?dju Skorpijona z oznako Sco X-1. Le-ta je mﬁmve’m'
tljenost 10~ Ix in

navi idezne velikosti i. oM, ki daje na Z j1 osvel
i am 200 pe. Ima spr emenh 1v SH ag In sprem @Xﬂ} 1V 3P @kﬁ‘u [Y1.

alji® najm e
gv@ﬂ@ nega toka iz fmﬂga 1zvira v obm 8 A je 38.1071 W/m
W/m?2. Izvir seva rent-

40 fotonov/cm?®s, medtem ko zazna apammra, se 2. M“‘“

gensko svetlobo. mocneje od vi vetlobe. izvir v G aﬁaksm je ". 1vsa

radijski izvir in Tau X kot izvir dek@V} a X. Cenijo, da je v G alakszﬁ n@ka ]

tiso¢ podobnih izvirov in da je skupni rentgenski svetlobni ftok v Galaksiji

S‘m’m@zcmka skupmega vidnega sveﬂebneg@; toka (B. Giacconi). |
nom 12 fizikalne informacije O nebesnih

nom lahko danes sprejern
v vseh @kmvah elektromagnetnega Sevam@ Ta pridobitev je izredno pon

za nadahmz E&ZVO} a&ﬁmnomlje

Nove raziskovalne smeri in misli so prinesli v astronomijo dosezki jedrske
fizike. Po prvi umetni jedrski reakciji v laboratoriju (Rutherford 1919) so neka-
terli znanstveniki (Harkins, J. ] @wm A. S. Eddington) objavili domnevo, da
nastane sevanje zvezd ob jedrskih reakmgah v mih@w notranjosti. Atkinson in
Houtermans sta 1929 dokamvaﬁa pm ‘temp eraturah, ki
bi morale po plinski enacbi biti v notranj @S‘H Z vezd do jedrskih reakcij med
atomi lazjih prvin. Pri %empemmm 20.108 9K im k milijonski delec
km@tmn@ energijo, pm kateri so v laboratoriju dosegh maﬁmm med protonom
in jedrom litija. Trdila sta, da so zaradi velike mase zvezd tudi poc¢asne reakcije
navzlic majhni verjetnosti pomembne za zvezdno sevanje. Toda Sele deset let
kasneje so dovolj dobro poznali efektivne preseke in energijske bilance reakcij
Eazgm jeder s pm’mm da SO P eldmlmege dolo¢ili mozne reakm;ge v zvezdah. To je
predvsem zasluga C. F. von Weizsickerja (1937), H. Betheja (1938) in delno
Se J Gamova (1938). V Soncu in v zvezdah glavz kajo reakcije, pri

svetilin
1embna

| 1e veje potel
se Stirje protoni zh}ego v jedro hehga pri ¢cemer se 28 tisocink mirovne
mase pojavi kot energija sevanja. Pri reakciji 1 g vodika se Spr@%ﬁ
0 @ﬁ? 9.101 J = 6 3.10'1 J energije. Pretvorba 4,4.10'? gramov na sekundo krije
energijski tok S Sonca 3,8. 1026 W. Privzemimo, da je Sonce zadnji dve milijardi
let sewvalo @nako V tem ¢asu je izgubilo m a‘nj kot 2% svoje mase in se je 5%
VOdﬂi& prefﬁmmh v helij, ¢e tvori danes vodik 35 %/¢ son¢ne mase.
Sesmv zw&zde s€ mmj S @aS@m Spwemmga hitrost] Spremmjama
] m izreku je notranja zgradba

d teh dveh kohun Ce se ena od njiju Spremmm
injajo sestav, gradba
del vodika, stopi

@sﬁm;ne zvezde @dmsna E@
se spreminjajo tudi zvezdni parametri, predvsem radij in temperatura.

trosi svojo poghw‘mo Ses‘%tavm@ vodik m prl tem se sprem
in drugs Ko upcrabi zvezda d@tbr‘se
v reakcijo hem in, nam v novih okolisé¢inah e tedja 3ed=ra Toda te reakcije
zadosScajo za Vvse krajsi ¢as, saj imajo zvezde komaj en odstotek atomov, ki so
tezji od helija. Po vojni so z meunmki dobili pregied 0 razvojnih poteh
zvezd z razlicnimi m mi in kemijskimi sestavi, ¢e so privzeli Cisto radiativen
ali delno konvektiven pr €nos ener gu e. Vsaka zvezda ima torej svoje posebno
Zivlj eme od nastanka do radiativne smrti
.. je ugoctovil HM% da sc zacetne fizikalne znamh@sﬁ zvezd
m sestavu ali galaksiji, ki ji pripadajo.

* 1pe = 1 parsek = 3.10** m = 3,26 sv. leta; 1 kpe = kiloparsek, 1 Mpc = 10° pe.




Vpeljal je pojem »zvrst zvezdnega prebivalstva«. Poglavitne razlike med
zvrstmi so v starosti in kemijskem sestavu. NajstarejSa zvezdna zvrst ima do
200-krat manj atomov teZjih prvin relativno na vodik, kot najmlajSa zvrst.
V na$i Galaksiji in verjetno v vsem vesolju se torej s ¢asom spreminja kon-
centracija atomskih jeder posameznih prvin. A za zdaj imamo Se zelo nejasne
predstave o razvoju galaksij in kemijskih prvin. | o o

~ Res je: Ze 1. Kant je razmisljaj (1755) o razvoju osonc;ga in je skusal
z zakoni mehanike pojasniti, kako naj bi bila njegova sedanja struktura nastala
iz neke bolj enostavne. Vendar so se Sele po prodoru jedrske fizike zadeli
zavedati pomena ¢asa v astronomiji. Vse — zvezde, zvezdne skupine, galaksije,
opazljivi del vesolja in celo snovi — je v nenehnem razvoju ali evoluciji. To
spoznanje je temeljito spremenilo odnos astronomov do vesol;a Pomislimo samo
na poljudne knjige iz astronomije pred letom 1920, ki so opisovale zgradbo
vesolja kot zgled za veéni red in ustaljeno hierarhijo med ngegovx_m;s. ¢lani.
Vv Starogrskem pojmu kozmosa je vkljuden tudi pojem reda. |
| Druga skupina vprasani, ki priteguje vse vec¢ fizikov k pro:ucevan;ju
astronomskih problemov, je v zvezi z odkritjem objektov v vesolju z izredno
moc¢nim eruptivnim sevanjem. Nekateri znanstveniki so prepri¢ani, da stojimo
pred fundamentalnimi odkritji o snovi, ter iS¢ejo nove ideje. Drugi menijo, da
je za neuspeh v tolmadenju teh pojavov kriva mehani¢na raz$iritev veljavnosti
znanih zakonov na okolnosti, o katerih nimamo izku$enj, na ogromne mase
in gravitacijske potencialne energije z velikostno stopnjo mirovne energije.
Tretji opozarjajo, da ne poznamo vseh refitev enacb sploSne relativnostne
teorije in dopuséajo moznost, da je formulacija moé¢no pomanjkljiva (R. H. Dicke).

S temi vprasanji so se astronomi- prvi¢ srecali pri proudevanju supernov.
To so zvezde, katerih sijaj se v enem dnevu ali morda celo v nekaj sekundah
stomilijonkrat poveta. Najvelji energijski tok je 10°* do 103 W. Svetilnost
zvezde se Sele ¢ez mesece ali leto zmanjsa na prvotno vrednost. V nekaterih
primerih je supernova ob maksimumu Zarela mocneje od galaksije, ki ii pri-
pada. Vsa energija se sprosti v enem sunku, zato govorimo o eksploziji. Izracu-
nali so, da je izsevana energija 104 do 10%J, kolikor izseva Sonce v dveh
milijardah let. V zvezdnem sestavu, ki ima ved desetin milijard zvezd, se pojavi
~popretno po ena supernova vsakih 400 (po najnovejsih ugotovitvah morda celo
vsakih 70 let). Po letu 185 naSe ere je bilo v na8i Galaksiji zanesljivo Sest
supernov: v letih 185, 369, 1006, 1054, 1572 in 1604. Ob eksploziji izvrZe zvezda za
desetinko do tri sonéne mase snovi. Snov se Siri v prostor okoli zvezde. Se
dandanes vidni ostanek supernove je meglena tvorba v ozvezdju Bika, znana
kot Rakova meglica (M 1). Zvezda je po zapiskih v kitajskih kronikah zaZarela
leta 1054 (sl. 1). Radialna hitrost Sirjenja plinov od zvezde je 1000 km/s, na-
videzna hitrost na nebesnem svodu pa 0,21” na leto. Po primerjavi obeh po-
datkov ugotovimo, da je supernova oddaljena od nas 1100 pc. Meglica ima
zvezen emisijski spektrum z emisijskimi ¢rtami, od katerih so najizrazitejde
vodikove. Energijski tok vidne svetlobe je 1,2.102° W. Meglica oddaja $e radijske
valove, katerih skupni energijski tok pri frekvencah od 9 do 10 000 MHz je
2,62.1026 W, ter Zarke X. Poizkusi, da bi pojasnili te pojaveg niso uspeli, dokler

