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VEKTORJI V ELEMENTARNI GEOMETRIJI
NIKO PRIJATELJ

Zivimo v &asu, ko je postalo nesoglasje med »klasi¢nim« srednjegolskim
poukom matematike in »Zivo« matematiko Ze skoraj nevzdrzno. Da je temu res
tako, pri¢ajo vedno $tevilnejSa in moc¢nejsa reformna gibanja po vsem svetu, ki
si prizadevajo to nesoglasje odpraviti. Seveda pa poti, ki jih v ta namen pred-
lagajo, niso povsem enake. Razlog za to ne ti¢i samo v razliénih moznih vidikih
logi¢ne ali metodske narave, ampak tudi v mnogo manj opredeljivih subjektiv-
nih argumentih posameznih reformatorjev in ne navsezadnje celo v njihovih
»temperamentih«. Glede na to predstavljajo ta reformna prizadevanja S$irok
spektrum mozZnosti, v katerem morete zaslediti vsakr$ne teZnje, od strogo
konservativnih do skrajno radikalnih. Primer poslednje je nedvomno mojstrsko
zastopan z Dieudonnéjevim predavanjem »Moderna matematika in pouk na
srednji Soli«, ki ga najdete na zadetnih straneh prejsnje $tevilke. :

Prav zaradi take raznolikosti teh reformnih teZenj je posebno zanimivo
in pomembno iskati v njih tiste predloge, ki so ve¢ ali manj vsem skupni. Kajti
v takih primerih ne more biti nobenega dvoma ved, da je treba te predloge prej
ko slej tudi uresni¢iti. ..

Mirno smemo trditi, da je tak skupen predlog skoraj vseh reformistov,
naj se uvedejo v srednjeSolski matematiéni pouk vektorji. Kaj pomenijo
vektorji, ali to¢neje struktura vektorskega prostora, v sodobni matematiki, je
v Obzorniku Ze zelo lepo opisal I. Vidav.! Po drugi strani pa je tudi res, da je
vsa elementarna geometrija samo poseben primer vektorskega prostora, de se
omejimo na 2 ali na 3 dimenzije.? Naravnost neverjetno je, kaj so ustvarili
matematiki iz tega pojma, ki jim je bil nekdaj tako rekoé¢ vsiljen od fizikov!

Toda ¢e soglasajo skoraj vsi v tem, da je treba vektorje vpeljati Ze
v srednji Soli, pa si nikakor niso edini glede »kdaj«! Razumljivo je, da se
»radikali« bore za »¢imprej«, »konservativci« pa se zadovoljujejo z »nazadnje«.
Ceprav se pisec teh vrstic mo¢no nagiblje na stran prvih, Zeli v nadaljnjem
ohraniti vsaj videz »objektivnosti« in bo zato izbral »aritmetiéno sredino.
Sicer pa govore za to tudi nekateri razlogi, ki izhajajo iz stvarne ocene
trenutnega poloZaja organizacije matemati¢nega pouka pri nas:

a) Predvsem je treba ugotoviti, da je tudi na$ novi u¢ni naért, ki si
zdaj Sele iS¢e poti v Sole, odsev omenjenih reformnih teZenj, ki smo jih sprejeli
po preizkuSenem nacelu »zlate sredine«. Tako pridejo vektorji na vrsto v drugi
polovici, ali to¢neje na koncu II. razreda, torej p o »klasiénem« uvodu v Evkli-
dovo geometrijo. Glede na teZave, ki se kaZejo Ze pri vpeljavi te dokaj
»umerjene« reforme, bi vsaj za sedaj ne bilo umestno pretiravati z »ra-
dikalizmomz«.

b) Uresniditev »radikalnih« teZenj, po katerih naj bi najprej vpeljali
vektorje in Sele na njih gradili tista poglavja afine in metri¢ne geometrije, ki
spadajo v srednjo Solo, nujno terja zelo skrbno ustrezno priprave v prejsnjih

* 1. Vidav: Vektorji — vir pomembnih matemati¢nih pojmov, OMF, VI/1.
? J. Dieudonné: Moderna matematika in pouk na srednji $oli. OMF, X/2.



letih Solanja. To bi v na$ih konkretnih prilikah pomenilo korenito spremembo
ucnega nacrta za matematiko v vi§jih razredih osnovnih Sol. Kaj takega pa si
pri sedanjem velikem pomanjkanju uciteljev matematike na osnovnih $olah
nikakor ne moremo privosciti.

Potemtakem izgleda trenutno edino realno, da soglaSamo s sedanjim uénim
naértom in da vpeljemo vektorje p o osnovnih pojmih Evklidove geometrije
ter jih uporabimo predvsem v trigonometriji in analitiéni geometriji, ki se
obravnavata v IIl. in IV. razredu. Seveda tako staliS¢e ne izkljucuje moZnosti,
da uvodno »klasi¢no« geometrijo razumno skréimo le na najpotrebnejSe izreke
in da nekatere druge kasneje izpeljemo z metodami vektorske algebre. Tak
kompromis sicer ni »logi¢no ¢&ist«, vendar je v danih razmerah vsekakor
dopusten.

V leto$njem Solskem letu naj bi novi uéni nadrt prvi¢ prestopil prag
I razreda gimnazij in seznanil naSe Sestnajstletnike z vektorji. Ker Zal ni
upanja, da bi bil v tem ¢asu na razpolago ustrezni uébenik, je morda primerno,
¢e na kratko skiciramo eno izmed moznih poti do tega cilja. Pri tem se hodemo
omejiti na 2 dimenziji, saj je prehod na 3 ali celo ve¢ dimenzij ve¢ kot oéiten.

1

Kaj je pravzaprav nas resni¢ni namen? Vpeljati Zelimo aksiome
strukture vektorskega prostora s skalarnim! produk-
tom, s tem da jih nazorno interpretiramo na dvodimen-
zionalnem modelu evklidske ravnine.

)
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= 7

Qa +b
Slika 1

Da to doseZemo, moramo najprej nazorno opredeliti mnozico vek-
torjev; imenujmo jo({/! MnoZica () naj ima za elemente vse usmerjene
daljice dane ravnine, ki jih imenujemo vektorje in oznadujemo z a,
b, ¢, itd.

Pri vsakem vektorju se bomo menili le za njegovo smer, smisel
in dolzino. Potemtakem sta dva vektorja enaka, ¢e se ujemata v smeri,
smislu in dolZini. Zato smemo vsak vektor poljubno vzporedno premikati.

V mnoZico (P vpeljemo operacijo, ki jo imenujemo vsoto vektorjev a
in b in jo nazorno opredelimo takole:

Ce na »konec« vektorja a »naveZemo« vektor b, potem je vsota vektorjev
a in b, ki jo zapiSemo a + b, vektor, ki »gre« od »zadetka« vektorja a do »konca«
vektorja b. (Slika 1.)

Iz te nazorne interpretacije takoj razberemo, da je:

@ at+tb=b+a (Slika 2)
(I1) (@atb)y+c=a+(b+c (Slika 3)
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Toda z vsoto lahko pridemo v zadrego, ¢e na primer seStejemo vektorje
a, b, ¢, kakor jih kaZe slika 4! Ce naj tedaj vsota vedn o eksistira, moramo
vpeljati v na§o mnoZico (¢ 8e en poseben »vektor«, ki v nazorni interpretaciji
nima ne smeri ne smisla in ima dolZino ni¢! Ta vektor imenujemo nidéelni
vektor in ga zaznamujemo s simbolom 0. Njegova narava je povsem dolo¢ena
s tem, da je za vsak vektor a

(I11) at+0=a.

Pritegnimo zdaj v igro 3e mnoZico vseh realnih $tevil ( in vpeljimo $e
eno operacijo, v kateri je en operand realno §tevilo, drugi pa vektor! Ce je
torek k poljubno dano realno Stevilo, a pa vektor, potem zapiSemo to operacijo
simboli¢no k. a in jo imenujemo produkt realnega Stevila k z vektorjem a.
Nazorno bomo to operacijo opredelili takole: '

N
Y é
e V
&+ b vk
v
X
Q *~ 7N &Y
615‘ C
Slika 2 Slika 3
3
> $
(V)
Slika 4

Produkt realnega Stevila k z vektorjem a je vektor, ki ima isto
smer kot vektor a, isti ali nasprotni smisel kot vektor a, ¢e je $tevilo k
pozitivno ali negativno in katerega dolZina je |k|-kratna dolZina
vektorja a.

Iz tega nazornega tolmacenja in upoStevaje osnovna dejstva podobnosti
je brz mogocCe spoznati, da je:

(Iv) k.a+b)=k.a+k.b  (Slika 5)
V) (k+tm).a=k.a+m.a

(VI) (k.m).a=k.(m.a)

(VID) l.a=a

Z lastnostmi (I)—(VII) je povsem dolo¢ena struktura vektorskega
prostora nad obsegom realnih Stevil

Sedaj moremo s preprosto dedukcijo dobiti Se nekaj rezultalov, katerih
nazorna interpretacija je na dlani. Na primer:

(a) 0.a=0
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Zaradi (V) je namre¢ k.a=(k+0).a=k.a+ 0.a. Od tod pa sklepamo
zaradi (IIT), da jeres 0.a = 0.

(b) k.0=0

Zaradi (IIT) in (IV) je k.a=k.(a+ 0) =k.a+ k.0. Torej zopet zaradi (III)
sledi od tod k.0 =0.

Slika 5

(c) K vsakemu vektorju a eksistira simetriéni vektor, ki ga ozna¢imo

s simbolom (—a), tako da je
a+(—a)=0.

Zaitadi (a) in (V) je namre¢ 0 =0.a=(1—1).a=(1+(—1).a=1.a+
+ (—1).a. Ker pa je po (VII) 1.a = a, dobimo 0 = a + (—1) . a. Potemtakem
je vektor (—1) . a res simetri¢ni vektor k vektorju a. Zato piSemo

(—a) = (—1).a.

(d) Definirajmo Se diferenco dveh vektorjev! Diferenca vektorjev a
in b, ki jo zapifemo a—b, je vektor, kateremu moramo pristeti vektor b, da
dobimo vektor a. Torej mora veljati

(a—b) +b=a.
Dodajmo na obeh straneh te definicijske enaébe vektor (—b) pa dobimo:
(a—Db) +b + (—b) =a + (—b).
Toda zaradi (II), (c) in (III) je leva stran
(@a—b)+ b+ (—b)=(@—b)+0=a—>b.
Potemtakem smo dobili, da je
a—b=a-+ (—b).

Ceprav smo si izbrali za model vektorskega prostora usmerjene daljice
v ravnini, tega dejstva doslej Se nismo v niéemer upo$tevali. Do enakih
zaklju¢kov bi prigli z opazovanjem usmerjenih daljic v prostoru. Z last-
nostmi (I)—(VII) potemtakem dimenzija vektorskega prostora e ni do-
logena. Do nje pridemo takole:
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Vzemimo n vektorjev a,a,,...ap! Ce lahko najdemo n realnih Stevil
k., k,,...kn, ki niso vsa hkrati 0, tako da velja zveza

ka, +tk,a, + ...+ ka, =0,

polem pravimo, da so vektorji a,, a,,...a, med seboj linearno odvisni
Ce pa je ta zveza izpolnjena le tedaj, kadar so vsa . §tevila ky, k,,...kn
enaka 0, potem so vektorji a,, a,,...a, med seboj linearno neodvisni.