1. 1. Meghca Rakovica Ml posledlca ekspiozue supernove 7 gefaj posnetek skozi

opti¢ni filter, ki prepusdéa samo pas svetlobe okoli emisijske érte H in sosedne

dusikove. Spodaj: posn@tek v svetlobi zveznega spek‘tra po izkljucitvi sveﬂobe
- | emls*l;jsknh ¢rt H in duSikove.
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se ni I. S. Sk];jovsk:l;] zatekel (1953) k idejam N. Herlofsona in H Alfvena (1950).
Izrazil je domnevo, da je zvezni Spektrum od zavornega sevanja relat1v1st1cmh
elektronov v magnetnem polju, tako imenovanega smkrotronskega sevanga
Rela.t:wlstlcm elektroni so elektroni s kineti¢no energijo, mnogo vec¢jo od mi-
rovne energue 0,561 MeV. Tako sevanje so fiziki odkrili Ze prej v porspeseval—-
nikih. Zavorno sevanje pa je polarizirano.. Zares je V. A. Dombovsku dokazal
_(1953), da je vidna svetloba zveznega spektra meglice mocno polarlzlr.ana in da
se videz meglice pri vrtenju polarizatorja opazno spreminja (sl. 2). Nekaj let
'ﬁfpozneje so isto potrchh za radijske valove z valovno dolZino od centlmetra do
decimetra. Danes imamo o pojavu to-le slikoc: bivsa supernova naj bi bila
izvir magnetnega polja ki ima v plmskem plaséu okoli zvezde gostoto med
510""‘5 in 10~ gaussa. To je le privzetek, ker zaradi ‘sibke svetilnosti- meghce
j:ne*posredno mer;;en;)e ni meczno. To je pa¢ najmanjsa Vrednost S katero shaJa]O
pri razlagi. Za primerjavo povejmo, da so odkrili komag ‘opazen Zeemanov
‘;'razcep spektralmh ért pri mejni locljlvostl aparature v sevan;ju neka‘terlh
najgostejsih oblakov. medzvezdne snovi v Galak5131 1z tega so sklepah ‘da
"'doseze gostota pol;)a samo na nekatemh mestih v Galak8131 najvedjo vrefdnost
5.10—% gaussa. Ob @ksplo'qu supernove nastanejo zelo hrtrl elektrom in protom
ali pa se morda pri neznanem procesu Se pozneje pospesujejo. Ti delci se
g:i_bl;;e;]o po Vl;;acmcah okrog magnetmh s11n1c in pri tem Odda]a]() palarlzlrano
sevanje z’ ‘elektriénim V@‘ktOPJem v pmtlsmem ravnini tlra Razmerom*a po-
”‘f'casne;]szl elektroni | seva;]o radijske valove, hltre331 vidno in Se hitrejsi- ultravijo-
li¢no in ‘morda celo rentgensko sveﬂobo Tako se je prvm po;; javila v astronom1;;1
misel, da S0 nekatera nebesna telesa mo¢ni izviri netermic¢nega sevanja. V na-
-sprorc;ju s sevanjem crnega ‘telesa porazdehtve gostote sveﬂobnega teka. po
'frekvencah ne moremo ‘niti prlbhzno oplsatl Z eno samo temperaturo S to
razlago sta vezani dve predpostavk1 Po prvi nastane ob neznanem pojavu pri
‘eksploziji supernove magnetno polje. Po drugi pa neznan mehanizeim nenehno
| jvbngme v pmstor hitre delce in J’lh pospesuue do relat1v1stlcmh hltI‘OStl (sa]
;;}e preteklo ze OO let od \.,k.Sp1O ije omsane SLpnmnvp\ S

) - Se. Iesne;jse so ‘temve pri poskusu da bi VA zavormm sevan;]em ra21021h
{podobne pojave pri n@katerlh galaksij ah Galaksue so orgamzlram sestavi
?zvezd zvezdnih skupin in medzvezdne snovi. Vsaka ima od ve¢ desetm mili-
i'JOl’lOfV do dvesto rmh;;ard zvezd. Galaksije so druga od drugd vecinoma toliko
ddalgene da so. zanemarljivi medsebo;]m grav1ta(31]sk1 Vpth V splosnem SO
ﬂgalaksue plosca‘te in se vrtijo ckrog najkrajSe osi. Sonce, vse zvezde vidne
s prostim ofesom ter zvezde v Rimski cesti tvorijo zvezdni sestav z olkoh
150 mlh]ardaml zvezd in polmerom 20 kpc. To je nasa Galaks:l;]a N;]eno sre-
dis¢e lezi v smeri protl ozvezd;]u Strelca v oddalJenO%stl 10 kpc od Sonca Gofsto
-- 'i;)edro Galakcl;]e ima premer okoli 750 pc (v njem je Se gOISte]SG ;;edrce) in maso
pet mlh;]onov sonénih mas. Oblakl medzvezdne snovi zastlra;;o jedro nasim
ocem, toda nev:ldno sevanJe prica, da s0 Vv njem izviri I‘ad.IJSklh valov in
zarkov X. Iz Jedra nenehno tece snovm tok okoli ene sonéne mase na leto.
J. ‘Oort (njegova Leydenska Sola z vsemi metodami raz:Lsku;;e zgradbo in -
namiko Galaksij e) meni, da so to morda 51bk1 odmevi davne eksplozrl]e v Jedru |
:Galaksue namlgUJoc na mo:znost dOGodka 0 katerem bo se govor |

-;_Opazﬂl naso Galaksn;;o kot medlo megleno tvorbo V mocnem dal;gnogledu b1
5razpozna11 poglam‘tne obrise in morda Se posamezne zvezde vehkanke medtem
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| V milijardi galaksu, ki so vidne po povrsni oceni s palomarskim zrcalnim
‘teleskopom, je nekaj desetin galaksij, pri katerih je energ133k1 tok v 12 oktavah
radijskega obmodéja vec kot tisoCinka energljskega; toka v oktavi vidne svetlobe,
ali celo temu enak. To so mdzogalakmye (1954). Najblizja radlogalaks:l.;]a je
| Cygnus A v razdahl 170 Mpc V Vsakem od omenjemh 0bm0c:13 seva energljskl
namrec ne prlhaja iz vz.dnega obj ekta (optlcne galaksue) tem.vec 1Z dveh locemh
izvirov, ki lezita simetri¢no glede na vidni objekt v medsebo;)m r'azdaljl 80 kpc.
Vsak ima premer 20 kpc. Ta dvojnost radijskih izvirov (>>d0ubhng<<) je znadilna
za ve¢ino radiogalaksij. Velika cddaljenost onemogoc¢a nadrobno proudevanje.
Spektrum je Sibek, zvezen z emisijskimi ¢rtami veckrat ioniziranih atomow
kisika, dusika in neona ter s posebno mramto cr‘to Ha Kaze, da je svetloba delno
polarizirana. Privlaéna je misel, da gre za zavorno se‘vanje ki je posledica
davne eksplozije. Galaksija bi morala eksplodirati pred ¢asom, ki bi ga po-
trebovali sevajo¢i delci, da bi pridli do sedanje razdalje 40 pc od opti¢ne
galaksije. Slo bi tore] za podoben po;;av kakor pr1 supernovah vendar V mnogo
VeC]em obsegu. L . | o | |
= Domnevo so s.pre]eh sele potem ko sta C R Lynds m. A R Sandage
‘zasledila galaksuo \'a stan;;u eksplozije in ko sta teme131t0 analizirala njene
~ opti¢ne lastnosti (1963). To je galaksija M 82 v ozvezdju Velikega 'Medveda Na
navadnih fotografijah v integralni svetlobi na »normalnih« ploi¢ah (sl. 3) ima

Sl. 3. Galaksija M 82; 30—minuteni po!snetek S tegle;skop?om na Mt Palomaru (D = 506 cm);
skozi fotovizuelni filter na plosce 103 a-_-O (Lynds in Sandage).

galaksija obliko nepravilnega; vretena s komaj naznacenimi vlaknastimi tvor-
bami ob robovih. Galaksija je oddaljena 3 Mpc in ima premer 7 kpc. Zaradi
razmeroma majhne oddaljenosti jo je mozno prouciti podrobneje. V njej ne
moremo razloCevati posameznih zvezd, zato jo priStevamo k nepravilnim ga-
laksijam. Iz radialnih hitrosti posameznih svetlih vozlov sledi, 'da je njena masa
‘enaka 20 milijardam sonc¢nih mas. Na fotografijah z cpti¢nim filtrom, ki pre-
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so kasneje zasledili Se pri stevilnih drugih galaksijah. V. A. Ambarzumjan
je prvi astronom, ki je Ze leta 1958, oslanjajod se na razli¢ne argumente, uteme-
ljeval domnevo, da imajo Jedra pomembno vlogo ter da dolo«ca;}o notrango gradbo
in razvojno pot galaksije.® | |

Galaksija M 82 je &ibkeijdi radijski izvir in odda;]a energljskl tok 4. 1032 w.
Ce je pojav radiogalaksije Cygnus A, ki ima 105-kratno moc¢ raduskega sevanja,
tudi posledica eksplozije n;]enega jedra pred mlh;]onom let, se je tedaj sprostﬂa
energija najmanj 105 J.

Ob tej razlagi pojava je treba porudamtl da so nerazvozlana Se vpraSanja
¢ 1zviru energije, nacinu sproscanja ‘hitrih delcev, nastanku magnetnega polja
in tudi razlog, zakaj se najvec energije javlja kot netermic¢no sevanje.

Manj pregledna so dogajanja pri nedavno odkritih po;sebmh objektlh
V tretjem cambridgskem katalogu (3 C) toCkastih radijskih izvirov so Stevilni
radijski izviri, za katere dolgo niso mogli na nebu najti ustreznega opti¢nega
objekta. Sele ko je Hazardu v Manchestru uspelo z interferentno metodo
z radijskima teleskopoma v, razdalji do 180 km doloditi lege radijskih izvirov
z natanénostjo 17, so vsaj za nekatere ugotovili, da so Sibka svetila z videzom
zvezdic. Zato so jih imenovali »quasi stellar radio sources«, to je, zvezdoliki
radijski izviri, skrajsano QSS, ali v strokovnem Zargonu »kwvazarji«. Njihowv
navidezni premer je ocdvisen od valovne dolZine in'je v nekaterih primerih pri
metrskih valovih celo manjs$i od 0,02” (zaradi turbulence je praktiéna meja
opticne locljivosti 17). Optiéni spektrum je zvezen in najsvetlejSi v obmodju
kratkih valov (»blue excess«). Vsebuje emisijske ¢rte in redko kdaj manj
izrazite absorpcijske ¢érte, ki po svoji valovni dolZini ne ustrezajo znanim értam
v atomskih spektrih. M. Schmidt je s sre¢no intuicijo uganil (1963), da pripadajo
znanim laZjim atomom, da pa so mo¢no premaknjene proti rdedemu delu
spektra {»redshift«). To je posledica Dopplerjevega pojava zaradi velike hitrosti,
s katero se ti izviri oddaljujejo od nas. Gre tolre] za zelo oddaljene galaksije
posebne vrste. | |

Zakljuéek sloni na emplrlcnem pravﬂu ki ga je odkril =, Hubble (1929),
namre¢, da se oddaljujejo jate galaksij od nas in druga od drug’e_s. hitrostjo,
ki je sorazmerna z njihovo oddaljenostjo: v= H.r. Linearnost zakona so po-
trdili do razdalje okoli 100 Mpc. Najverjetnejsa vrednost Hubblove konstante
je H = 100 km.s™! ((Mpc)—! = 3,2.10~8 (em/s)/em. Za vsak Mpc razdalje se hitrost
odmikanja zveda za 100 km/s. Iz opazovanj dobimo relativno spremembo va-
lovne dolZine A\i/A. Ce je radialna hitrost majhna proti svetlobni, je ta ulomek
enak razmerju v/c. Iz enadbe izpeljemo radialne hitrost v in iz Hubblovega
pravila razdaljo r. Pri hitrostih, ki niso majhne proti ¢, je treba uporabiti
relativisti¢no obliko zveze med /M in v. Tudi zveza med v in r ni vec linearna
in je odvisna Se od privzetka o geometri¢ni strukturi sveta. |

Ze pri najblizjem kvazarju 3 C-273 je AAM1 = 0,158 in v = 0,15 c. Raz-
daljo cenijo na pribliZne 6060 Mpc. Pri zelo oddaljenem kvazar]u 3C-9 je
AL = 2,0 in v = 0,8 ¢, razdalja pa je znana zelo nezanesljivo in je morda dva
tiso¢ ali ve¢ Mpec. Doslej najveéja opazovana relativna sprememba valovne
dolZzine je AA/A = 2,2; Vo-dikova ¢rta L, z laboratori] sk.o- valovno dolZino 1216 A

o Novere uo'otowtve potljmem Ambarzumjanovo mlsel Prav zato mu je na
kongrequ Mednarodne astronomske unije v Pragi leta 1967 Karlova univerza podelila
castni doktorat_ »for his insight«, kakor je v svoji utemeljitvi navedel A. Sandage.