Ce se zdaj vrnemo na na§ model usmerjenih daljic v ravnini, potem
je nazorno oditno, da eksistirata v na$i mnozici (¥ vsaj dva linearno ne-
odvisna vektorja. Kajti iz zveze

k.a+tm.b=20

dobimo pri pogoju, da je na primer m=F0

b=— o a.
m
To pa pomeni, da imata vektorja a in b isto smer. Potemtakem sta poljubna
dva vektorja nase mnozice ({J, ki nim ataiste smeri, linearno neodvisna.
Naj bosta zdaj vektorja a in b linearno neodvisna! Polem je zopet nazorno
otitno, da moremo vsak nadaljnji vektor e¢ iz mnozice (¢ izraziti kot linearno
kombinacijo vektorjev a in b in ga torej zapisati v obliki

(Dim.) c=k.at+m.b. (Slika 6)

Slika 6

Potemtakem eksistirata v mnoZici (7 vedno dva linearno neodvisna vektorja,
medtem ko so poljubni trije vektorji te mnoZice zmeraj med seboj linearno
odvisni. Zato redemo, da je vektorski prostor () dvodimenzionalen in
imenujemo poljubna dva linearno neodvisna vektorja bazo tega prostora.
Realni &tevili k in m, ki pripadata danemu vektorju ¢ glede na izbrano bazo
a, b tako, da velja (Dim.), sta seveda enoli¢no dolo¢eni. Kajti iz

c=k.atm.b=k,.a+mb
dobimo takoj
(k—k).at+ (m—m;).b=0.
Ker pa sta vektorja a in b linearno neodvisna, smemo od tod sklepati, da je

k=k, in m=m,.
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Dolo¢imo sedaj pogoj, pod katerim sta dva vektorja u, v baza prostora (P!
Izhajajmo iz dane baze a, b in naj bo

a=k.a+m.b
(1)

v=r.ats.b
Ce naj bosta vektorja u in v baza, morata biti linearno neodvisna. To pomeni,
da velja zveza
(2) r.ua+ y.v=20
le pri pogoju, ¢e sta x in y hkrati enaka ni¢ Izrazimo u in v v (2) z (1)
pa dobimo
(3 (kx +ry).a+ (mx +sy).b=0.

Ker pa sta vektorja a in b baza prostora (7, dobimo iz (3)

kx+ry=0
4
mx + sy =0
Toda sistem (4) ima édirio refitev & = y = 0 natanko tedaj, kadar je

(5) : ks —rm =0,

S tem smo dobili. iskani pogoj.

Naj bo tedaj pogoj (5) izpplnjeh, tako da sta vektorja u, v res tudi baza
prostora (0. Poljuben vektor ¢ iz (¢ lahko potemtakem zapiSemo glede na
bazo a, b

(6) c=c,.atc,.b
in glede na bazo u, v
(7) c=C,.ut+C,.v.

Ce izrazimo u in v v (7) z (1), dobimo
(8) ¢=(kC, + rC,).a+ (mC, + sC,).b.
Zaradi enoli¢nosti dobimo iz (6) in (8)
¢y, = kC, + rC,
(9
¢t =mC s sCly.

Ker pa velja (5), lahko ta sistem razrefimo in dobimo transformacijske formule
za prehod na novo bazo:

(10) C, = (sc;, —rc,)/(ks —rm), C, = (—me; + key)/(ks —rm) .
Glede na predznak izraza
ks—rm=0
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delimo vse baze prostora (¢) v dva razreda, ki dolodata dve orientaciji
v prostoru (). Vse baze u, v, za katere je ks —rm >0, imajo isto orientacijo
kot zadetna baza a, b, za katero velja

a=1.a+0.b

b=0.a+1.b,
torej ks—rm = +1. In vse baze, za katere je ks—rm <0, dolotajo na-
sprotno orientacijo kot pa izhodna baza a, b. Do te orientacije pridemo Ze,
¢e zamenjamo vrstni red izhodnih baziénih vektorjev. Kajti

b=06.a+1.b

a=1.a+0.b,

tako da je za bazo b, a res ks —rm = —1. Relacija »ima isto orientacijo kot«
je otitno refleksivna in simetriéna in prav lahko se prepricate, da je tudi
tranzitivna, tako da imamo res opraviti z ek vivalenéno relacijo.?

S s
b Al 2 : N b .
& R GO Bl
2.0 =+al. 1o | 2.b= - lal.{b_|
D D
Slika 7a Slika Tb

Vpeljimo zdaj v na$ prostor (¥ Se skalarni produkt! Seveda se
bomo pri nazorni interpretaciji skalarnega produkta naslonili na metriéne pojme
»dolZine« in »pravokotne projekcije«, ki so v skladu z nafim uénim naértom
udencem znani Ze iz »klasiénega« uvoda v Evklidovo geometrijo. Zato lahko
retemo takole:

'V mno#ico (¥ vpeljemo 3e eno operacijo, ki jo imenujemo skalarni produkt
dveh vektorjev a in b in jo oznadimo simboli¢no z a . b. Skalarni produkt priredi
vsakemu paru vektorjev a, b toéno doloteno realno §tevilo, do katerega pridemo
v nazorni interpretaciji na takle nacin:

Vektor b »projiciramo« na smer vektorja a. Poi¢emo produkt »dolZin«
vektorja a in projekcije vektorja b. Temu produktu damo predznak plus ali
minus glede na to, ¢e imata vektorja a in projekcija vektorja b isti ali
nasprotni smisel. (Slika 7a in 7b. DolZzino vektorja a ozna¢imo z [a]h

Na osnovi takega nazornega tolmacenja moremo zdaj takoj dobiti vse
karakteristi¢ne lastnosti skalarnega produkta:

* Primerjaj N. Prijatelj: O relacijah, OMF, VIII/4.
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Iz podobnih trikotnikov na sliki 8 od&tamo

(VIII) a.b=b.a
&)
= )
Ap
-
b
(4
by
3 = 3
la|3]ap|:|b|31bn|
Slika 8

Na osnovi izreka o projekcijah dobimo

(IX) a.b+c¢c)=a.b+a.c (Slika 9)

v

pl

Slika 9

Prav tako je neposredno razvidno, da je

(X) (k.a).b=EFk.(a.b)
in
(X1) az=0 =3 a.a>0.

Z lastnostmi (I)—(XI) je dolodena struktura vektorske ga prostora
s skalarnim produktom nad obsegom realnih $tevil Ce
privzamemo $e (Dim), potem smo se paé¢ omejililena dvodimenzionalen
prostor.

Poskusimo zdaj zopet iz teh temeljnih lastnosti deducirati nekaj dej-
stev, ki jih je nazorno zelo lahko dojeti! Uporabimo najprej skalarni produkt
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za to, da z njim opredelimo %e »znana« pojma »dolZine« vektorja in »pravo-
kotnosti«! Iz nazornega tolmacenja skalarnega produkta je o¢itno, da je

(11) A a.a=|af?.

Potemtakem lahko izrazimo dolZino vektorja a takole:

1) jalzf/a.a.

In ker je projekcija vektorja b, ki je pravokoten na smer vektorja a,
na to smer niéelni vektor, je v tem primeru seveda

a.b=0..

Kdaj pa je Se skalarni produkt dveh vektorjev ni&? Oéitno tedaj, ¢e je kar
eden izmed faktorjev nicelni vektor. Ce se torej zedinimo v tem, da je nicelni
vektor pravokoten na vsak vektor, potem lahko re¢emo, da sta dva vektorja
pravokotna natanko tedaj, kadar je njun skalarni produkt enak nig, torej

(12) alb<—>a.b=0.

V nadaljnjem se hotemo vedno nasloniti na (11) in (11°) oziroma na 12),
kadar bo govora o »dolzini« kakega vektorja oziroma o spravokotnosti«.

Zdaj moremo brz dobiti vektor, ki ima smer in smisel kakega danega
vektorja a, toda dolZino 1. To je tako imenovani enotski vektor v
smeri ain je doloden z

a/|la|.
Kajti res je kvadrat njegove dolZine po (11) in upostevaje (X)
a/la|.alla|=|af/|alt=1

Pa vzemimo, da sta vektorja a in b baza naSega prostora (! Tvorimo
najprej enotski vektor i v smeri vektorja a

i=a/|a|!
Definirajmo $e vektor ¢ takole:

c=b—(b.i).i.
Ker je zaradi i.i = 1 in lastnosti (VIII), (IX), (X)
c.i=®—(b.i).i).i=b.i—b.i=0,

sklepamo od tod na osnovi (12), da je vektor ¢ pravokoten na vektorju i. Isto
velja potem tudi za enotski vektor v smeri vektorja ¢

i=cl|c|.

Tako smo torej konstruirali enotska vektorja i in j, ki sta drug na drugem
pravokotna. Toda vektorja i in j sta tudi baza prostora (¢, ki ima isto
orientacijo kot izhodna baza a, b! Kajti

i=(l/|al).a+0.b
i=c/le|=—(b.i)|c|.|a]).a+ 1/]c]).b,
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tako da je res ks—rm = 1/(|a|.|c|) > 0. Zato pravimo, da tvorita vektorja i
inj ortonormirano bazo prostora (7.

Vzemimo zdaj dva poljubna vektorja u in v prostora (¢ in ju izrazimo
glede na ortonormirano bazo i, j:

u=ui+ u,j

v =i+ v,j.
Ker je' seveda i.i=7j ;; =11in i.j=j.i=0, dobimo na osnovi (VIII), (IX),
(X) formulo

u.v=(ui+uj).@wi+ovj) =u.v,+u,.v,,

ki nam pove, kako izratunamo skalarni produkt dveh vektorjev, ¢e poznamo
njuni »ortogonalni komponenti«.

V posebnem primeru imamo
[uf=u.u=u?2+u?,
kar ni seveda ni¢ drugega, kot »stari« Pitagora v »novi« obleki..

Re$imo naposled e naslednje vpraéanje:.‘

Dana je ortonormirana baza i, j in poljuben enotski vektor u. Treba je
poiskati tak enotski vektor v, da bo tudi par uw, v predstavljai:ortonormirano
bazo prostora (0.

Naj bo
u = u,i + u,j
in
v=x.ity.j.
Ker sta vektorja u in v enotska, je seveda
(13) u+u=1 in x2+y?=1.
Zaradi pravokotnosti pa mora biti tudi
(14) u.v=ux+uy=0.
Iz (13) in (14)) dobimo takoj obe resitvi:
Ty=—Uy Yy = Uy D Ty, = Uy, Yy = — Uy
Potemtakem ustrezata zahtevi dva vektorja:
v,=—uituj in v,=ui—uj.

Toda takoj vidimo, da je ks—rm za par u, v; enak + 1, za par u,” v, pa — L.
Potemtakem ima ortonormirana baza wu, v, isto, baza wu, v, pa nasprotno
orientacijo kot izhodna baza i, j. Zaradi tega pravimo, da je vektor v, di-

rektno pravokoten na vektorju u.
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To kar smo s hitrimi potezami skicirali v 1. odstavku, je brzkone vse,
kar naj bi prislo za sedaj v poStev za naSo srednjo Solo s podrodja teorije
vektorskih prostorov. Seveda smo orisali le »suho« teorijo, ki jo je treba
vsekakor takoj dopolniti z uporabo, ¢e naj ta teorija »zazivi« Ze v srednji Soli.
No, kar se tega tice, pa¢ ni potrebna nobena zadrega. Z enakim uspehom jo
namre¢ lahko uporabimo na prav vseh podrodjih srednjefolske matematike:
v algebri, v geometriji, v trigonometriji ih v analitiéni geometriji. Nadroben
prikaz te uporabe seveda presega namen tega ¢lanka in prepustiti ga je treba
piscem nagih bodo¢ih ucbenikov.! Vse kar moremo in Zelimo storiti tukaj je,
da opozorimo na zvezo s »klasi¢no« planimetrijo in da nakaZemo pot, po kateri
pridemo skoraj brez truda v trigonometrijo.