T4



ge v spekiru premaknjena do val@wm d@Eém@ 398@ A. Danes poznamo okoli
jev, radialno hitrost pa so izmerili le pri 90 od njih. ‘
Kotni premer kvazarja je odvisen @d valovne dolZine, pri kateri merimo.
Oc¢itno so kvazarji grajeni v plasteh. Merjenim kotnim premerom ustrezajo
navzlic velikim razdaljam nepricakovano majhni linearni premeri z velikostno
stopnjo 100 pc item ko je poprecni linearni premer normalnih galaksij
okoli 10 kpe. Kvazarji so torej izredno kompaktne galaksije; ki niso vedje od
jedra pri normalnih galaksijah. Danes je v veljavi naslednja delovna hi
o njihovi zgradbi: v zunanjem plaséu s premerom 100 pc ali veé oddajajo
relativisti¢ni elektroni v pohu Z g%mm 10—° do 102 gaussa mdig?sk@
sevanje v obmocju metrskih V@bv V tem - so Se nevtralni atomi vodika
in v njem nastajajo morebitne opti¢ne absorpcijske w’te@ Premer vmesne plasti
je 40 pc ali morda samo 1pec: tu oddajajo hitrejsi relativistiéni eﬁekfimm
radijsko sevanje v obmocju centimetrskih vaﬁ.@v in tu nas’tag aw optiéne emisijske
¢rte. V vmesni plasti so o pmtom Privzamejo Se obstoj notranjega jedra
I manj. V naj bi bilo magnetno polje z vecjo g@st oto,
orda do sm gaussov. V njem .bi bila snov v Se neznanem ~stanju.
Izsevani energijski tok mdne svetlobe dosezZe pri kva;zarﬂh okoli m%
kar ustreza 50 do 100-kratnemu skupnemu energijskemu toku nase
Radijski energijski tok je stotinka energijskega toka vidne svetlobe. Kvazarji

SO Inaj SV@Jﬂe;j Sa tdesa VvV VeES ohu Ne m O T&ZEOZYH kako nag bl razmerom

c 1o1rern
majhno telo Odd&} alo tolikSen energijski tok. Ce gre za eksplozijo Jedm pred
| p-oidrugii m milijonom let, kot pri galaksiji M 82, pri cemer se je pretvoril 1%
- energije v sevanje, se je tedaj Spmsma energija 10°° ali celo 10°°J.
Ob privzetku, da ima kvazar maso najvedje galaksije, okoli 4,104 kg, in da
SGS‘ﬁOp_ iz cCistega vodika, je razpoloZljiva jedrska energija enaka 2,5.10%617.
Dobrsen del te energije bi moral sprostiti ob eksploziji v enem sunku. Ta
moznost je po danasSnjem znanju izkljucena. Pri kvazarjih nastopajo procesi,
ki so ucmkomt@gm od gedr‘sklh o | -

Trenutno raziskujejo ce Sevam vsi kvazarji pribliZzno enak energijski tok
in &e je disperzija posameznih vrednosti dovolj majhna. Ce bi bilo tako, bi po
primerjavi z navidezno opﬁén% ali radijsko svetilnostjo, ki jo izmerimo =z
aparati na Zemlji, dobili njihovo stvarno razdaljo neodvisno od Hubblovega
pravila. Tako bi utegnili priti do formulacije tega pravila, ki bi veljala tudi
za razdalje, vecCje od 100 Mpec. Na drugi strani poskuSajo dolociti nagostnost
kvazarjev v odvisnosti od razdalje. Po tej odvisnosti pri zelo vehkih razdaljah
bi lahko izbrali pravega med predlozenimi matem am@mmi kozmoloSkimi modeli
in spoznali tako geameﬁmno strukturo prostora. Zamisel je - mdanajbr"
neizvedljiva. Statisti¢ne n e‘mde terjajo namreC mMnozico, kvazarﬂ pa so redki;
ide na vec deset milijonov galaksij. |

A. Sandage se je mesai (1965), kaj so zvezdam podobni in modrikasto
svetlikajodi se objekti okrog pola Galaksije. V tej smeri ima namreé¢ svetloba
najkrajSo pot skozi Galaksijo do osonéja in so izgube zaradi absorpcije v med-

# Da bi se izognili tem teZavam, so nekateri predloZili drugaéne razlage
Za vsako od njih govori nekaj argumentov, prav tako mocni so pa nasprotni argu-
menti. Na kongresu Astronomske unije v Pragi 1967 se je pokazalo, da zastopa veéina
najugledneijsih znansfwemkmf navzhc kopitenju novih teZav »kosmologko« teorijo
kva‘zamev ki smo jo skuSali pojasniti v tem d&lanku. Izjema je morda Sola okrog
F,, ki skusa reSevati Eas’mo teorijo o Sﬁacmnam@m Vesohu é:ﬂssteady state

b
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zvezdni snovi najmanjse. Zato sega tu na$ pogled najgloblje. Na te objekte so
bili opozorili G. Haro, F. Zwicky in drugi. Nagostnost teh objektov kot funkcija
njihove navidezne svetilnosti, ki je pribliZzna mera za razdaljo, ima nepravilen

potek na intervalu navideznih svetilnosti, torej razdalj, med 12™ in 15™, Pri §e

Sibkejsih objektih od 16™ naprej pa je spet gladka. Sandage je sklepal, da gre
pri slednjih za objekte zunaj naSe Galaksije. Videz spektrov to potrjuje: svetlejsi
objekti do 12™ so vedinoma zvezde — bele pritlikavke — v Galaksiji. Spektri
Sibkejsih objektov pa so po omenjenem modrem presezku (»blue excess«) in po
zelo velikem premiku emisijskih ¢ért proti rdedemu delu spektra podobni
spektru kvazarjev. Tudi ti objekti so torej kompaktne zvezdolike galaksije
(»quasi stellar galaxies« ali skrajSano QSG), ki pa ne oddajajo radijskega
sevanja (nekateri jim pravijo sradio quiet galaxies«).” Ker so v vesolju stokrat
nagostnejsi od kvazarjev, so primernejSi predmet v statisticnih metodah.
A. Sandage pritakuje, da bodo Ze v bliznji prihodnosti na podlagi opazovanj
‘izbrali pravo teorijo med vsemi moZnimi kozmoloskimi teorijami. Z danaénjimi
napravami lahko namre¢ merijo Dopplerjev premik pri galaksijah do AA/A =
Temu ustreza premik ultravijolitne ¢rte vodika La v infrardece obmocje. Ne«»
jasno se kaZe, da radialne hitrosti zelo oddaljenih galaksij vse pocasneje na-
raSéajo z razdaljo. Ce je tako, se mora Sirjenje vesolja neko¢ zaustaviti in mu
znova slediti krcen;je To bi se skladalo Zz enim od predlozemh matematicnih
modelow. | | |

| Optimizem pa se moc¢no maje ob pom1sleku da SO ob;]ektu GSS QSG in
radiogalaksije morda le posamezne stopnje v razvoju dolo¢enih tipov galaksij.
Pogled v globine prostora je hkrati pogled v davno preteklost. Galaksijo v raz-
dalji na primer 5 milijard svetlobnih let vidimo taksno, kakrs$na je bila v mlajsi
dobi svojega razvoja pred petimi milijardami let, ko Zemlja $e ni obstajala.
Fizikalne znadilnosti galaksij pa so odvisne od njihove starosti. Dokler ne bodo
znane poti njihovega razvoja, ne bo mogoce primerjati in statisti¢no obdelovati
galaksij v razlitnih razdaljah. Vrtimo se torej v krogu.

O teh skrivnostnih objektih bi se dalo Se povedati marsﬂ{aj Toda to ni
namen tega clanka. Povzemimo pomembnejSa in sploSno sprejeta dognanja!
Notranja zgradba in sestav zvezd ter organizacija zvezdnih skupin so v ne-
nehnem spreminjanju. Razvojne poti zvezd z razliénimi masami so dokaj pre-
gledne. Nejasen je potek zadnje faze pred svetlobno smrtjo; mo¢no problema-
ticen je proces nastanka posamezne zvezde. Tehtna je vloga magnetnih polj tako
pri zvezdah kot pri galaksijah, a verjetno Se ni dokonc¢no ocenjena. Ob eksplo-
zijah supernov nastajajo pri Se neznanih procesih magnetna polja in relativi-
stiéni delci ter mod¢na netermitna sevanja. Netermi¢no sevanje je v vesolju zelo
pogostno. V vedjem merilu se dogaja to pri eksploziji jeder nekaterih galaksij,
ko se sprosti ogromna energija, ki je ne morejo kriti samo jedrske reakcije.
Is¢ejo bogatejSe energijske izvire in udlinkovitejSe procese. Odkrili so nove
zvrsti zelo kompaktnih galaksij in razSirili radij opaizljivega vesolja do razdalj
nekaj milijard parsekov. MozZnosti, da bi spoznali strukturo vesolja kot celote,
so se povecale. Jate galaks13 se oddaljujejo druga od druge in vesolje se &iri
tako, kakor da bi bila vsa snov pred 10.10° leti zbrana v zelo gosti kepi. Galaksije
naj bi bile nastale ob eksploziji tega prajedra. Stevﬂa atomov tezjih prvm proti

* Nedavno so ugotovili, da oddaja,]o komaj merljivo radl;jsko sefvan;)e yA gostoto |
toka na Zemlji okoli 107" W/m Hz | | |
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Stevilu vodikovih atomov se v galaksijah s Casom spreminjajo. Vesolje kot
celota je v spreminjanju, v evoluciji.