Evklidsko ravnino moremo gledati »klasi¢no« ali »moderno«, kot smno#ico
toc¢k« ali kot »mnoZico vektorjev«. Zveza med obema »slikama« je na dlani:

Ce si izberemo v ravnini poljubno to¢ko O, potem lahko priredimo vsaki
to¢ki A te ravnine vektor, ki je reprezentiran z usmerjeno daljico, katere zadetek
je v tofki O, konec pa v toc¢ki A, in ki ga zato oznadimo z OA. O¢itno ustreza
potem tocki O nicelni vektor OO.

Vsakemu urejenemu paru to¢k (4, B) ravnine priredimo vektor AB, ki je
reprezentiran z usmerjeno daljico, katere zacetek je v to¢ki A, konec pa v tocki
B. Neposredno je razvidno, da je

OA+AB=0B ali AB=O0B—OA.
Ce so A, B, C tri poljubne to¢ke ravnine, potem je
AB+BC+CA=0 ali AB-+BC=AC.

Razdalja med dvema tockama A, B je seveda dolZina |AB| vektorja AB.

Na podlagi teh odnosov lahko obravnavamo planimetrijo z vektorskimi
metodami.> Toda za nas je, glede na novi uéni naért, predvsem zanimiva pot
v trigonometrijo. Oglejmo si jo zato malo poblize!

Definirajmo najprej kosinus in sinus urejenega para enot-
skih vektorjev!

Izberimo si v naSem prostoru (¢ ortonormirano bazo i, j in naj bo u po-
ljuben enotski vektor, torej

(15) u=u,.itu,.j in u2tu?=1.

Potem recemo: u, je kosinus, u, pa sinus urejenega para enotskih vektorjev
(i, u) in zapiSemo:

(16) u, = cos (L, w), u,=sin (i,u).

* Ustrezne literature je Ze zdaj precej na razpolago. Kot primer naj omenim le:
L. Félix, Exposé moderne des mathématiques élémentaires, Dunod, Paris, 1959, in
A. H. Copeland, Sr., Geometry, Algebra and Trigonometry by Vector Methods, The
Macmillan Company, New York, 1962.

® Nekaj lepih zgledov je dobiti tudi v knjigi: L. Brand, Vector Analysis, John
Wiley & Sons, 1nc., New York, 1957.
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Potemtakem moremo (15) pisati

(%)) u=-cos (i,u).i+ sin (i, u).j
in
(18) cos? (i, u) + sin? (i,u) = 1.

Kakor Ze vemo, ima enotski vektor v, ki je direktno pravokoten na vek-
torju u, obliko
V=—u, .it+u,.j,
kar zdaj lahko zapiSemo

(19) Vv =—sin (i,u).i + cos i, u).j.

Nadalje vemo, da tvorita vektorja uw, v tudi ortonormirano bazo, ki ima isto
orientacijo kot baza i, j.

14

3‘ _

Slika 10

Ce vzamemo zdaj $e en poljuben enotski vektor w (slika 10), imamo torej

(20) w = cos (i, w) .1 +sin (i, w).j
in
(21) w = cos (u,w) .u + sin (u,w) . v,

Ce izrazimo u in v v (21) s (17) oziroma (19), dobimo:

(22) w = (cos (i, u) cos (u, w) — sin (i, u) sin (u, w)) .i +

+ (sin (i, u) cos (u, w) + cos (i, u) sin (u, w)) . j.

Zaradi enoli¢nosti take izrazave pa smemo sklepati iz (20) in (22) na

(23) cos (i, w) = cos (i, u) cos (u, w) — sin (i, u) sin (u, w)
in
(24) sin (i, w) = sin (i, u) cos (u, w) + cos (i, u) sin (u, w) .
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Toda iz sistema enac¢b (23), (24), katerega determinanta je
cos? (i, u) + sin% (i,u) =1,

lahko izra¢unamo cos (u, w) in sin (u, w)! Torej smemo zakljuditi: BrZz ko je
dana orientacija z izbrano bazo i, j, sta kosinus in sinus vsakega urejenega para
enotskih vektorjev (u,w) enoli¢no doloc¢ena in med njima velja zveza

cos? (u, w) + sin? (u, w) = 1.

Seveda pa velja tudi obratno: Ce sta dani dve realni §tevili a, b, ki ustrezata

pogoju
a2+ b2=1,

potem pripada v ravnini, ki je orientirana z bazo i, j, vsakemu enotskemu
vektorju u natanko en enotski vektor w tako, da je

a=cos(u,w) in b =sin (u,w).

Kajti v tem primeru so leve strani enacb (23) in (24) res enoli¢no dolodene
z desnimi.

O dveh urejenih parih enotskih vektorjev (u, w) in (u,, w,), ki imata isti
kosinus in sinus, pravimo, da sta kongruentna. To zapifemo simboli¢no:

(u, w) = (u,, w,) <=> cos (u, w) = cos (u,;, w;) in sin (u, w) = sin (u,, w,).

Pojem kongruence moremo zdaj razSiriti na urejene pare poljubnih
vektorjev. Naj bosta torej dana dva urejena para poljubnih vektorjev (a, b) in
(a,, b,)! Tvorimo enotske vektorje v smeri vektorjev a, b,a,, b,

a/lal,b/|b| a,/|a, |, b/|b,]|.

Potem bomo rekli: Urejen par vektorjev (a, b) je kongruenten urejenemu paru
vektorjev (a;, b;) natanko tedaj, kadar je urejen par enotskih vektorjev (a/|a|,
b/|bl) kongruenten urejenemu paru enotskih vektorjev (a,/|a, | b,/|b,|), ali
simboli¢no

(a,b) = (a,b,) <—> (a/lal,b/|b]) = (a,/|a, |, b,/| b, |).

. Toda tako definirana kongruenca je ekvivalenéna relacija, saj je
o¢itno refleksivna, simetriéna in tranzitivna. Zato porazdeli vse urejene pare
vektorjev prostora (¥ na ekvivalenéne razrede,® katerih vsak je doloten s ko-
sinusom in sinusom, ki sta za vse prirejene urejene pare enotskih vektorjev
ista. No in oditno je, da bomo imenovali vsak tak razred kot, ki je repre-
zentiran s katerimkoli urejenim parom vektorjev tega razreda.

Med temi razredi, se pravi koti, moremo definirati operacijo, ki jo imenu-
jemo vsoto. Vzemimo, da je kot a reprezentiran z urejenim parom vektorjev
(a,b), kot 8 pa z urejenim parom vektorjev (c,d). Glede na izbrano bazo i, j
dolo¢imo najprej enotski vektor u tako, da bo

Luw = (ab),
potem pa Se enotski vektor w tako, da bo
(u,w) = (c,d)!
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Potem nam sistem enacéb (23) in (24) enoli¢no dolo¢a urejen par (i, w). No in
kot, ki je reprezentiran z urejenim parom (i, w), bomo imenovani vsoto
kotov a in f§, ki jo bomo pisali paé
a+p.
Potemtakem je
i, w) = (a,b) + (c,d).

Kosinus in sinus, ki enoliéno dolo¢ata kot a 4+ S, dobimo seveda iz enaéb (23)
in (24), ki jih sedaj piSemo:

(25) cos (a + f) = cos (i, w) = cos a cos f —sin a sin g
in
(26) sin (¢ + B) = sin (i, w) = sinacos f + cosasinf.

Tako smo pri$li do adicijskih teoremov obeh osnovnih trigonometri¢nih funkecij.
S tem pa so vrata v trigonometrijo odprta na stezaj...

¢

-~
w
A T 7B
Slika 11

Izpeljimo za zakljuéek 8e kosinusov izrek, iz katerega je mogoce
dobiti vse obi¢ajne formule za »razreSevanje« trikotnikov! Postavimo trikotnik
ABC glede na ortonormirano bazo i,j tako, kakor kaZe slika 11.

Potem je
AB = |AB|.i in AC=|AC]|.u,

pri ¢emer je u enotski vektor v smeri vektorja AC. Zato je

u=cos (i,u).i+ sin(i,u).j,
torej )
AC = |AC|. (cos (i, uw) . i + sin (i, u) . j) .
Iz
BC = AC—AB
dobimo zdaj takoj

'BC|* = BC.BC = (AC—AB).(AC—AB) = AC.AC + AB.AB —2 AB.AC —
—=|AC]+ |AB[2—2|AB|.|AC|.i. (cos (i, u) .i + sin (i, u) . §) =
— |AC]? + |ABj?—2|AB|.|AC|. cos (,u).
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O KONVERGENCI

GABRIJEL TOMSIC

Klasi¢na matematika je postavila vse teorije na pojem &tevila, moderna
matematika pa operira z abstraktnimi mnozicami elementov poljubne narave.
V tem primeru je seveda potrebno, da se razni pojmi nekoliko drugade defini-
rajo. V temle sestavku bi si ogledali, kako se da definirati eden glavnih pojmov
analize, konvergenca. Definicija konvergence pa naj bo &m splognejsa,* zato
moramo vpeljati in si ogledati $e neke nove pojme.

Vzemimo najprej obi¢ajno definicijo limite realne funkcije f (x), definirane
na intervalu [a, b]. Pravimo, da funkcija f (x) limitira proti vrednosti y,, ko =
teZi proti x,, ¢e lahko, po predpisu ¢>0 dobimo tak pozitivni 6, da za vsak

i i

—dd e

|
!
I
|
|
I
|
|
I
[
I
|
|
|
|
|
l

Xo

xFx, in |x—x,| <6 velja |f (x) —y,| <e Na sliki vidimo, da so za vse x,
ki leze v intervalu, centriranem okoli x, in s &rino 26, ustrezne funkcijske
vrednosti- v spasu« 2 ¢ Stevila y,. Opraviti imamo torej z intervali, ki so centri-
rani okoli to¢k x, in y, Te intervale bomo imenovali okolice to¢k x, in y,.
Na Stevilski premici je okolica poljubne totke vsak odprt interval, ki vsebuje to
totko. Ko »zamenjamo« intervale z okolicami, ni veé treba, da sta x, in y,
v sredi$¢u intervalov. Interval Sirine 2 ¢ imenujemo okolico V to¢ke y,, interval
§irine 2 6 pa okolico U to¢ke x,. Sedaj lahko definicijo limite izrazimo z okoli-

cami: funkcija f (x) limitira k y,, ko gre x — x,, lim f (x) = y,, tedaj, ée k vsaki
X —> Xo

okolici V' totke y, lahko najdemo tako okolico U totke x,, da za vsak x ==z,
in x €U velja f(x)e V.

~ Poglejmo si Se dalje znano definicijo konvergence realnega zaporedja
a4, Q,, . .. Zaporedje konvergira k vrednosti a, ¢e lahko k vsakemu ¢ > 0 dobimo
dovolj pozen ¢len zaporedja, da se vsak nadaljnji élen razlikuje od @ za manj

* Glej: Z. Bohte: Moore-Smithova konvergenca, OMF VII/3.
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kot e. Eksistira torej neki tak n,, da velja | a — a, | <, brz ko je n> n,. Realno
zaporedje lahko tolmac¢imo kot funkcijo, ki preslika mnozico naravnih stevil M
v mnozico realnih §tevil R. Tu je potem mnoZica naravnih $tevil M domena te
funkcije, mnozica realnih §tevil, §tevilska premica R, pa vsebuje zalogo vred-
nosti. Ce si zaporedje razlagamo na ta nacin, se da definicija konvergence
izraziti takole: Zaporedje konvergira k vrednosti a, ¢e za vsak & >0 eksistira
taka podmnozica naravnih $tevil, da so slike vseh teh $tevil v okolici ¢ limite a.
To se pravi, da k danemu ¢ > 0 eksistira tak n,, da se podmno#ica vseh naravnih
Stevil n, ki so veéja od n, N = {n,n>n,}, preslika v okolico ¢ limite a.
Seveda pa pripadajo k razlinim e razliéne podmnoZice naravnih Stevil. K ¢,
eksistira taka podmnoZica N,, v kateri so zbrana tista naravna §tevila, ki so
vecja od nekega n,, N, = { n,n>n, }. Slika vsakega elementa iz te podmnozice
je v okolici &, limitne vrednosti a. Prav tako eksistira k &, podmnoZica N,
s podobnimi lastnostmi, kot jih ima podmnozica N,. N, naj namred obsega vse
tiste n, ki so ve¢ji od nekega n,, vendar pa naj bo n, >n,. Oglejmo si presek
teh dveh mnoZic, N; N N,! V njem leZe ofitno vsi tisti n, ki so ve&ji od n,.
Skonstruirajmo si $e tako podmnozico N, v kateri naj leZe vsi tisti n, ki so
vedji od nekega m,, pritem pa naj be ny>n,, N, ={n,n>n,>n,}! PokaZe
se, da podmnozica N, leZi v preseku N, N N,. Gotovo se vsi elementi pod-
mnozice N, preslikajo v okolico ¢, vrednosti a, saj so ti elementi obenem tudi
elementi podmnozice N,.

Vse take podmnozice N; = { n,n>>n; } naravnih 3tevil M sestavljajo neko
druZino, zaznamujmo jo z €. Lastnost ie druZine je vidna iz prejénjega primera.
V preseku dveh poljubnih mnozic iz te druZine lahko namre¢ najdemo mno#ico,
ki je tudi iz te druZine. DruZina, ki ima tako lastnost, se imenuje glede na
relacijo inkluzije navzdol usmerjena ali kratko smer v M.

Konvergenco zaporedja torej lahko opredelimo, ée poznamo smer & v do-
meni funkcije in pa okolice elementa, h kateremu zaporedje konvergira. K vsa-
kemu &> 0 dobimo potemtakem tak N, da za neN velja |as—a|<e.

Vzemimo splo$nejsi primer, da funkcija-f predstavlja preslikavo poljubne
abstraktne mnozice A v abstraktno mnozico B! Zastavimo si vpraganje, kako bi
sedaj definirali konvergenco. Ker imamo opravka z ravno tako preslikavo kot
prej, smemo sklepati kakor v prej§njem primeru. V mnoZici A, ki je domena te
funkcije, naj bo dana smer @, tj. druZina podmnoZic z lastnostjo, da je v preseku
dveh poljubnih mnozic iz druZine spet mnoZica iz te druZine. MnoZica B pa
vsebuje zalogo vrednosti funkcije'f. V tej mnoZici postavimo neki sistem okolic
ir si ga natancneje dolo¢imo. Vsaki to¢ki x € B priredimo razliéne podmnoZice
mnoZice B, imenujmo jih okolice totke x. Vse te mogode okolice U totke x ¢ B
tvorijo druzino okolic U (x). Okolice naj imajo Se tele lastnosti:

a) vsaka okolica U e U (x) naj vsebuje to¢ko x iz mnoZice B, x € U;

b) druZina okolic U (x) naj bo glede na relacijo inkluzije navzdol usmer-
jena, to se pravi, ¢e je U'eU (x) in U” €U (x), da eksistira okolica U e U ()
tako, da je U cU'NnU”;

c) ¢e je UeU(x) in yeU, naj potem eksistira taka okolica totke y
U'e U (y), da je okolica U’ vsebovana v okolici U, U’ c U;

¢) vsa mnozica B je tudi okolica tocke x.

Za vsako totko x imamo tore druZino (sistem) okolic U (x), ki naj ustre-
zajo naStetim lastnostim. DruZino vseh druZin okolic to¢k x € B zaznamujemo
z (¢! Tako je (W = {U (x); x €B}. S tako dolodeno druZino (% smo vpeljali
v mnoZico B okolisko topologijo. Par (B, (/) imenujemo topologki prostor. Za
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primer preprostega topoloSkega prostora navedimo kar prostor realnih Stevil R.
Sistem okolic U (x) tocke x € R predstavljajo tu odprti intervali, ki vsebujejo
to¢ko x in oditno ustrezajo vsem prej nastetim lastnostim okolic. Ce si izberemo
razliéne sisteme okolic, dobimo seveda razli¢ne topologije. Tako lahko za kako
mnoZico eksistira veé¢ okoliskih topologij. Povrnimo se h konvergenci! V mno-
%ici A imamo torej dano smer %, v mnoZici B pa okolisko topologijo, ki je
dologena s sistemom okolic (7/ = {U (x); x €eB}. Kdaj bomo rekli, da funkcija
f (x), ki preslika mnoZico A v mnoZico B, limitira proti vrednosti y, € B po smeri
@? Primerjava s prejénjim zgledom realnega zaporedja kaZe, da je y, € B limita
funkcije po smeri @b tedaj in le tedaj, ¢e k vsaki okolici U elementa y,, U € U (y,),
eksistira neka taka mnoZica N € &, da leZi slika vsakega x € N v okolici U. De-
finicijo 1 onvergence zapiSemo takole: lim f (x) = y,; s tem oznacimo, da funkcija
@

x,
f (x) konvergira po smeri & k elementu vy,. Pa vpeljimo $e en pojem! Par (f, ¥),
ki sestoji iz funkcije f in smeri % v domeni te funkcije, imenujemo usmerjeno
funkcijo. To, da f (x) konvergira proti y, po smeri ¥, pa na kratko redemo,
da je usmerjena funkcija (f, €) konvergentna.

Odpira se vpraSanje, ali je limita funkcije na ta nacin enoli¢no dolocena,
kakor je dolofena v klasiéni matematiki? Takoj lahko odgovorimo, da v po-
polncma splo$nem topoloskem prostoru ni .treba, da je limita funkcije res
enolitno dolo¢ena. Kaks$ne druge lastnosti pa mora Se imeti topolo§ki prostor,
da bo limita funkcije enoli¢éno dolofena? Tak topoloSki prostor, ki ustreza tej
zahtevi, je tako imenovani Hausdorffov prostor.- Za Hausdorffov prostor je
znadilno to, da imata dve razliéni toki vedno vsaj dve okolici, ki nimata
skupnih to¢k, torej je presek obeh teh okolic prazna mnozica. Kot primer
Hausdorffovega prostora lahko spet navedemo prostor realnih Stevil z obi¢ajno
topologijo odprtih intervalov.

Pokazimo, da je limita funkcije v Hausdorffovem prostoru res enoli¢no
dolodena. (B, (7/) je Hausdorffov prostor. Naj bosta b, in b, razliéni tocki
v mnoZici B, okolica U, to¢ke b, in okolica U, to¢ke b, pa taki, da nimata skupnih
tock, presek U, NU, je torej prazna mnozica. Vzemimo, da bi usmerjena
funkcija (f, ©) konvergirala k toc¢ki b, in to¢ki b,. Po definiciji konvergence bi
potem morala eksistirati taka mnoZica N €%, da bi za vsak x € N veljalo, da je
f(x)eU, in obenem f (x)e€ U,. Torej bi morala taka vrednost lezati v obeh
okolicah, to se pravi v preseku, kar pa je nemogocle, ker je presek prazna
mnoZica. V Hausdorffovem prostoru res ni nobene usmerjene funkcije, ki bi
konvergirala k dvema razliénima tockama.

Oglejmo si dalje Se neki pojem, ki ga bomo potrebovali. Recimo, da imamo
v mnozici M smeri @ in @’'! DruZino ¥’ imenujemo podsmer smeri & takrat,
¢e za vsako mnoZico N e ¥ eksistira neka mnoZica N'e¢%@’ tako, da je N’ c N.
Tudi par (f, @), kjer je f realna funkcija in ¥’ smer v domeni te funkcije,
imenujemo podusmerjeno funkcijo funkcije (f, @ ). Prepri¢ajmo se o temle:
Ce usmerjena funkcija (f,%¥) konvergira k elementu ¥y, potem k istemu
elementu konvergira tudi podusmerjena funkcija (f, €). Seveda, saj to pomeni,
da obstoji taka mnozica N € ¢, da za vsak x ¢ N pade ustrezna funkcijska vred-
nost v okolico y, Toliko bolj pa to velja za vse x iz mnoZice N’, kajti ti so
gotovo vsi elementi mnozice N, ker je paé¢ N'c N.

Pomemben pojem pri zaporedjih je stekalis¢e. Neko tofko imenujemo
stekali$¢e zaporedja tedaj, ¢e se po predpisu poljubno majhnega pozitivnhega ¢
nahaja v intervalu S§irine 2¢, centriranem okoli te toc¢ke, neskonéno ¢lenov
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zaporedja. Zahtevo lahko sicer omilimo, saj zadostuje, da se v tem intervalu
nahaja vsaj en ¢len zaporedja, ki je razli¢en od stekali$¢a. Od tod takoj sledi, da
ni v intervalu samo en ¢len zaporedja, ampak jih je neskon¢no mnogo. Kako
pa definiramo stekali$ée, ¢e funkcijske vrednosti leZe v topoloSkem prostoru B?
V mnozici B imamo sistem ckolic z lastnostmi, kot smo jih prej navedli, v do-
meni funkcije A pa naj bo dana smer &. To¢ko s € B imenujemo stekalisce, de
za vsako okolico U totke s, U €U (s), in za vsak N e$ eksistira tak xe N, da
ie f (x) e U. Ce to primerjamo z definicijo stekali$¢a zaporedja, vidimo, da v dani
okolici stekaliséa s res eksistira vsaj $e ena funkcijska vrednost, ki je razli¢na
od totke s. Kadar je totka s npr. limita usmerjene funkcije (f, &), tedaj je
seveda ta tocka tudi stekaliSce.

Ce je s stekali$¢e usmerjene funkcije (f, ¥), lahko pokaZemo, da je to le
tedaj, ¢e eksistira taka podusmerjena funkcija (f, €’), ki konvergira k tocki s.
V domeni A funkcije imamo smer %, v B pa je dan sistem U (s). Vsi z, ki
npr. leze v mnozici N; in so taki, da njih funkecijske vrednosti padejo v okolico
UieU (s), naj tvorijo mnoZico Ny, torej Ni' = N; N f~1 (U;). Druzino takih mno-
¥ic zaznamujemo z G’. Glede na to, da je s stekaliie, te mnoZice gotovo niso
prazne. Vzemimo dve mnoZici iz druZine ¥, in sicer N, = N, N {1 (U,) in
N, = N,N {1 (U,). Ker sta N, in N,e%, sledi iz lastnosti smeri, da obstoji
tudi mnozica N,, ki leZi v preseku mnozic N, in N,, N,c N, N N,. Ravno tako
naj eksistira zaradi lastnosti okolic, kakrSne smo vpeljali v mnozZico B, taka
okolica U,, da velja U, ¢ U, NU,. Mnozica totk N, kilezi v mnoZici N, in
katerih funkcuske Vrednostl o) obenem v U, tj. N, N {7 (U,), je element dru-
Zine @’ in je oéditno vsebovana v obeh mnozicah N, in N,’, to je N,c N,’N N,".
Rekli pa smo, da mnoZice s to lastnostjo tvorijo smer, tako je &’ smer v A
oziroma glede na druzino ¥ podsmer. Od tod sledi, da je (f, ©’) podusmerjena
funkcija in da konvergira k to¢ki s, saj za vsak x iz mnoZice NN f~1 (U) velja,
da je f (x) €U, to je pa ravno definicija limite.