Vsi ti izsledki imajo tudi SpOZNavno teoretskl in splosno filozofski pomen:
0 lastnem mestu v vesolju razmisljujoéi duh ne more mimo njih. V tej zvezi je
razumljivo, da je na primer filozofski institut Sovjetske akademije znanosti
vkljucil v delovni nacrt za prihodnja leta razpravljanje o »revoluciji v razisko-
valnih metodah sodobne astronomije in njenem filozofskem pomenux, o »filo-
zofskih aspektih pojma vesolja« m 0 »sodobnem postavljanju kolzmoloskega
problemac. | |

Sodobna astronomija je odprla popolnoma nove vidike in terja od astro-
nomov in od drugih ljudi preusmeritev v odnosih do kozmosa. Vendar kot
sodobniki teZko dojamemo in pravilno ocenimo pomen dogajanj in odkritij za
prihodnost. Morda je tudi v tem pogledu globlja sorodnost s problematiko, ki
sta jo sprozili Galilejevi knjigi s Nuntius sidereus« (1609) in »Razgovori o dveh
svetovnih sestavih, ptolemejskem. in kopernikanskem« (1632), namenjeni stro-
kovnijakom in vsem razumnikom tiste dobe. |
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Nedavno sta bila reSena dva problema o Fourierovih vrstah ki sta bila
ze dl;]e casa odprta. Preden o tem kaj vec povemo, naj omenimo nekaj
znanih dejstev.

Ce je funkcija f(x) na intervalu [0,2 #] integrabilna, obstoje integrali

.
= — Vf(xr)cosnxdx; n=01,2..
7T o
i 27 | (1}
by=— {fl@)sinnxdxr; n=1,23,..,

JtT O

in je formalno mozno zapisati funkeciji f (x) prirejeno Fourierovo vrsto

zd, T (a1cosx T bisina) + (aecos2x + besinZx) + ... (2)

Seveda nas zanima, ali je narejena vrsta pri kakSnem x konvergentna, in ce je,
ali je njena vrednost kar f(x). Iz same integrabilnosti funkcije f (x) se glede
tega ne da ni¢ dognati. To vemo, cdkar je Kolmogorov podal primer integrabilne
funkcije, katere Fourierova vrsta divergira v vsaki toc¢ki. Ce naj bo torej
- Fourierova vrsta funkcije f (x) konvergentna, je treba privzeti, da ima funkcija
f (x) mocnejse lastnosti, kot je integrabilnost. Bralcu so znani raznovrstni
izreki, ki o tem govore.

Obrniimo se zdaj k prvemu problemu. Med raznimi tipi funkcij, ki jih ima
matematika na zalogi, so prav vsakdanje zvezne funkcije. Zato se je ze zdavnaj
zastavljalo vpradanje, kako je s konvergenco Fourierove vrste za funkcijo f (x),
ki je zvezna na intervalu [0,2 #]. Vendar kaksnih izsledkov o tem dolgo ni
bilo. Pred priblizno S§tiridesetimi leti je L. N. Luzin izrekel domnevo, da je
v takSnem primeru Fourierova vrsta skoraj povsod konvergentna. Ko tej
domnevi precej casa nisc nasli potrditve, se je Ze dozdevalo, da domneva morda
ni pravilna. ReSitev je prinesel neki izrek, ki ga je leta 1966 dokazal Svedski
matematik L. Carleson. Po tem izreku je Fourierova vrsta vsake funkcije iz

prostora Ls [0,2 1] skoraj povsod konvergentna. Kot je znano, so v Lg [0,2 ] vse
27

funkcije s sumabilnim kvadratom, tj. tiste, za katere je { f* (x) dx < co. Ker na
| | o
intervalu [0,2 #] zvezna funkcija ustreza navedeni zahtevi, je s Carlesonovim

dokazom potrjena tudi pravilnost Luzinove hipoteze. Naj Se pripomnimo, da je
v Luzinovi hipotezi obseZeno najveé¢, kar je mogoce trditi. To sta decgnala tudi
leta 1966 J. P. Kahane in Y. Katznelson. Pokazala sta namreé tole: Ce vzamemo
na intervalu [0,2 7] poljubno mnozico M z mero ni¢, lahko vedno dobimoe na tem
intervalu zvezno funkcijo, katere Foumerova vrsta divergira na mnozici M,
drugje pa konvergira.

- OpiSimo nekoliko Se drugi problem. Denimo, da poznamo Fourierove
koeficiente (1) neke zvezne funkcije f (x) in nas zanima vrednost funkcije f (x)
pri posameznih x. Ali lehko iz znanih Fourierovih koeficientov zvezne funkcije
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gravitacije naj bi potrdili trije pojavi: premik frekvence svetlobe,
l, proti rdeemu delu spektra, odklon svetlobnega curka
D hodu mi Sonca in sukanje Merkurjevega perihelija. Za zda]
rezult m pn Jmh pﬂskumh ne potrjujejo nedvoumno nobene teorije gravitacije.t®)
Zaradi tega wvneto igfejo moZnosti za nadaljnje poskuse. V zadnjem é&asu je
imanje za take poskuse moéno naraslo zaradi dvomov v splosno teorijo
V1) je vel poskusov, a vecina od njih je z danasnjimi
mi in sredstvi komaj izvedljiva. Izredno pomemben bi bil
poskus tmno potrdil ali Emsbemow@ splodno teorijo relativnosti ali
é@nzms?m skalarno teorijo.® To bi zahtevalo nenavadno dobro na-
tancnost, saj se napovedi obeh teorij razlikujeta samo za nekaj odstotkov. Zato
je dobrodosel vsak nov poskus, ¢eprav se njegov rezultat v okviru dosegljive
namnén@gﬁ sklada z obema navedenima teorijama in po njem ne moremo
, katera od njiju je prava. '

T@Oﬁj O

ki pr:i;haj?a Z zvezd

lak je poskus, o katerem' je ob koncu februarja poroc¢al I. I. Shapiro na
sestanku ameriSkega fizikalnega drusStva v Bostonu.® Predhodni rezultati se
v okviru dosezene natancnosti skladajo tako s splosno teorijo relativnosti kot
s tenzorsko-skalarnc teorijo. |

Pred $tirimi leti je Shapiro predlagal, da bi merili zakasnitev radarskih
valov v gravitacijskem polju.® V temﬁji gravitacije ima elektromagnetno valo-
vam@ m‘tmst co (= 3,0.108 m/s) samo v praznem prostoru, v ka‘éefmm ni gravita-

polja. V g ra‘m‘mm} skem p@h u je hi S Clm vecja Je
asam’ma vrednost gramtamgsk@g& potenciala. Curek marsklh valov naj bi
usmerili proti Merkurju ali Veneri in merili ¢as, ki ga potrebujejo valovi do
planeta in nazaj na Zemljo. Gravitacijsko polje planetov je zanemarljivo v pri-

meri z gravitacijskim poljem Sonca. Zato je treba upostevati samo zakasnitev




valov v gravitacijskem polju Sonca. Zakasnitev je tem vecja, ¢éim blize Sonca
gre curek radarskih valov, saj je gravifacijski potencial obratno sorazmeren
z razdaljo od sredi$¢a Sonca. Najvedja bi bila zakasnitev, ko bi bil planet skoraj
na nasprotni strani Sonca kot Zemlja, to je blizu zgornje konjunkcije, in bi
curek valov gel mimo Sonca v majhni razdalji (sl. 1, lega 1). Ko je planet med

Sl 1. Lega Zemlje, Meirkhma in Sonca blizu zgornje }wmunkcue (1) in v spodnji
| konjunkeiji (2).

Soncem in Zemljo, v spodnji konjunkeciii (lega 2), se curek najmanj pribliza
Soncu in je zakasnitev najmanjSa. Rafun po sploSni teoriji relativnosti da za
najvecCjo zakasnitev okoli 160 ys in za najmanjso manj kot 20 us. Potovanje
radarskih valov do Merkurja in nazaj traja najvel priblizno 25 minut. S so-
dobnimi napravami je izvedljivo mer;gen je casov vec¢ deset minut z relativno
natancnostjo okoli 10-8.

Planetne razdalje merijo z odbojem radarskih valov Ze veé let.™ Vendar
radarji, s katerimi so merili planetne razdalje v letu 1964, za Shapirov poskus
niso bili uporabni. Pri prehodu mimo Sonca miora namre¢ curek valov skozi
sonéno korono. V njej je mneczica elektronov, ki prav tako zmanjsajo hitrost
valov. Na sreco je to zmanjsanje obratno sorazmerno s kvadratom frekvence
in se mu pri dovolj visoki frekvenci izognemo. Pri radarskih valovih s frekvenco
0,43 GHz (1 GHz = 10% s™), kakrsne oddaja na primer radar postaje v Arecibu
v Porto Ricu, bi bila zakasnitev zaradi elektronov v koroni ve¢ sto mikro-
sekund. Pri valovih s frekvenco na pmmer 10 GHz pa bi bila ustrezna za-
kasnitev manjsa kot 1 us. |

V Lincolnovem laboratoriju pri massachusettskem tehnologkem ingtitutu
so se lotili izdelave radarja, ki bi seval valove s frekvenco 8,35 GHz in ki bi
v sunkih izseval energijski tok do 500 kW. Ta radar je zacel delovati proti koncu
leta 1966."* Zaradi raznih zaprek je dosegel sprva samo poloviéni pri¢akovani
energijski tok in oddaja v zadnjem c¢asu najveC energijski tok 350 kW. Valo-
vanje, ki se odbije na planetu in vrne do sprejemne antene, ojac¢ijo v maserskem

* Glej tlanek F. Dominka: Astronomija danes v tej Stevilki Obzornika!
** Pravijo mu kar radar haystack (senena kopica), ker je na robu mshtumhega
ozemlja v lopi ob travnikih.
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Po staticnem gravitacijskem polju se Siri elektromagnetno valovanje kot
po sredstvu z lomnim kvocientom n = (1 + 2 V/c,2)~%, pri ¢emer je V gravita-
cijski potencial. Hitrost valovanja je tedaj |

c=c,(1+ 2V/c2)"

Poleg tega je treba upostevati, da tede ura v gravitacijskem polju pocasneje kot
v prostoru brez gravitacijskega polja ali z zanemarljivim gravitacijskim poljem,
na primer na Zemlji. Pri racunanju ¢asa potovanja t, ki ga merimo z zemeljsko
uro, je treba zato upostevati zvezo z lastnim d¢asom 7

dr = dt (1 + 2 V/e2) %

Prirastek poti je ds = cdr in dobimo
dt = ds/co (1 + 2V/e?) = (1 — 2 V/ee?) ds/cy = dslc, + (2 x mg/o3) . ds/r

Upostevali smo, da je gravitacijski potencial !Sonca V = —x mg/r, z gravita-
cijsko komstanto x» = 6,7.10~11 Nm?'kg?, maso Sonca mg = 2.10% kg in razdaljo
od sredi$éa Sonca r. Clen 2 V/c,? je tako majhen, da sm01 se lahko zadovoljili
z. linearnim priblizkom. V prvem clenu na desni strani ‘ds/c, = dt, spoznamo
prirastek Casa t,, ki bi ga potrebovalo elektromagnetno valovanje za isto pot,
¢e bi bila njegova hitrost povsod enaka co. Tako dobimo

”

ét — t-——tﬂ — 2 (2 Pt mS/CQS) S dS/(T 2 "l" 32)1/2 —
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Sl. 2. Zakasnitev 0t radarskih valov v gravitacijskem polju Sonca po odboju na
Merkurju. Krivuljo so izraCunali z enac¢bo, ki je navedena na koncu sestavka. Tocke
so dobljene kot popreCja posameznih merjenj. Navpitne Crtice pri dveh tocCkah
kazejo tipi¢no efektivno napako. Manjse zakasnitve kot nekako 60 us (v blizini spodnje
konjunkecije) zaradi vse vedéjih relauvmh napak niso vnesene v diagram?

82



lomni kvocient majhen. s° je razdalja od Zem}ge do mfcke, v kateri Je curek
najblizji Somcu, in s” razdalja od te tocke dol planeta. S faktorjem 2 smo
upostevali, da opravi valovanje pot dvakrat.

Nas racun Se ni popolnoma v duhu splosne teorije mﬁaﬁvnosh

da k zgornjemu rezultatu Se majhen dodatek

— & (4 2 ma/ee®) [87/(s"2 - 1)t + (28 + §7)/(s? 4 1.2

Pri zgornji konjunkciji je razdalja §” priblizno enaka radiju planetnega tira a”
in s pribliZzno radiju Zemljinega tira a’ ter je r, dosti manjsi kot a” ali a”. Tako
dcbimo (6t)1 = Y xmg/cd) [Ind a'/r,2— 35 (3 + a”/a’)]. Pri spodnji konjunkciji je
§ = af m 3” = — a”? tako da dobimo (0t)s = (4 2 mg/c?] [Ina” — 5 (1 —a”/a’)].
s podatki: ¢’ = 1,511 m, a” = 0,57 10" m ter r, = 2 rg =
mo (ét); = 150 us in (0t)e = 13 us. Pri tem vzamemo, da gre
vV prvem primeru curek mimo

Sonca v razdalji dveh sonCnih radijev rs od
sredis¢a. Zaradi kotne locljivosti radarske antene okoli 1° namre¢ ne morejo
usmeriti curka dosti bliZze Soncu.

J. Strnad
Literatura

(1) J. Strnad: Nova teorija gravitacije. Obz. mat. fiz. 14, 121 (1967Qr
(2) B. Gwynne: New Witness for General Re}a‘mwty New Scientist 3%, 535 (1968)

- (3) L. 1. Shapiro: Fourth Test of General Relativity. Phys. Rev. Letters 13,
789 (1964). |
(4) C. M@ller The Theor'y of Relativity. Oxford (Clarendon Press), 1952, str. 308.

83



PRIMER UPORABE KVADRATNE FUNKCIJE

Prof. I. Vidav navaja na strani 351. prvega dela svoje knjige Vi$ja ma-
tematika, Ljubliana 1949 dokazljivost naslednje trditve: Ce imata kvadratna
trinoma ax? + bx + ¢ in dx? + ex + f realne koeficiente in je vsaj eden, na
primer dx? -+ ex + f, realno nerazcepen, potem je vedno mogole dobiti taki
realni Stevili 4 in g, da preideti trinoma po substituciji x = (ut + 1)/(t + o)
v binoma oblike At + B in Ct? + D. |

Ce naj po izvrSeni substituciji odpadeta linearna ¢lena trinomov, mora
biti 2au +bupo+b+2co=01in 2du+eupo e+ 2fo=10. Po elimina-
ciji neznanke p dobimo za i enaébo (ae — bd) u® + 2 (af —cd) u + (bf —ce) = 0
7. diskriminanto D; = 4 [(af — c¢d)2 — (ae — bd) . (bf — ce)]. Ce smatramo c¢ za
spremenljivko, je D1 kvadratna funkcija te spremenljivke. Uredimo jo in dobimo

Dy =4d*c*—4(2adf —ae® + bde) c + 4 (a® f2— abef + b2 df)
Diskriminanto te kvadratne funkcije lahko pretvorimo na obliko
Ds = 16 (ae — bd)? . (e — 4 df)

Ker je trinom dx? + ex +— f realno nerazcepen, je e*—4df <0 in zato tudi
Dy < 0. Ker ima kvadratna funkcija z negativno diskriminanto za vsako vred-

o~ ’"":“" e Wy i A T T «:-:-::---1 ~ A R e T TN ™ h n; gy g - ok o ° W
110StU prE-uu:n}.Jier DI edznak koeficienta kvadra.tnega den » J€ D1 = Q, 1Z cesar

sledi, da ima enac¢ba za u realna korena.
I. Molinaro

ANIZOTROPNOST LESA ZA MIKROVALOVE

Polarizacija svetlobe je za zafetnika eno izmed teZjih poglavij valovne
optike. Razumevanje tega pojava pa olajSamo, ¢e uvajamo polarizacijo postopno.
Prvi¢ obravnavamo polarizacijo in razliko med linearno polariziranim in ne-
polariziranim valovanjem ze pri transverzalnem valovanju po prozni vrvi. Pri
tem sluzi kot polarizator ozka reza. Pozneje ugotovimo pri elektromagnetnem
valovanju, da so radijski valovi linearno polarizirani. Pri zelo kratkih radijskih
valovih z valovno dolZino okoli centimetra, to je pri mikrovalovih ali radarskih
valovih, lahko pokazemo preprost polarizator. To je mreZza vzporednih Zic
v razmiku, ki je precej manjsi od valovne dolZine. Ce so Zice vzporedne z vek-
torjem elektri¢ne poljske jakosti v valovanju, mreza ne prepusca wvalovanja,
¢e so pravokotne na ta vektor, pa je mreza prepustna. Pri mikrovalovih imamo
moznost omeniti tudi dvolomnost in dikroizem, kar je zlasti ugodno, ker ni
treba posebej poskrbeti za linearno polarizacijo.

~ Snov, ki je dvolomna za mikrovalove, je kar les. To je posledica njegove
vlaknate zgradbe. Opti¢cna os ima smer vlaken, tako da ima les za curek
mikrovalov, ki vpadajo pravokotno na vlakna, dve razli¢ni vrednosti za lomni
kvocient. Linearno polarizirani valovi so po prehodu skozi kos lesa v sploSnem
eliptiéno polarizirani. Poleg tega je les za mikrovalove tudi dikroiticen.
Absorpcijski koeficient za linearno polarizirano valovanje, v katerem niha
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vektor elektri¢ne o e jakosti vzdolZz viaken, je vecji kot za valovanje, v ka-
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poljske jakosti na smer k _
ka. Ugodno j@g ¢e sprejemno anteno vpnemo tako, da je wvrtljiva okoli
dohne osl. Tako labhko s sprejemno anteno wvalovar 3@ ftu o’ 1 anahzwa

mna antena E@ 5 Spr 63 emnikom povezana pre k kri
3 , je sorazmeren s po Cnim

kvadratom
E'?). Karakteri o sprejemne ar ntene la Mm
poskusom. Ope ant @m p ostavimo dru ga proti drugi na skupni osi.
Oddajna an‘%ena, naj bo nepremicna, sprejemno pa vrtimo ckrog vzdolZne osi.
Signal 1z sprejemne antene se pm tem spreminja po enacbi |

sprejemne amtene
vanje, kaze sl. 1.

1 ! Nl .
6 W 2 B 4 50 60 70 6o 9 1m0 o 1200 ¢l®)

kotno na zveznico nek

debelo sn WkUV® eskm rezanc vzporedno z vlakni.

la naprava, ki sluzi za demonstracijske poskuse

* Pri poskusih je bila uporabljet
7z mikrovalovi na katedri za fiziko.




45 s smerjo, v kateri niha vektor elektrié¢ne poljske jakosti. Linearno polarizi-
rano valovanje postane po prehodu skozi ploS¢o elipticno polarizirano. Vrtimo
potasi sprejemno anteno okrog osi in merimo jakost mgnala' Potek signala
pri 3,1 cm de«beh suhi deski kaze sl. 2. Opisemo ga z enacbo:

14
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31.2

I = A—(A—B)cos?(p— )

kjer sta A4 in B najveéja in najmanjia jakost, ¢ kot med smerjo elektri¢nega
pclja v vpadajotem wvalovanju in sprejemno smerjo antene, ¢ pa je fazni
premik. Vrednost faznega premika razberemo z diagrama. Razmerje B/A da
fazno razliko med nihanjema projekcij elektri¢ne poljske JakOStl vzdolZ opti¢ne
osi in pravokotno nanjo:?

=29 = 2 arctg (B/A)"
'V naSem primeru je 6 = (7/9) n/2, od koder je razlika lomnih ‘koliénikfov:
ng — nq = (8/2 7)) A/d = 0,2

Poprecéni lomni koli¢nik lesa je za mikrovalove pribliZzno 1,4. Hitrost valovanja
se v pravokotnih smereh razlikuje torej za 3.10¢ km/s. PloS¢a lesa, za katero
bi bila fazna razlika n/2 (Cetrtinska ploS¢ica ali plos¢ica 1/4), bi morala biti
debela 4 ecm. Ko bi les ne bil dikroitiéen, bi dobili v tem primeru krozno
polarizirano valovanje. Vrtenje sprejemne antene bi tedaj ne prineslo spre-
memb v jakosti signala.

- Dikroizem lahko kompenziramo, ¢e plos¢ico zasuc¢emo tako, da sta kom-
ponenti elekiricnega polja po prehodu enako veliki. Vlakna lesa tvor'l;;o teda]
s smerjo elektricnega polja v vpadlem valovanju kot 45° — @', kjer je ¢ fazni
premik, ki smo ga opazili pri prejsnjem poskusu, to je v nasem primeru 10°.