Konvergenco zaporedij lahko doloéimo s Cauchyjevim kriterijem; ta pravi,
da je za konvergenco zaporedja a,, a,, ... potreben in zadosten pogoj, da k vsa-
kemu &> 0 eksistira tako pozen ¢len, da je razlika poljubnih dveh kasnejs$ih
¢lenov manj$a od e Torej, k ¢ 0 eksistira tak n, da za m>n, in n>mn,
velja | am —aq | <e. Ali lahko ta kriterij posplo§imo za na§ primer? Vzemimo
tako funkcijo f, ki ima realne vrednosti. V domeni funkcije f naj bo dana
smer ¥. Da limitira funkcija f po smeri @& h kakemu elementu y,, tj. da je
lmé f(x) =y, je potem po Cauchyjevem kriteriju potreben in zadosten pogoj,

da vsakemu pozitivnemu ¢ ustreza taka mnoZica N iz smeri &, da za x’,x”, ki
sta elementa iz N, velja |f () —f (x") | <e.

Pokazimo, da je Cauchyjev pogoj izpolnjen, ¢e funkcija f konvergira po
smeri @ k y,. Okolica elementa y,, ki je realno $tevilo, naj bo odprt interval

( Yo — %, Y, T % . Ker funkcija f konvergira po smeri ¢ k y,, eksistira tak N ¢ G,
da za vsak x €N leZi f (x) v intervalu | y, —%, Y, + %) . Torej, &e sta " in " e N,

otitno velja | f (x') — f (") | <e, to pa je ravno Cauchyjev pogoj.

Poglejmo si Cauchy]ev kriterij e z druge strani. Recimo, da je Cauchyjev
pogoj izpolnjen! Pokazati hotemo, da funkcija f res konvergira po smeri B.
Preden pridemo k dokazovanju, si poglejmo Se tole:

114



Naj bo f spet funkcija z realnimi vrednostmi in smerjo € v njeni domeni.
Funkcija f preslika poljubno mnozico v mnozico realnih $tevil R. Recimo, da
imamo na R zaprt interval [, b] = { y,y € R,a £y < b } in da najdemo v smeri
- @ tako mnozico N, da za vsak x e N velja f (x) € [a, b]. V tem primeru trdimo,
da eksistira tako realno §tevilo ¢ na intervalu [a, b], da za vsak &> 0 in vsak
N € @ obstoji tak x € N, za katerega velja | f (x) — c | <e. Izberimo N, ¢ ¥ tako,
da za x € N, sledi, da je f (x) € [a, b]. Vzemimo mnozico N €&, ki je vsebovana
v N,, N € N,. Zaznamujmo najmanjfo zgornjo mejo vseh funkecijskih vrednosti
elementov iz N z u(N), torej u(N) = sup { f (x),xeN } . Gotovo pa leZi vrednost
#(N) na intervalu [a, b], a < u(N) < b. Najveéja spodnja meja vrednosti vseh
#(N) naj bo ¢, tu so mnozice N e¢in 8¢ N c N,, torej ¢ = inf { u(N), N ¢ G,
Nc N, }. Ce je ¢ pozitivno §tevilo in N ¢, potem eksistira mnozica N, ¢ Etako,
da je p (N.) <c + & Spomnimo se na lastnost druzine &, da v njej lahko.vedno
najdemo tako mnozico, ki leZi v preseku dveh drugih mnoZc! Zato eksistira
mnozica N, € N, N N. Poid¢imo najmanj$o zgornjo mejo vseh funkcijskih vred-
nosti elementov iz N, tj. u (N;) = sup {f (x),xeN,}; ta vrednost je vedja od
¢—g¢, saj je ¢ najmanjsa vrednost x4 (N) od vseh N c N,. Za neki xeN, lahko
torej postavimo tole oceno: '

c—e<f@=pl,) Su®,)<c+e

Ta x je pa tudi element mnoZice N.

Sedaj se lahko vrnemo k dokazovanju, da je Cauchyjev pogoj zadosten
pogoj, da funkcija f res konvergira po smeri & . Da je Cauchyjev pogoj izpol-
njen, mora biti N, e ¥ taka mnozica, da za 2/, z” € N, velja | f (x) —f (x") | < 1.
Vzemimo poljuben element x, eN,. Za vsak xeN, velja potem f (x)e[f (x,) —
—1,f (x;) + 1]. Zgornji pogoj je potemtakem izpolnjen. Sedaj uporabimo trdi-
tev, ki smo jo zgoraj navedli, ¢ pa naj bo $tevilo, kot smo ga v prej¥nji trditvi do-
lo¢ili. Dalje bodi V neka okolica (interval) &tevila c. Ce si izberemo dovolj
majhen ¢, bo interval (c—e¢,c + ¢) vsebovan v V. Po hipotezi potem eksistira

tak Ne@, da za «’,xe N sledi | f (x') —f (x) | < é Po prejsnji trditvi pa eksistira
tak €N, da velja |f (x') —f (x) | <§.T0rej velja za vse x €N, da je|f (x) —c| <,

to pa obenem pomeni, da so vse funkcijske vrednosti v okolici V to¢ke ¢. Imamo
torej N e @ in tako okolico V to¢ke ¢, da za vsak x €N velja f (x) € N. Iz tega
pa sledi, da funkcija konvergira po smeri € k todki c.

Konvergenca, kakor smo jo v tem ¢lanku definirali, doloéa limito funkcije,
ki ima lahko svojo domeno ali zalogo vrednosti v abstraktnih mnoicah; pri tem
mora biti dana v domeni funkcije smer, za mnozico, v kateri je zaloga vrednosti,
pa mora biti dolo¢ena okoliska topologija.

Lit.: E. J. McShane, T. A. Botts: Real analysis, New York 1959.
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POMEN RAZISKOVANJA OSNOVNIH DELCEV ZA RAZVOJ
MODERNE FIZIKE*
V. F. WEISSKOPF — prevedel J. Strnad

Iskanje osnovnih delcev je tako staro kot znanost. Osnovne gradnike
snovi je vedno raziskovala najbolj razvita veja fizike. Z razvojem fizike se je
raziskovanje osnovnih delcev preselilo iz kemije. v atomsko fiziko in odtod
v jedrsko fiziko. Pred dobrimi desetimi leti se je izdvojilo iz jedrske fizike in
postalo novo podrocje, ki se ne ukvarja veé z zgradbo atomskih jeder, temveé
z zgradbo gradnikov atomskih jeder, to je protonov in nevtronov, ter z zgradbo
elektronov in sorodnih delcev. Ker so pri vseh odloéilnih poskusih potrebni curki
delcev z zelo visokimi energijami, to podroéje dostikrat imenujejo »fizika visokih
energij«. Clanek namerava iz ptiéje perspektive opisati novosti v raziskovanju
osnovnih delcev in pokazati, kako je te novosti mozno vgraditi v okvir fizike
naSega stoletja.

Prevladuje mnenje, da so visokoenergijski fiziki odkrivali nove delce
drugega za drugim, tako da je danes preko 40 »osnovnih« delcev. Cloveku se
stoZi po casih pred 25 leti, ko so snov sestavljali protoni, nevtroni in elektroni
(samo kdaj pa kdaj se je pojavil kak nevtrino) in se je dalo vse od astronomije
do fizike in kemije ali celo biologije razloziti s temi delci in s silami med njimi.
Menim, da sloni mi$ljenje o velikem S§tevilu tako imenovanih delcev na ne-
sporazumu, do katerega je priSlo zaradi naslednjih treh razvad: '

1. Vsak antidelec kakega delca so imenovali nov delec. To je tako, kot
bi podvojili $tevilo zivalskih vrst, ¢e bi imeli zrcalno sliko vsake vrste za novo vrsto.

2. Vsako vzbujeno stanje so imenovali nov delec. Ce bi postopali tako
pri atomih, bi imeli danes na desettiso¢e razli¢nih atomov.

3. Svetlobni kvant in podobne tvorbe so imenovali delce. To je morda
Se stvar okusa, v tem ¢lanku pa bomo imeli svetlobni kvant za kvant elektro-
magnetnega polja in prav tako vsako drugo tvorbo, za katero velja Bosejeva
statistika, za kvant polja in ne za delec. Pojem delec je pridrZzan za tvorbo,
ki ne more biti sama izsevana in ne sama absorbirana.

Tukaj predlagam preprosto stali§¢e. ki se v marsiéem ravna po moderni
teoriji polja, tej edini znani teoriji, s katero moremo formulirati fiziko delcev
in interakcij med njimi. To staliS¢e se ne razlikuje mnogo od stali¥¢a pred
25 leti. Po njem obstajata dva osnovna delcd: barion in lepton, ki pa se
javljata v razliénih stanjih. Oglejmo si najprej polozaj pred odkritjem déudnih
delcev! Barion so tedaj poznali v dveh stanjih: kot proton ali kot nevtron;
lepton pa so poznali kot elektron, nevtrino in delec wu.

Podobno kot obstoja elektron v dveh stanjih, namreé s spinom navzdol in
s spinom navzgor, obstoja barion (ne glede na spinski stanji, ki ju tudi za-

* Clanek V.F.Weisskopfa »The Place of Elementary Particles Research in the
Development of Modern Physics«, ki je povzet po predavanjih za AmerisSko fizikalno
druStvo v zadetku letoSnjega leta, je izSel v junijski $tevilki revije Physics Today 16,
26 (No. 6, 1963). Zahvaljujemc se profesorju Weisskopfu in urednis$tvu te revije, ki
sta ljubeznivo dovolila objavo prevoda.
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vzema) v dveh stanjih: kot proton in kot nevtron. Govorimo o dveh izospinskih
stanjih, za kateri je ena komponenta izospina (I;) enaka + % oziroma — 3.

Obe vrsti csnovnih delcev delujeta druga na drugo s silami, to se pravi,
da sodelujeta preko polj. Danes poznamo &tiri razliéne vrste polj (ki jih kaZe
sl. 1). Vsako polje ustvarja kak izvir. Polje pa se lahko 8iri tudi neodvisno od
izvira, ée ga izvir izseva. Do take emisije pride, ¢e pospesimo izvir. Polje se
potem $iri v obliki kvantov. Ti imajo znacilne lastnosti: v€asih imajo spin,
véasih naboj ali kako drugo lastnost in véasih od ni¢ razliéno mirovno maso.
Ce je mirovna masa razliéna od ni¢, se mora pri pospeSevanju privesti vsaj
mirovna energija kvanta.

OSNOVNA DELCA

barion. lepton
p, n e, v, (1)
B |
L= 152D |
POLJA
vrsta polja ‘ izvir kvant | J “ e I I \ S “ m ‘
gravitacija . masa graviton 2 0 | — ==
elektromagnetno naboj foton 1 0 ‘ — | — 0
L { barion pion O [ 1 Ma } e=12+§_
el ’ barion kaon 0! = | I mg ‘ 2
| barion vmesni \
3 ‘ 1? 1 —_ | — ?
AL {‘ lepton } kozon ‘ ‘
1

Q1. 1. Seznam csnovnih delcev in kvantov polja. J je spin, e naboj (izraZen v osnovnih
nabojih), I izospin, S ¢udnost in m mirovna masa.

Izvir gravitacije je masa, kvanti — gravitoni — naj bi imeli spin 2.
Doslej pa $e niso opazili nobenega kvantnega pojava. Izvir elektromagnetnega
polja je naboj, kvant nosi spin 1. Jedrsko polje se zdi nekoliko bolj zapleteno.
Vsak barion je izvir tega polja. Izvir seva kvante, e ga mo¢no pospesimo
s trkom ali drugade,  podobno kot pri emisiji svetlobnih kvantov. V enem
pogledu pa so jedrski kvanti preprostejsi od svetlobnih, so namre¢ brez spina.
V nasprotju z gravitoni in s svetlobnimi kvanti pa imajo mirovno maso, kar
je po Yukawini ugotovitvi v zvezi s kratkim dosegom jedrskega polja. KaZe,
da sta dve vrsti jedrskih kvantov: mezoni = in K (pioni in kaoni). Oboji nosijo
naboj, kar izrazimo po navadi z izospinom: pion ima izospin 1, kaon pa 3.
Kaon ima $e neko drugo lastnost z imenom ¢udnost. To izrazimo s kvantnim
$tevilom S, ki je +1 ali —1 za kaone in ni¢ za pione. Pozneje se bomo vrnili
k tej vazni lastnosti.

Sibke interakcije ne moremo izérpno opisati, ker jo Se premalo poznamo.
Zadostuje naj, ée povemo, da se da najbrz tudi ta interakcija izraziti s poljem,
katerega izviri so barioni in leptoni, in da obstoja najbrZz neki bozon, ki je
kvant tega polja. Zaradi kratkega dosega interakcije naj bi imel bozon
veliko maso. Njegova masa bi morala biti vedja od mase kaona, ker bi
drugade lahko kaon vanj razpadel. Bozon bi moral imeti naboj 1 in spin 1,
ker se ti koli¢ini izmenjata pri razpadu f.
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Podobnost med elektromagnetnim-in jedrskim poljem ilustrirajmo s sipa-
njem kvantov na delcih! Pri sipanju svetlobnih kvantov na elektronih se véasih
primeri, da se prevrZe spin elektrona:

hv+e¢=hv'+e?.

Svetlobni kvant lahko namreé¢ krije razliko spinov tako, da spremeni smer
lastnega spina. Ustrezni pojav poteka v jedrskem primeru z izmenjavo
izospina (naboja) takole

a+p=a+n,

pri emer se sipa nabiti pion, ki odda svoj naboj nukleonu.

Med obema poljema pa je vaina razlika. Elektromagnetno polje je (po-
dobno kot gravitacijsko polje in polje Sibke interakcije) Sibko sklopljeno s svo-
jim izvirom, medtem ko je jedrsko polje sklopljeno mo¢no. Jakost sklopitve
kvalitativno definiramo lahko preprosto takole: ¢e izvir polja nenadoma od-
stranimo, s tem da mu podelimo zelo veliko gibalno koli¢ino, se polje v obliki
sevanja raz§iri po prostoru. Ce je $tevilo kvantov v razirjajotem se polju
dosti manjse od 1, je sklopitev Zibka, & je Stevilo kvantov dosti vedje od 1,
pa je sklopitev molna. Natanéno vzeto je Stevilo kvantov odvisno od gibalne
koli¢ine p, ki jo damo izviru. V elektromagnetnem primeru je $tevilo kvantov
priblizno enako

(e,%/2 &y he) In (p/me) = % In (p/mc) ,

kar je za vse obifajno dosegljive gibalne koli¢ine majhno. Nasprotno pa je za
jedrsko polje ustrezno $tevilo vedje od 1 Ze pri gibalnih koli¢inah okoli nekaj
GeV/c. Zanimive posledice moéne sklopitve bomo $e omenili.

KVANTNI SISTEMI
dveh ali ve¢ delcev, ki sodelujejo preko polj

polje ‘ sistem
elektromagnetno atomi
molekule
kristali
jedrsko jedra
jedrska snov
Slika 2

Polja posredujejo sile med delci, ki nastopajo kot izviri. Ce so sile
privlacne, tvorita dva ali ve¢ delcev vezane sisteme. Ti sistemi kaZejo znadilne
kvantne lastnosti: imajo kvantna stanja, to so osnovno stanje in vzbujena
stanja, med katerimi so mo#ni prehodi z emisijo ali absorpcijo kvanta. Atomi
in molekule so zgledi za taksne sisteme, pri katerih je interakcija elektro-
magnetna. Jedra pa so sistemi, pri katerih poteka interakcija preko jedrskega
polja (glej sl. 2!). Sistematiko stanj, njihovih kvantnih Stevil, parnosti, verjet-
nosti za prehode itd. poznamo pod imenom spektroskopija. Doslej smo poznali
dve vrsti spektroskopije: atomsko-molekulsko in jedrsko.
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Prehajamo k prvi znadilni posledici moc¢ne sklopitve jedrskega polja.
Primerjajmo osamljeni izvir v primeru $ibko sklopljenega elektromagnetnega
polja (elektron) z osamljenim izvirom v primeru mo¢no sklopljenega jedrskega
polja (nukleon)! V prvem primeru ‘je polje Coulombovo in ima preprosto
zgradbo. V drugem primeru ni samo zgradba polja bolj zapletena, temvec
lahko polje obstoja tudi v raznih »sestavih«. Jedrski izvir lahko ustvari veé
»stanj polja«, medtem ko lahko v elektritnem primeru ustvari izvir edino
Coulombovo polje.

Kot prvi zgled omenimo znano nukleonovo vzbujemo stanje z izospinom %
in s spinom % N%% Dobimo ga tako, da navadnemu nukleonu dovedemo po-
trebno energijo. Prehod iz tega stanja v osnovno stanje nukleona N%% poteka

z emisijo kvanta polja, to je mezona x=. Tega vzbujenega stanja si ne smemo
2

|mc
T
GeV
2 |
- 1
z
4
e | 204
1 213 'TT
= /
13 03 7%
1w | 203" me’
! 21 2,/ 211 = G
H 7)'! —-—
L HTIIT s il iz
s 0% A /,In
10 7
! i'} ! p.n | 1 //K
0 - R £

Sl. 3. Spekter bariona. Diagram vsebuje doslej ugotovljena stanja bariona. Prvo
itevilo ob nivoju je izospin, drugo pa navadni spin. Navpi¢ni prehodi potekajo
z emisijo piona, poSevni pa z emisijo kaona.

predstavljati kot sistem nukleon-pion. v katerem pion krozi okoli nukleona.
Pion v tem primeru ni vezan, ampak se izseva pri prehodu v osnovno stanje.
V resnici pa obdaja nukleon pionsko polje, ki ima razli¢ni zgradbi v vzbujenem
in v osnovnem stanju. Isti poloZaj opiSemo navadnc s tem, da si msilimo
nukleon obdan z virtualnimi pioni.

Poznamo $e ve¢ vzbujenih stanj jedrskega polja. Ozna¢imo jih z energijo
in kvantnimi §tevili, npr. z izospinom I, spinom J, parnostjo in ¢udnostjo S.
Cudnosti, ki je lahko 0, &1 ali +2, v jedrski in atomski spektroskopiji niso
poznali. Tukaj se je pojavila zato, ker nosijo kaoni ¢udnost 1.

Slika 3 kaze spekter stanj nukleonovega polja. Na obscisno os nanesemo
dudnost, na ordinatno os energijo, vrednosti I in J pa oznacimo na levi strani
vsakega nivoja. Ve&ina nivojev predstavlja izospinske multiplete. Vsak multi-
plet ima 21+ 1 stanj z razliénimi naboji.

Tukaj se sre¢amo s tretjo vrsto spektroskopije. Za razliko od atomske in
jedrske jo lahko imenujemo »mezonska« spektroskopija. V atomski spektro-
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skopiji so energijske razlike nekaj elektronvoltov, v jedrski nekaj mega-
elektronvoltov in v mezonski nekaj sto megaelektronvoltov, kar je v zvezi
z velikostjo sistemov. Med novo spektroskopijo in starima je nekaj znaé&ilnih
razlik. Prva razlika izhaja iz dejstva, da imajo kvanti jedrskega polja kon¢no
mirovno maso. To privede do metastabilnih stanj posebne vrste. Tako npr. iz
stanj 4 in Z (ter iz nabitih kompoment stanja ) ni moZen prehod v osnovno
stanje nukleona (proton ali nevtron). Kvanti, ki bi morali biti pri tem izsevani
in bi morali odnesti razliko ¢udnosti in izospina, imajo namre¢ vedéjo mirovno
energijo od razpoloZljive energije. Zaradi tega ne imenujemo stanj 4, 3 in &
brez razloga »¢udne delce«. Opazimo pa prehode z emisijo mezonov z med
nivoji z isto ¢udnostjo, saj je vedina ustreznih energijskih razlik vedja od
pionove mirovne energije. Prehodi med nivoji z razlitno ¢udnostjo nastopijo
samo tedaj, ko je energijska razlika vedja od mirovne energije kaona (glej
sl. 3!). PoloZaj je podoben kot pri vodikovem atomu v namisljenem primeru,
da bi svetlobni kvant imel mirovno energijo npr. 11 eV, to je malo ve¢ od
energije prvega vzbujenega stanja (2 P). Stanje 2P bi bilo tedaj na podoben
nacin metastabilno. ker ne bi bil moZen prehod s sevanjem v osnovno stanje.

~ Druga razlika je v 8irini stanj. Kvantna stanja, pri katerih je mozen
prehod s sevanjem v niZja stanja (to pomeni z emisijo = ali K), imajo so-
‘razmerno veliko snaravno« §irino, ki ni dosti manjSa od energijskih razlik.
Tudi to je posledica mo¢ne sklopitve. Pri &ibki sklopitvi so naravne &irine
zelo ozke, kot npr. pri vzbujenih stanjih atomov in jeder.

Metastabilna stanja niso popolnoma stabilna zaradi gibke interakcije.
Pri sibki interakciji se ¢udnost ne ohrani, zato so moZni prehodi iz meta-
stabilnih stanj v osnovno stanje. Te prehode spremlja emisija mezonov s ali
parov' elektron-nevirino ali mion-nevtrino. Razglabljanje o teh prehodih je
izven okvira clanka, posebno e ker so tako podasni v primeri z elektro-
magnetnimi ali jedrskimi prehodi z isto energijo, da jih smemo brez gkode
zanemariti. Rutherford je menil, da je s staliS¢a jeder razpad f, ki poteka po
8ibki interakciji, tako poasen, da ga ni treba uposStevati. Podasni razpadi
metastabilnih nukleonovih stanj pa so bistveni za opazovanje in identifici-
ranje stanj.