Kot ¢’ lahko tudi izra¢unamo, ¢e poprej izmerimo oba absorpcijska koe-
ficienta. Oddajno in sprejemno anteno postavimo vzporedno in mednju po-
stavimo merjenec; prvi¢c z vlakni vzporedno z elektriénim poljem, drugi¢ pa
pravokotno nanj. Definirajmo Se absorpcijska koeficienta u, in u :

d je debelina plos¢e. Absorpcijska koeficienta sta mocno odvisna od vlaZnosti
lesa. Pri zratno suhem lesu je u, = 0,20cm™ in x| = 0,09 cm™. Ce naj pri
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je bilo v prostorih II. gimnazije v L dvanaj sto
mladih matematikov. Udelezba ge bila nekoliko vecja

kot prejsnja leta — mnaloge 3@ odd am 163 v&dn@ p@ nas m@m
sol ne pasige na

dejstvo, da dobra polovica srednjih
nobenega svojega dijaka. Vab K1 g a je poslalo Drustvo maten
in %fcmn@ RS vsem Solam v Siovemﬂ S@ se odzvaie E gg
Gimnazi 3 a v i @p ru U &}
v Vdemu (2), G lmnazua v Celju @% m
neos telkmovalea o paislai@ naslednje s@s}@ H simnaz U a v
D minu, na Jesenicah, TSE v Ljubljani fc@f Emh ansm

21. aprila 1968

1. Prvi delavec opravi delc v osmih urah. Ako m
delavec, opravi delo v nadaljniih dveh urah., V koliko urah
delavec sam?

2. Produktu poljubnih stirih zaporedmih
da je fa vsam v&dn@ popolni kvadrat!

3. Nacrtaj trikotnik, ¢e poznas s’@mm@@ a, kot y in kot med
ziS¢nico na W

4. Dokazi, da ustreza v frikotniku vecji stranici manjsa feziS¢nica in enakima
stranicama enaki tezidénici!

bi opravil -dd@ gi

stranico & in fe-

1. Nekdo je sestel dve prastevili, ki sta se razlikovali za 2, in ugotovil, da je
vsota deljiva z 12. Ali velja ua Lasmast 7.8 vm‘m poljubnih dveh praitevil, ki se
razlikujeta za 2, ali so izjeme? Odgo




2. IzraCunaj log V5-27, Ce poznas log 4,35 = a!

| 3. Trikotniku s stranicami 16 cm, 25cm in 39 em je vértan krog, temu pa
trikotnik, ki ima za ogliS¢a dotikaliS¢a stranic danega trikotnika z vcrtanim krogom.
PaoiS¢i stranice vértanega trikotnika! |

4. Izrazi prostornino V pokoncnega stozca s polmerom r osnovne ploskve in
povrsine P, Nato pokazi, da velja odnos

(%)= G2)
< {—
I o\ 2T

Pri kaksnem stozcu velja enacaj?

Iﬁ;He razred

VVVVVV

1. Voznik pelje skozi deset krizis¢ s semaforji, v treh krizisdéih svethkag 0 SaImno
rumene ludi. Koliko razli¢nih kombinaci] svetlobnih signalov lahko sre¢a, ¢e mni
zelenega vala?

2. Pokazi, da moremo vse niéle polinoma (x - 1)?» — (x — 1)7 zapisati v obliki
ﬂ k
—ictg —, k=1,2,..,n—1!
| "

3. V enakostramitnem trikotniku macdrtaj najkrajso daljico, ki razdeli ta tri-
kotnik na dva ploséinsko enaka dela!

4. V pravilni cetverostrani¢ni piramidi z osnovinim robom a je stranska
ploskev za kot 2 a naklonjena proti osnovni ploskvi, Izracunaj ploScéino lika, ki ga do-
bimo, ¢e piramiao presekamo z ravnino, ki ta naklonski kot razpolavlja!

. razred

1. V aritmeti¢nem zaporedju je vsota prvih p ¢lenov enaka S, = q, vsota prvih g
pa S, = p. Izracunaj vsoto prvih p 4 q Clenov S, /!

2. Vsota pozitivnih Stevil ¢ in b je enaka 1, torej a - b = 1. DokaZi, da veljsa

za taki stevili neenacba
erg) + (r5) 25
q 4 — —) >
a b/, — 2

3. V pravokotnem trikotniku razdeli.’ua simetrala pravega kota in teZzisénica iz
vrha pravega kota hipotenuzo na tri odseke, ki tvorijo aritmeti¢no zaporedje. Ko-
hksme vrednosti imajo tangensi notranjih kotov takega trikotnika?

Kdaj dobimo enakost?

4. Stranice nekega trikotnika so tri tangente na para"bolo y® = 2 px. Dokazi, da
gre Kkroznica, ki je olrtana temu trikotniku, skozi gorisCe parabole!

- Na tekmovanju so se najbolje odrezali prvosolci, najbrZ na rac¢un nekoliko
lazjih nalog. (1. in 3. nalogo je resilo blizu 70 %o tekmovalcev v tej skupini,
4. pa nihce.) NajslabSi uspeh je bil v tretji skupini, kjer ni nihce dosegel niti
polovice moznih tock.

Tekmovalna komisija, ki jo je wvodil prof Ivan Vidav, je na; posebnem
skupnem sestanku sklenila, da dcbe nagrade naslednji dijaki:

L nag rada

LegiSa Peter — 4. razred, II. gimnazija v Ljubljani,
Zagorc Oton — 2. razred, Gimnazija v Novi Gorici.

.
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“tako, da naj bi tekmovalo skupno najve¢ petdeset dijakov. Kaze pa, da teh
navodil ni treba jemati dobesedno, saj je tekmovalo kar triinSestdeset mladih
matematikov, presezek pa gre na racun tekmovalcev iz SR Srbije in Hrvatske
(Sr Srbija — 28 tekmowvalcev, SR Hrvatska — 19, SR Slovenija — 7, SR Ma-
kedonija — 5 in SR Bosna in Hercegovina — 4 tekmowvalci).

Tekmovalna komisija — predsedovala ji je prof. Milica Ili¢-Dajovi¢ — je
iz predlogov republiskih drusStev izbrala za posamezne skupine te-le naloge:

Drugi razred

1. Paisci cele resitve enacCbe

2. V ravnini (z) so dane stiri tocke A, B, C, D. V tej ravnini konstruiraj kroz-
nico, ki gre skozi tocki A in B tako, da sta d0121m odsekov na tangentah, potegnjenih
1Z mck C in D enaki. |

3. Krogla se dotika vseh treh osnovnih robov {ristrani¢ne piramide v njih
razpoloviscih, stranske robove pa seka tudi v njih razpolovis¢ih.

a) Pokazi, da je ta piramida pravilna!

b) Izracuna] polmer te krogle, ¢e sta osnovni rob in stransslﬁa viSsina oba
enaka a!

4. Dolo¢i vsa realna §tevila a, pri katerih nobena vrednost x, ki zados¢a ne-
enacbi

ax® 4+ (1 —a’x—a >0

ne presega po absolutni vrednosti Stevila 2.

Tretji razred
1. Resi sistem enacb |

Y loga iy

2. Dolo¢i v ravnini x 0y mzzomco tock, katerih koordinate (x,y) —0 S x £ 27—
zadoscajo relaciji

Vi-t- b;mx-—-—l/l—---qma:') <y<1—{— (]/1—{—sm4:c—}— Vlm—sméx)

3. Vrh pravegd kota je v koordinatnem zacetku, n;;egova kraka pa drsita po
paraboli y* = 2 px, ki jo sekata v totkah X in Y. -

a) Kaksno mnozico doloc¢ajo razpoloviséa daljice XY?
- b) Pokazi, da gredo vse premice XY skozi isto tocko!

D3jt

4. Dokazi, da Velgja identiteta
+y+2°=3[E—y*+ y—2)° +(z—-x)]+3(-xy-—ryz+zx},

potem pa ugotovi, kaksne naj bodo zveze med x, Yy, 2, da bo imel izraz xy + yz + zx
pri konstantni vsoti x + ¥y 4+ z =@ s, naivec¢jo vrednost.

Na podlagi dobljenega rezultata resi naslednji problem: vrednost diamanta je
proporcionalna kvadratu njegove teze. Diamant razrezemo mna tri dele, ki imajo
tezo x, y, z. Pokazi; da je skupna vrednost vseh treh delov vedno manjSa od vrednosti
celega diamanta in da je najmanjSa, Ce razreZemo diamant na tri enako tezke dele.

Cetrti razred

1. Naj bosta p in g dve prastevili, Stevilo q — 1 deljivo s p, §tevilo p—1 pa
deljivo s g. DokaZi, da je p = 14 g + q°!
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2. Dokazi, da od 25 ulencev, kolikor jih je v razredu, ne moremo sestaviti veé
kot 30 kosSarka$kih ekip po 5 igralcev tako, da imafa katerikoli 2 ekipi kvecjemu

enega skupnega igralca.

| 3. V pravokotnem trikotniku A
in viSina na hipotenuzo B Ay, = hy. Iz toCke A1 p
\, na AC, iz totke Ao n@rmam Ag

- tocke By normalo B As

a) Izracunaj vsoto ploscin vseh teh krogov!
b} Doloci kot a tako, da bo ta vsota maksimalna!

\BC (< B = %G} SM p@dana kot o prﬁ Qgghscu

4. Isto kot cefrta naloga v tretjem

SO 1 eh novalci na voljo Stiri ure.
ih 5 prvih ga in 7 tretjih nagrad, pohy
ekm Gmﬂﬁev Na#gi predsmvmki SO d%egh nasﬁ.eme ugpehe
ko in Peter Legisa, oba dijaka 4. razreda II. gimnazije v Lj .
sta d@bﬁa @dma v cetrtern razredu prvi nagm1 Pﬁ, tem je dosegel Z
HMVES}@ vaﬂ@ MoZni ¢k (25), Legida pa 24.

ih razredov sta bila pohvaljena
@mm (1 7 5} in Juriy Stare, dijak I. gim
in Peter lLegisa sm a loloCena v ek m O,
impiadi. Ta bo 10. in 11. julija letos v Mo

E‘@%@V&ﬁ 3 e nalog

Oton Zagore, dijak gimna-
dmge Y% Lmbbam (B}
- bo zastopala na

. Marincek

kmovanja so se ud @Eezg
Slovenije. NajveC dijakov so
gimnazija ),

S @Eﬁ@v v resevanju racunsk m
dijaki gimnazij in tehniskih smdmm Sol iz vse
poslale naslednje Sole: I. gimnazija iz Ljubljane ﬂﬁ% Poljane (18
cimnazija Nova Gorica (12), Il. gimnazija iz Ljubljane (7) ter gimnaziji iz Celja
in Skofje Loke (po 5). Tekmovalci so - i mzdeh eni v tri skupine in so tekm szah
17 snom ki jo poslusajo v fmk@@e- n folskem letu. V prvi skupini (II. razred
~ je tekmovalo & dijakov, v dr‘uga skupmi {HE mzmd gimndmg@}
) dijakov in v fretji skupmi (IV. d gimnazije) 40 dijak OV
Med tekmovanjem, ki je trajalo 2 uri, so morali dijaki resiti naslednje
naloge (pri vsaki nalogi je v oklepaju navedeno relativno Stevilo pravilnih

resitev):

Naloge za prvo skupino

1. Majhno kroglico vrZzemo navpi¢no navzgor z zateino hitrostjo 20 m/s. V visini
12 m zadene kroglica v vodoraven s’amp in se od njega prozno odbije. K olikSen cCas
pm@@ce od trenutka, ko kroglico vrzem 0, d@ trenutka, ko spet pade na tla? Za

koliko je ta ¢as k,mjsz od m'tegaﬁ ki bi ga kroglica porabila, ko bi ne bilo stropa? (43 %)

2. V kos lesa z maso 2 kg, ki miruje na vodoravnih tleh, prileti v vodoravni
smeri izstrelek z maso 10 g in v njem obtici. Les z izstrelkom se po trku premakne
za 0,5m. KolikSna je bila hitrost izstrelka? Koeficient trenja med lesom in tlemi
je 0,4. (50,5 %) | | |

3. Na vodoravni podlagi sta drug poleg drugega dva enaksa k@ckasta zaboga med
nhma pa je tanka toga, p&hﬂa ki 3@ dv.akrat visia od zabojev. V vodora
pritisnemo z roko na zgornii del palice tako, da zaboja malo razmaknemo.
@ad zabojev se bo premaknil, ¢e je famnje s tlemi za oba zaboja enako? K
biti sila roke, da bomo lahko razmakmnili zaboja, ki sta po 30kg tezka,
koeficient trenja med zabojema in tlemi 0,37 (16,8 %)




4, Prvi konec lahke ravne palice je privezan na tla z bakreno zico s proznostnim
modulom 10.000 kp/mm?®. V razdalji 20 cm od konca je palica privezana Se na strop
z enako dolgo in enako debelo jekleno Zieo s proznostnim modulom 20.000 kp/mm?®.
Zici sta spotetka izravnani, toda nmenapeti.