Poznamo tudi pot, po kateri lahko spravimo nukleon v metastabilno
stanje, pri ¢emer se spremeni ¢udnost. To doseZemo pri sipanju kvanta, torej
pri pojavu, ki je podoben neproznemu sipanju. Vrnimo se k namisljenemu
primeru vodikovega atoma in svetlobnega kvanta z mirovno energijo 11 eV!
V tem primeru ne moremo vzbuditi vodikovega atoma v stanju 2P z absorp-
cijo kvanta. Vzbudimo pa ga lahko s sipanjem kvanta hy, & ima sipani
kvant hy" za toliko manj energije, kolikor je je treba za vzbuditev. Spin
stanja 2P se za 1 razlikuje od spina osnovnega stanja, zato se more pri
sipanju spremeniti smer spina svetlobnega kvanta:

[m]4 + H =H* + [hy] e
Tu naj sprememba -smeri pui¢ice za hy ka%e na spremembo smeri spina.
"Vzemimo sipanje mezona:

n+N=4+K,

kjer se pion sipa na nukleonu N! Tu se ne spremeni samo pionova energija,
ki se deloma porabi za kritje razlike med masama 4 in N, ampak tudi ¢udnost,
ko iz piona nastane kaon. Ni tezko uvideti, da je asociirana tvorba enega A
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in enega K sorodna z vzbuditvijo pri neproznem sipanju svetlobe, to je pri
Ramanovem pojavu.®

Posvetimo se drugi skupini pojavov, ki je pravzaprav tudi posledica
mocne sklopitve jedrskega polja! Doslej smo obravnavali vzbujena stanja
bariona, ki smo jih razloZili s spremenjeno zgradbo jedrskega polja okoli
izvira. Zdaj pa obravnavajmo polje brez izvira, torej polje v praznem pro-
storu, npr. polje svetlobnih kvantov! Najprej prereSetajmo moZna stanja
v vakuumu, e ni izvirov, za elektromagnetni primer! Zaénimo s popolnoma
praznim prostorom kot najniZzjim stanjem. Naslednja vi§ja stanja bi bila
stanja z enim ali ve¢ kvanti. Poleg teh pa so $e druga¢na stanja; dva svetlobna
kvanta lahko namreé tvorita pozitronij. Zaradi tega je treba tudi pozitronij
upostevati kot stanje vakuuma,** feprav je to stanje nestabilno. Oglejmo si
podrobneje pozitrenij, to je sistem, ki ga sestavljata pozitivni in negativni
elektron. Ce sta oba delca zelo blizu (ée je razdalja med njima manjsa od
anihilacijskega radija), se lahko virtualno anihilirata v é&isto sevanje. Zato
pozitronij ni samo sistem, ki ga sestavljata delec in antidelec, ampak je
virtualno za kratek ¢as Cisto polje. To lahko zapiSemo v obliki

~ pozitronij = a (e* + e7) + b (polje). (a)

Tu je b < a, ker je anihilacijski radij dosti manj§i od Bohrovega radija. Stanja
elektromagnetnega vakuuma, to je polja brez izvira, ponazori spekter na sl. 4.
Visina nivojev kaZe njihovo energijo v teZi$¢nem sistemu. Zaradi preglednosti
pa razmaki niso narisani v pravem merilu. Svetlobni kvant ima mirovno
energijo ni¢ in spin 1. Vezana stanja pozitronija, ki so urejena po spinih,
imajo viSje energije. Ponazoritev ni popolna, ker ne vsebuje stanj z dvema
kvantoma, dvema pozitronijema itd.- '

- Vzemimo zdaj jedrsko polje brez izvira! Zopet zadnemo s praznim pro-
storom, potem pa nastopijo kvanti polja, torej pioni in kaoni. Tu moramo
upostevati pozitroniju podobno tvorbo-sistem nukleon-antinukleon, ki jo ime-
nujmo »nukleonij«. Tudi tu lahko zapiSemo zvezo, ki je podobna (a). Toda
zaradi mocne sklopitve je tu b ~ a. kajti anihilacijski radij je priblizno
tolikSen kot radij celotnega sistema. Zato je deleZ &istega polja pri nukleo-
niju dokaj velik. To pa pomeni, da ne moremo, tako kot pri $ibki sklopitvi
z gotovostjo razlo¢evati stanj, ki ustrezajo nukleoniju, in stanj, ki ustrezajo
Cistemu polju. Vsako stanje polja brez izvira je meSanica ¢&istih kvantov in
enega ali ved nukleonijev, torej meSanica raznovrstnih stanj, ki se ujemajo
samo po kvantnih Stevilih. Zato v spektru ne smemo pri¢akovati jasno izraZe-
nih skupin. ki bi jih lahko identificirali tako kot v elektromagnetnem primeru.

Slika 4 kaZe eksperimentalno ugotovljene bozonske sestave jedrskega
polja. Vetina ima zelo kratek razpadni ¢as. Mezon w razpade v tri pione,
mezon ¢ pa v dva, ravno tako kot razpadejo nekatera stanja pozitronija v tri
svetlobne kvante in druga v dva. Zaradi mo¢ne sklopitve je paé v jedrskem
primeru razpadni Cas dosti krajsi. Poleg tega pa sta celo najlazja jedrska
kvanta nestabilna proti razpadu po $ibki interakciji: mezona  in K razpadeta
v lazje tvorbe. Razpad po §ibki interakciji je zelo poéasen in ga v nagi sliki

* Za sedanjo generacijo visokoenergijskih fizikov bi mogode kazalo obrniti
izvajanje in razloZiti Ramanov pojav kot analogijo asociirane tvorbe.

** Oba delca v pozitroniju sta izvira polja, zato ni veé res, da ni izvirov. Vendar
je celotno 3tevilo delcev $e vedno enako ni¢, ker Stejemo antidelec z negativnim
predznakom.
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ni treba upostevati, enako kot ga nismo upoStevali pri nestabilnih stanjih
bariona.

s Omeniti velja, da lahko s pomoéjo ustreznih nukleonijevih stanj uredimo
bozonske sestave. Kot smo Ze omenili, je vsak bozonski sestav nekaj ¢&asa
v stanju nukleonija. V tem stanju pa je oznalitev s kvantnimi Stevili posebno
preprosta. Skupine stanj, ki jih pricakujemo, kaZe sl. 5. Najprej imamo stanja,
pri katerih sta nukleon in njegov antidelec v relativnem stanju S-(L = 0).
Izotopska spina in navadna spina sta lahko paralelna ali antiparalelna, ¢e gre
za pare nukleon-antinukleon s ¢udnostjo ni¢. Ce pa nastopa 4 ali 4, ki imata
izospin ni¢, je moZna samo ena kombinacija izospina in ima sistem cudnost

(b)

(a) mé
7 F
Sogé 01 éé GeVv'h
—_—— = e 1 F
L T —
— g8 1 W 07
% K T K
04t
0zr 0 n
0 ! I 1
0 0 1 S
——hv T, J .
o 1 2 0 1 R

Sl. 4. Spektra bozonov. Elektromagnetni spekter na levi (a) vsebuje samo en kvant in
en pozitronij; stanja, ki ustrezajo veéjemu $tevilu kvantov ali pozitronijev, so izpu-
§¢ena. Zaradi preglednosti je spekter pozitrenija povecéan. s je notranji spin pozitro-
nija (0 v singletnem in 1 v tripletnem stanju). Jedrski bozonski (b) spekter vsebuje
doslej ugotovljene kvante z eksperimentalno dolo¢enimi masami.. Simbol na levi
strani nivoja oznaduje izospin in parnost, simbol na desni pa je ime kvanta.

+4-1 ali —i. Potemtakem pri¢akujemo $tiri stanja s ¢udnostjo nié¢, ker so Stiri
kombinacije izospina 0 ali 1 s spinom 0 ali 1. Sistemi delec-antidelec
imajo liho notranjo parnost, zato imajo tudi nasteta Stiri stanja liho parnost.
Pri¢akujemo $e dve stanji s ¢udncstjo 1, kjer ima izospin dano vrednost %,
spin pa je lahko 0 ali 1. Pemembno je, da se znani bozoni popolnoma skladajo
s to sliko. Najvigje stanje (mezon F) lahko razloZimo kot stanje z L = 1 (s sodo
parnostjo) v sistemu nukleon-antinukleon z antiparalelnima izospinoma in
paralelnima spinoma.

Tretja spektroskopija, ki preucuje kvantna stanja jedrskega polja, se
bavi torej z dvema vrstama spektrov. Prva ustreza sestavu polja okoli izvira
jedrskega polja (barionski spekter), druga pa vsebuje stanja vakuuma brez
izvirov (bozonski spekter). Nobene teorije ni, ki bi hapovedala energije in
kvantna Stevila posameznih nivojev. Poznamo kvantna stanja, opazujemo
prehode med njimi, ne razumemo pa bistva; podobno je bilo ‘v atomski
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fiziki 1910. Poznamo tudi $e nekatere povezave med energijami, ki spominjajo
na Balmerjevo formulo za vodikov spekter, le da manj povedo. Med masami
nekaterih vzbujenih stanj veljata zvezi

3 (my
1 2 RO \ .
7 (myg * + mg?) =

Ti zvezi poskuSajo razloziti z grupnoteoreti¢énim obravnavanjem invariantnosti
nastopajocih interakcij.* Cetudi so morda te nepopolne ideje pravilne, je 3e
zelo dale¢ do teoretitnega razumevanja celotnega problema.

Ceprav zagenjamo razvozlavati spekter, vemo o zgradbi teh sistemov zelo
malo. Imamo komaj nekaj kvalitativnih podatkov o razseZnosti in porazdelitvi
naboja teh sistemov, podobno kot so jih imeli o atomih 1910. Poskusi s sipa-

KVANTNA STEVILA BOZONOV V »NUKLEONIJSKEM« STANJU

izospina spina.- bozon
] o i -
. g QN o obhodno kvantno $tevilo
el i) A, 7 L=o
S LR ) w
S = vt 1 F@=2 L=1
stanje to ry K
(g:f) 4o N K* L =0
Slika 5

njem elektronov pokaZejo, da ima radij teh sistemov velikostno stopnjo 1 fermi
(=10"**m). i910 je Rutherford napravil sipalne poskuse pri visoki energiji,
da bi spoznal zgradbo atomov. Sredi atoma je naSel trdo sredico — atomsko
jedro. Podobne sipalne poskuse delajo danes, da bi spoznali zgradbo nukleona.
Nekaj informacij o obstoju trde sredice v nukleonu bi utegnili dobiti s sipa-
njem protonov na protonih pri visokih energijah. Ce ima nukleon trdo sredico,
b1 se moral pri sipanju pri visokih energijah pokazati uklonski vrh (njegovo
pribliZzno obliko kaZe sl. 6). Sirina vrha je merilo za radij sredice. Ce izrazimo
$irino s preneseno gibalno koli¢ino (ne pa s kotom), je obratnosorazmerna
z radijem sredice. Dejstvo, da konvergira totalni presek za sipanje nukleonov
na nukleonih pri visokih energijah proti konstantni vrednosti, govori za obstoj
sredice. V. CERN-u! so ugotovili, da se uklonski vrh oz, ¢e nara§éa energija E,
kar je vzbudilo dokajsnje preseneenje. Tisti teoreti¢ni fiziki, ki so zoZitev
napovedali na podlagi ekstrapolacije sipalne amplitude iz obi¢ajne Schrédin-
gerove teorije, so bili manj prenesefeni. Njihova razglabljanja slone na tako

* Tako imenovana »osmerna pot«. Glej Y.Ne’eman, Nucl. Phys. 26, 222 (1961),
M. Gell-Mann, Phys. Rev. 125, 1067 (1962), S. Okubo, Progr. of Theoret. Phys. 25, 949
(1962), 28, 24 (1962)!