'V kolikSni razdalji od privezanega komca moramo na palico obesiti utez, Ce
hotemo, da se bosta zici podaljSali za enako dolzino? (29,4 %)

Naloge za drugo skupino

1. Dve enaki posodi s prostornino po 100 cm® povezemo s tekodinskim mamno-
metrom, ki ima krake s presekom 20 mm® in je mnapolnjen s tekocino z gostoto
2kg/dm?®. V posodah je spoCetka plin s temperatum 18,3° C in tlakom 1,02 atm.
Enso od posod nato segrejemo. Za koliko stopinj se je povecada tempera.tura v te]
posodi, Ce je razlika gladin v krakih manometra 10 cm, temperatura v drugi posodi
pa je ostala nespremenjena? (15,8 %) | |

2. Prosti konec zelo dolge ravne vrvi zacne nihati s frekvenco 3s ) prl cemer
naraste v 15 Illhajlh amplituda enakomerno od ¢ do 10 cm. Valovanje se Siri po vrvi
s hitrostjo 1 m/s. S kolikSno amplitudo niha 4s po pric¢etku valovanja tocka vrvi,
ki je 3,5m od konca? (18,3 %)

3. V sredi 20 cm debele steklene ploScée z lommim kvocientom 1,52 je svetilo, ki
sveti enakomerno na vse strani. KolikSen del svetlobnega toka izstopa iz plosSce
v zrak? KolikSen pa je ta del, ¢e plo§¢o obdaja voda z lomnim kvocientom 1,337
Absorpcije v steklu ni! (15 %)

4. Tanko lecCo iz stekla z lommnim kvocientom 1,5 posrebrimo po konkavni strani
s krivingkim radijem 0,5 m. Kak$na naj bo :druga plosskev in kolikSen njen krivinski
radij, da bo leca delo*v‘ala kot ravno zrecalo, ¢e posvetimo na njeno neposrebreno
stran? (0 %)

—1

Naloge za tretjo skupino

1. 10 m dolgo Zico s presekom 0,1 mm® iz cekasa s specifi¢nim uporom
1 ochmmm?/m prikljudimo na vir z gonilno napetostje 100V, Z voltmetrom, ki ima
upor 1000 chmov izmerimo napeiost na 4 m dolgem odseku te zice. KolikSno napeétosi
kaze valtmebe{r? (55 %)

2. 10 cm doiga kovinska palica, ki je ves ¢as pravokotna na homogeno magnetno
peolie z gostoto 2 Vs/m?® se giblje po plas¢u valja z raduem o cm. Izrac¢unaj in narisi
¢asovni potek inducirane napetosti med krajiStema palice, ¢e je velikost njene hitrosti
konstantna in se vrne palica V&ak.o stotinko- sekunde v zacetno lego? KolikS$na Je
najvecja napetost? (89 %) -

3. Ploi¢ati kondenzator z razmikom plo$¢ 0,5cm in plofscmo po 100 cm’® pri-
kljuéimo na generator z enosmerno napemssmo 290 V in nato odstranimo pr*lkl jucka.
Koliksno delo opravimo, ko plogéi pocasi razmaknemo do razmlka 1cm, ¢e Je vsaka
od plo$¢ med razmikanijem izolirana? (57.6 %)
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4, Curek elektronov usmerimo skozi sreding precno postavljene tuljave s pre-
merommy 8cm. V razdalii 25 cm od osi tuljave zadene curek fluorescentni zaslon,
postavljen pravokotno na prvotno smer curka, Koliksna naj bo gostota magnetnega
polja v tuljavi, da se bo svetla pika na zaslonu premaknila za 1cm, c¢e pretecejo
elektroni pred vstopom v magnetno polje napetost 500

Pri ocenjevanju je stela pravilnoe E””@é@ﬂ& - 5 tock, delno resena pa

Lrvi Sgumm je bilo aﬁ@ﬂ/@ ‘vseh nai@g? v ’m‘e‘ml

je p@ pmg}ie@h izdeikov odlod¢ila, d& zadimse ; kz 3@ 1 m‘alm@ ?@Sﬂ
,4 9/ nalog.

ne bo upostevala; pravilno resenih je kljub temu E@ 16

Nagrade in pohvale je komisija podelila takole:

V tretji skupini so dobili prv&

1L gzmnam 3 e, Ljubljana ter Svitan Gaborovié iz
7 p@ 20 tock. Dru m@c nagrado je dobil ©
nagrado so dobili Otorepec Joz

K MR L L} u b h ana, Sh vnik FE

simnazi 3 e Tab
ﬂ an gmm azl] a Celj
imnazija N ova ¢

p@hvﬂj eni 31 Gva}m ki so ' po 1t
gimnazija Rankel Ka gimnazij
rag@ in me’lp ah Evam ;zmn %z‘lj a K
Kenda Evany gl |
V drugi skuplm je bila pod@h@na le U@Ua ‘ﬁmgm& Dobil jo je Vedlin
mnazija, Ljubljana. D

V prvi Skuﬁm je zassﬂd el z - 18 totkami prvc
Nedeljkovi¢ M H‘&H H Lg ublj ana.

J ure, II. gimnazija - jana { 1 ?
tock) in

ubh ana

am j a Tabor, Maribor (16

Hribar

2

maja, tudi letos v Beogradu.
na repu hskl tekmo-
in sicer:

m izikov je bilo 19. 1
Udelezilo se ga je 40 tekmovalcev, najbolje uvriéenih
vanjih. Iz Slovenije je bilo na tekmovanje poslanih
Pemr Lﬁglsa Andre} Defdm? Svitan Gaborovi¢, Milan
Aleksander Regent in Tomo Zitko. Ostale republike so b

Hemeg&vma S 3 tekmowvalcl, H mfaftske; z 12, M: @ﬂlj azlin Sﬂmg a
- Tekm Y alci so bili razd;@h enl n kup kupini kmovali
ehamk@ in ﬁ‘@rpi@ie V' ( '%"U_gﬁ 17 @ﬁ@k%mk@ in mag

mike. Slovenski dijaki so tekmovali vsi v drugi skupini.
N aﬁoge za posamezne d{upme so bile naslednje

Prva skupina

1. Pokoncna posoda z maso M in s povrsino dna S stoji na vodoravni podlagi.

Cb dnu sega iz posode kratka vodoravna cev s presekom A in s pipico na koncu. Do

kolikSne mnajvecje visine smemo v posodo naliti vodo, ¢e nodemo, da bi se potem,

ko odpremo pipico, posoda premaknila? Diskutiraj dobljeno reSitev: ali je visina

vode v p@@@dl vedno omejena? - | | |

V klanec z nagibom 45° vrzemo Navzgor Z zacetno hitrostjo 10 m/s n

telo ﬁak’ex da drsi po m ancu. Za koliko % je hitrost telesa, ko pridrsi nazaj, rr
od zaCetne hitrosti? Koeficient trenja med telesom in podlago je 0,05.




3. 3cm dolgo epruveto potopimo z dnom navzgor z morske gladine, kjer je
temperatura 230°C in tlak 1kp/cm® tako globoko, da je stolpec zraka v epruveti Se
1,8 cm dolg. V kateri globini je tedaj epruveta, ¢e je temperatura tam 17° C?

4. Dve enaki utezi po 1,3 kg visita na neraztegljivi vrvici, obeSeni prek skripca.
S kolikSno najvedéjo silo smemo vleéi eno od utezi navzdol, ne da bi se vrvica
pretrgala? Vrvica vzdrzi najvec 3 kp. |

5. Na kroglastem planetu, katerega premer je 10-krat manjsi od premera Zemlje
in ki se zavrti okoli sveoje osi v 6 urah, so telesa ma ekvatorju za 10 % lazja kot na
polih. Kolikokrat je tezni vospesek na tem planetu manjsi od teznega pospeska na
Zemlji? Premer Zemlje je 12 600 km. ’ |

Druga skupina

- 1. V elektriéni krog je na narisanem mestu prikljud¢en ampermeter z obsegom
2mA in uporom 5 ohmov. Kako je treba shuntirati instrument, ¢e hoCemo meriti
tok v njegovi veji pri poljubni legi drsnika? Notfranji upor vira napetosti zanemari!

. 9592
500 ! :
50Q2
100Q2
Y magnetn:etm polju z jakostjo 8. 10* _A./_ e v vakuumu nahaja zi¢na zanka

8 pr‘mv zom 10 cm” in z uporom 1 ohm, tako dn ie ravnina zanke pravokotna na smer

R -n-A o ol - vﬁn-n- Th M o, i Smal el Te Ry T

magnetnega polja. Kohksen niaboj pretece PO zankl ko se miagnetno polje zmanjsa
enakomierno od zacetne vrednosti do 0.

3. Po dusSilki z meznanim ohmskim uporom, ki je prikljuéena na izmeniéno
napetost 20 V s frekvenco 50 s, tece tok 3 A. Ko dusilko zvezemo zaporedno z upor-
nikom za 5 ohmov in ju chvpdi priklju¢imo na 20V, tece tok 2 A. Koliksna je
induktivnost dusSilke in kolikSen je njen ohmski upor? Kahksna je pri eni in dcmgl
vezavi elektriéna moc, Ki se trosi na dusilki?

4, Kondenzator ima v razmiku 2 cm vertikalni ploSéi v obliki kvadrata s stra-
nico 10 cm in je prikljuéen na enosmerno napetost 5000V. V prostor med ploséi
vlivamo olje tako, da raste gladina vzporedno z vodoravnim robom plosée s hitrostjo
5 mmy/s. KolikSen tok teCe pri tem skozi izvir napetosti? Dielektri¢énost olja je 3.

5. V vakuumu se nahaja plosSc¢at kondenzator z 10 em Sirokima plosS¢ama v raz-
miku 3 cm. Curek elektronov, ki jih pospeSuje napetost 100V, prileti tik ob robu
pozitivne ploSce s kotom. 30° proti plosci. Med katero spodnjo in katero zgornjo mejo
mora biti napetost med ploS¢ama, da pride curek elektronov neovirano skozi
kondenzator?

Tretja skupina

1. Na ploSéico iz volframa z izstopnim delom 4,5eV pada curek UV swvetlobe
z valovno dolZino 900 A. Plo&éica je v vakuumu v homogenem magnetnem polju, ki
je z njo vzporedno in ima gostoto 0,001 Vs/m?. V kolikS§ni najvec¢ji oddaljenosti od
plosScice zadenejo elektroni, ki izhajajo iz ploséice pravokotno, fotografsko plosSco,
ki je v ravnini ploscéice?

2. KolikSna naj bo napetost na rentgenski cevi, da bomo iz nje dobili svetlobo
z valovno dolZino 0,01 A? Kolikéna je de Brogliejeva valovna dolZzina elektronov tik
preden udarijo v tarco? | |
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3. Milni¢no opno z debelino 0,05 mm osvetljujemo z enobarvno svetlobo z va-
lovno -diolZino 5000 A. Pri vpadnem kotu 45° dobimo ojaten odboj. KolikSen je lomni
kvocient milnice, ¢e vemo, da je le malo vecji od lomnega kvocienta ciste vode?
L.omni kvocient &iste vode je 4/3, |

4. Na vodoravnem dnu velikega rezervoarja, v katerem je ogljikov disulfid
z lomnim kvocientom 5/3, je tockasta lu¢, ki sveti enakomerno na vse strani. Do
koliksne visSine je napolnjen rezervoar, ¢e je premer temnega kroga okrog luc¢i na
dnu 6 m. V kolik&ni razdalji od luéi so na dnu rezervoarja tocke, v katerih je osvetlje-
nost enaka polovici maksimalne vrednosti? Absorpcijo in sipanje svetlobe zanemari!

5. Na prizmo iz kronskega stekla z lomeéim kotom 30° vpada priavokotno curek
heie Sveﬂa'bﬁ Nastali spekirum opazujemo na z,,asionuf ki j?e vzporeden z vpadno
ploskvijo prizme in je od prizme oddaljen za 1 m. KolikSna je Sirina spektra med
Vaﬂ@vmma dolzinama €563 A in 4861 A? Kronsko sb@km 1%& za svetlobo z valovno
| 63 A lomni kveocient 1,513, za svetlobo z valovno dolZzino 4861 A pa lomni
Koliksna bi bﬁ& ta Sirina 4 spekiru prvega reda, ki bi ga dajala

V ema&mh @!k@fhscmah mrezica z 8000 zarezami na cm?

eli tekmowalel 4 ure ¢asa. Za pravilno reSeno nalogo je
alno Stevilo to¢k je bilo 25.
vi, tri druge in peé tretjih

Za reSevanje so 1n
dobil tekmovalec 4—6 tock, maksim
Tekmovalcem je k@?’ﬂ%j& podelila dve p1
nagrad ter Sest pohwval.

' V prvi grupi so bili nagrajeni: Jankovié Vladimir, Matemati¢na gimnazija
Beograd (II. nagrada, 19 tolk), Pribeg Zdravko, imek“%m fii‘ehméka Sola Zagreb
(II. nagrada, 19 tock) in Priglin Igor, Matemati¢na Zagreb GH na-
gmda 18,5 tocke). P@hvaﬁjeﬁ je bil DJ ordjevic Amosmje XIV. gimn. Beograd.

V drugi grupi so bili nag rajeni: DoreSi¢ Miroslav, Matem ahﬁﬂa gimnazija,
0 Mattes Neven, Matemati¢na gimnazija, Zagreb
nagmd&a 23 tock), L@gfiﬂ. Peter, H , Ljubljana (III. nagrada, 21,5

ke) in Detela Andrej, 1I. ia, Lmbhana é’HE nagrada, 21,5 m@ke}
P@hvﬂ j em SO bm Fuzir Milan, gzmmazua Ce Gaborovic Smtam gimnazija
Tabor, Maribor, Senjanovi¢ Goran, XIV. gimnazija, E d ter Kadelburg
oran in Grozdanov Tasko, oba iz Matemati¢ne gimnazi j e : eagmd

V tretji grupi so bili nagr agem Nagman ,- anko {E nagma 21 mck}
Hrvoje {HE nagrada, 18 tock) in Plenk 8 tock). Vsi
dijaki gimnazije B. Ogrizovic¢, Zagre o. |

Izmed nagmjemh in pd‘rv‘aijem?ﬁ iz druge in tretje sk
ebnem izbirnem tekmovanju izbrani trije dijaki, ki bodo zastopall .
na ?E mednamdm soism @hmpmdi iz fizike, ki ‘?b@ od 23. VI. do 1.

v Budimpesti.

(I. nagrada, 24 tock),

g ﬁ_

Medobcinski zavod za prosvetno pedagosko sluzbo v Novem mestu je
organiziral dva dvodnevna seminarja za uditelje fizike na osnovnih sSolah. Prvi
je - v zaCetku Solskega leta in 3@ bil posveden eksperimentiranju pri pouku

dmem razredu osnovne Sole. V gimnazijskem laboratoriju je bilo po-

S"mﬂj@mh kakih 60 poskusov za sédmz razred, ki so jih udelezenci tecaja

‘po vrsti sami morali izvesti. Predavatelj je propagiral tudi m

* Vodil ga je p@dpisaﬁi




mentiranje pri pouku. Zato so nekatere vaje (hitrost enakomerno pospeSenega
gibanja, zmesna temperatura, specifiéna toplota, vodoravni met in Se nekatere)
bile izvedene mnoZi¢no. Nekatere vaznejSe poskuse je predavatelj sam demon-
striral, pri ¢emer je zlasti opozarjal na nadine za dosego C¢imboljSe vidljivosti
vseh efektov. |

Drugi seminar je bil v semestralnem odmoru. Tokrat so se udelezenci
seznanili tudi z uvodom v funkcije, o ¢emer je predaval prof. Ivan Stalec,
ostali del pa je bil namenjen fiziki. Ing. Janez Ferbar je porod¢al o seminariju,
ki mu je prisostvoval v Angliji. Nekatere poskuse, ki jih je tam videl, so udele-
zenci seminarja sami izvedli, in sicer zopet v obliki mnozi¢nega eksperimenti-
ranja (Brownovo gibanje, merjenje velikosti molekule, tehtanje lasu na »mikro-
tehtnici«, vezave zarnic, uporov itd., umerjanje improviziranega ampermetra
na »vezavni deski«). Pribor za izvedbo seminarja so izdelali dijaki novomeske
gimnazije pri tehni¢nem pouku. UdeleZenci so videli tudi dva poucna filma:
enega, ki je propagiral sodobna ucila za mnozi¢no eksperimentiranje pri pouku
elekromagnetizma (sami so izvedli poskuse z magnetnimi polji tokovednikowv in
naravnih magnetov), drugi pa je bil namenjen elektromagnetnim nihanjem.
Mehansko valovanje, mikrovalove in wvalovne pojave pri svetlobi je pokazal
podpisani eksperimentalno. |

Pri obeh seminarjih je bila udeleZba zadovoljiva, ¢eprav bi bila lahko
Se boljsa. |

Dusan Modic
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1967. 2?1 sm“

. 2. dop. izd. Zagreb

razred gimnazije.

Vuk Karadzic

L. Vren: Nastava matematike u srednjoj skoli. ngm 1

Vuk Karadzi¢c 1967. 410 str.
Elementary Togpd@zgy A

York, Academic Pr

33. ombinatorial and Algebraic

Approach. N ew

V zadnjem letu smo prejeli tudi naslednje matemati¢ne revije, v katerih
lahko dobite lepo Stevilo raznih nalog:

a) American Mathematical Monthly. Menasha, The American © Tathematical
society 1967, vol. 74.

b) L’Education mathématique. Paris, Vmb@m 1967/68, Annee 70.

c) nente der Mathematik. Basel, Birkhauser V eﬂag E%? Bd. 23.

d) Matematiceskij list za ucenike osnovn e skoie Beograd, Druitvo mate-
mahcam hzmara 1 astronoma SR Srk ue

e) Matem ahgomﬁzmkz list za wucenike skda

Hrvatske 1966/1967, g

maten atlc&m 1 ﬁzmam
f) Matematika v Skole. Moskva, Prosvescenie 1%’1

Drustvo

Pri Drzavni zalozbi Slovenije je pred kratkim izsla tretja predelana izdaja
knjige dr. Ivan Vidav: Visja matematika I. Knjigo, ki je v maloprodaji po
80 din, lahko dobite v matemati¢ni knjiznici, Ljubljana, Trg revolucije 11
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Tehni¢ni in odgovorni urednik

Kvaternik Franc, Gimnazija Poljane, Ljubljana

Uredniski odbor

Blinc Robert, FNT univerze v Ljubljani

Bohte Zvonimir, FNT univerze v Ljubljani

Cokan Aleksander, VII. gimnazija v Ljubljani

Moljk Anton, FNT univerze v Ljubljani

Pahor J 'o.ie} Nuklearni institut »J. Stefan« v Ljubljani
Pivk Valentin, Gimnazija v Skofji Loki

Rosina Mitja, FNT univerze v Ljubljani

Strnad Janez, FINT univerze v Ljubljani

Ursi¢c Stanko, Zavoed za solstvo SR Slovenije

Vidav Ivan, FNT univerze v Ljubljani

I1zda jlé, drustvo matematikov, fizikov in astronomov SRS 4-krat letno. Clanarina
je 10din in jo nakazujte na ¢ekovni rac¢un Obzornika. Clani dru$tva prejemajo
Obzornik za matematiko in fiziko zastomn].

Naro¢nina je

za neclane 15 din

za dijake 5 din

za ustanove in podjetja 20 din
za inozemstvo 25din (2 $)
posamezna Stevilka 5 din

Dopise posiljajte in list narocaite na naslov: Obzornik za matematiko in fizikn