* A.N. Diddens, E.Lillethun, G.Manning, A.E. Taylor, T.G. Walker, and A.M.
Wetherell, Phys. Rev. Letters 9, 108 (1962).
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imenovanih Reggejevih polih sipalne amplitude. Ved teoreti¢nih fizikov? je
napovedalo, da je Sirina uklonskega vrha sorazmerna z (InE)~!, kar so doseda-
nja merjenja v grobem potrdila. To dejstvo in konstantni totalni presek vzbu-
jata vtis, da postaja nukleon veéji in bolj razmazan, ¢e ga opazujemo pri
vse vedji energiji. Rutherford je priSel pri atomih do obratnega rezultata.
Na podlagi teh merjenj pa ne moremo skleniti e ni¢ dokon¢nega. Z najnovej-
§imi merjenji sipanja protonov na protonih so v Brookhavnu?® potrdili -prejsnje
rezultate, pri sipanju pionov na protonih pa so ugotovili, da se Sirina uklon-
skega vrha ne spreminja z energijo. Totalni presek za sipanje pionov na pro-

O

Aq -
Sl 6. Rutherfordov poskus z nukleoni; sipanje protonov na protonih. Ce ima nukleon
trdo sredico, je presek za .proZno sipanje o, pri visokih energijah sorazmeren
z exp[—K®(/\@")], pri ¢emer je /A\q prenesena ‘gibalna koli¢ina. Eksperimenti po-
kaZejo, da je presek za proZno sipanje o, sorazmeren z exp [— (cInE)’ (Aq)®] in da
je totalni sipalni presek konstanten.

tonih v preiskanem energijskem obmodju (med 7 in 17 GeV) pa pada z rastoo
energijo, kar se sklada z nara$éanjem razmazanosti nukleonov pri rastodi
energiji.

Povzemimo sedanji poloZaj v fiziki osnovnih delcev! V fiziki so v teku
razvoja nastopale razne vrste snovi:

Sl gravltacijska snov, 3. atomska snov, 5. mezonska snov,
2. plazma, 4. jedrska snov, 6. leptonska snov.

Gravitacijsko snov obravnavamo pri opisu zvezd, npr. sonénega sistema,
zvezdnih kopic, galaksij itd. Zanjo so znaélilne velike mase, ki sodelujejo
v glavnem gravitacijsko.

Plazmo sre¢amo pri Studiju zelo razred¢enih plinov v vsemirju. Sestav-
ljajo jo ionizirani atomi in elektroni, ki sodelujejo v glavnem z elektro-

? G.F.Chew and S.C.Frautschi, Phys. Rev. Letters 7, 394 (1961); V. N. Gribov,
Soviet Phys. — JETP 14, 478 (1962) (angle$ki prevod); G.Lovelace, Nuovo Cimento
26, 415 (1963): S. C.Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev. 126, 2204
(1962); G.F.Chew, S.C.Frautschi, and S.Mandelstam, Phys.Rev.126, 1202 (1962);
R. Blanckenbecler and M. L. Goldberger, Phys. Rev. 126, 766 (1962).

? K.J.Foley, S.J.Lindenbaum,; W.A.Love, S.Ozaki, J.J.Russell, and L.C.L.
Yuan, Phys. Rev. Letters 10, 376 (1963).
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magnetnimi silami. Energije so tako visoke, da ni treba upoStevati kvantnih
pojavov. Lastnosti plazme so zaradi njene nelinearnosti presenetljivo razno-
vrstne in zapletene in so vefinoma $e neraziskane.

“Atomska snov je obi¢ajna snov na Zemlji. Njeno zgradbo dolodajo kvantni
pojavi pri elektromagnetnih silah med jedri in elektroni. Javlja se v izredno
Stevilnih oblikah, pomislimo samo na molekule in makromolekule. Najvise
izdiferencirana oblika atomske snovi je Ziva snov.

Jedrska snov je snov, iz katere so jedra. Njeno zgradbo doloéajo nukleoni,
ki sodelujejo preko jedrskih in elektromagnetnih sil.

O mezonski snovi smo razpravljali v tem ¢lanku. Iz te snovi so nukleoni-
in jedrsko polje $tevilnih bozonskih sestavov. Tu opisujemo pojave s kvantnimi
slanji jedrskega polja. Opis ni nov, saj uporablja koncepte, ki jih poznamo
od elektromagnetnega in gravitacijskega polja. Ustreza pa nac¢inu, ki mu teore-
tiki pravijo »teorija polja«. Na Zalost Se ni zadovoljive kvantne teorije polj,
ki so sklopljena s fermionskimi izviri, in Se posebej polj, ki so moéno sklopljeni
z izviri. Sedanje teorije se bore s te¥avami, ki izvirajo od problemov v zvezi
z zgradbo izvirov (divergence in problemi renomiranja) ali od matemati¢nih
problemov moé¢ne sklopitve. Za zdaj e ne moremo presoditi, ¢e bo kaka teorija
jedrskega polja z nukleoni kot izviri lahko reproducirala tretjo spektroskopijo
in zozitev uklonskega vrha pri sipanju protonov na protonih. Lahko bi se
pokazale, da opis mezonske snovi z jedrskimi polji, ki so sklopljena z barioni,
sploh ne ustreza.

Sesta oblika snovi je v zvezi s pojavi, ki smo jih samo povr§no omenili.
To je svet leptonov in $ibke interakcije. Poznamo Stiri vrste leptonov: navadne
elektrone, tezke elektrone (mione) in dvoje vrst nevtrinov. Vsi ti sodelujejo le
preko elektromagnetne interakcije in preko zagonetne §ibke interakcije. Ali
so tudi $tiri vrste leptonov vzbujena stanja nekega polja? Vemo, da je pri
majhnih razdaljah elektromagnetno polje moéno sklopljeno. Ce posreduje
gibko interakcijo vmesni bozon, bi utegnilo biti tudi polje Sibke interakcije
pri- dovolj majhnih razdaljah (ali visokih energijah) moéno sklopljeno. Tedaj
bi za leptonske izvire veljalo isto kot za jedrske in bi bili posamezni leptoni
vzbujena stanja novega polja. Tako bi mogoce prisli do podobnosti med
zgradbo mezonske in leptonske snovi. Ta podobnost pa je najbrz preveé pre-
prosta, da bi bila resni¢na. Nadaljnjo razjasnitev problemov si lahko obetamo
le od novih poskusov. Pri tem bodo potrebne vi§je energije, kot so danes na
razpolago. S sodobnimi pospeSevalniki, ki dosegajo energijo do nekaj 1010 eV,
zadenjamo prodirati v zgradbo nukleonov. Zgradbo leptonov pa bodo lahko
preudili pri dosti vigjih energijah z uporabo naprav, ki bodo dale izdatne curke
nevtrinov in mionov. _

Za razumevanje osnovnih pojavov v prvih §tirih vrstah snovi imamo
sorazmerno dobre teorije, Ceprav je nekaj osnovnih problemov gravitacije,
npr. razdirjanje vesolja, Se vedno nerefenih. Pojavi v mezonski in leptonski
snovi pa bodo zahtevali novo kvantno teorijo in morda tudi vrsto novih kon-
ceptov. Znanje, do katerega bomo prigli z re$itvijo teh problemov, bo zagotovo
poglobilo spoznanje o zgradbi snovi. Lahko, da bo celo privedlo do kakih
osnovnih povezav med posameznimi »polji«, med katerimi danes ne vidimo
nobene zveze. Mogode so gravitacija, elektrika in jedrski svet povezani z na-
¢elom, ki je most med svetom zelo velikih razseZnosti in zgradbo osnovnih
delcev. Ta vzviSeni cilj je morda Se dale¢, Ze zdaj pa je ocitno, da odpirajo
dognanja visokoenergijskih raziskav nove perspektive za razumevanje zgradbe
snovi.
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HIPERONSKA JEDRA

J. STRNAD

Znano je, da se da elektron v ovoju atoma nadomestiti s sorodnim mionom
(delcem p).! Preucevanje taksnih mionskih atomov je dalo dragocene infor-
macije. Vsiljuje se vpraSanje, ali je mogofe nadomestiti tudi proton ali nevtron
v atomskem jedru s kakim drugim barionom (tezkim delcem), torej z enim
izmed hiperonov? 4, X ali =.

Odgovor na to vpraSanje je pritrdilen. Zares so namreé opazili jedra, ki
imajo namesto nevtrona delec 4. Delec 4 je zelo kratkoZiv (razpadni éas meri
2,7.107s), zato zive tudi ta, tako imenovana hiperonska jedra le zelo kratek
¢as. Navzlic temu so dobili s preudevanjem hiperonskih jeder zanimive podatke
predvsem o silah med barioni.

Ni tezko pojasniti, zakaj niso opazili jeder z delci 3 ali 5. Delci X reagirajo
namre¢ v jedru s protonom ali z nevtronom v izredno kratkem é&asu, ki je okoli
1012-krat kraj$i od razpadnega ¢asa delca 4, npr.

2=+ p—>nt 4, (1a)
St +n—p-+ A . (1b)

Edino sistema 2~ +n in ¥ + p sta dovolj dolgoziva, da bi ju bilo mo#no
opaziti. Ker pa nastaneta zelo poredko, ju doslej $e niso opazili.® Tudi delci =
reagirajo v jedru v izredno kratkem déasu, npr.:

E-+p—d+ 4. (2)

Prvo hiperonsko jedro sta pred desetimi leti opazila Poljaka Danysz in
Pniewski.* Danes vsebuje seznam z gotovostjo indentificiranih hiperonskih jeder
ze ve¢ kot deset Clanov, ki so nasteti v spodnji tabeli.’ 7

TABELA 1

Seznam hiperonskih jeder. W je vezavna energija delca 4.
Jedro — Wy Jedro — Wy
AH? 0,2 MeV ALi® 6,1 MeV
AH* 2.1 ALi® 7
AHe? 2,4 ABe8 6,4
AHe? 3,1 ABe?® 6,6

AHe? - 3,7 ABU 9,9

ALi? 5,5 AB2 10,2

ACt 10,8

Simbol C* pomeni npr., da je v jedru 13 delcev, in to 6 protonov, 6 nevtronov
in en delec A.
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Vsa- navedena hiperonska jedra vsebujejo samo po en delec A. Pred
kratkim pa so opazili prvo dvojno hiperonsko jedro z dvema delcema /1, AnBet?
(ali morda pxBel!?).

Hiperonska jedra nastanejo pri trkih zelo hitrih delcev, npr. protonov ali
pionov, z jedri. Pred leti so bili navezani samo na hitre delce v kozmiénih
zarkih, danes pa dobe hitre delce tudi s pospeSevalniki. Pri trku z zelo hitrim
delcem se jedro razleti v veéje Stevilo razbitin, med katerimi je kdaj pa kdaj
kako hiperonsko jedro. Zaradi takega nacdina nastanka pravijo hiperonskim
jedrom tudi hiperfragmenti.

Na opisani nacéin se rodijo hiperonska jedra dokaj poredko — v povpreéju
samo eno na ve¢ kot tiso¢ razbitih jeder. Druga moznost za nastanek hiperon-
skega jedra je zajetje pocasnih delcev 5=, 3~ ali K—. Ti delci namre¢ lahko
izpodrinejo elektron iz elektronskega oblaka kakega atoma. Pri tem zaide delec

Sl. 1. Nastanek in razpad (4 a) hiperonskega jedra ABe’ v fotografski emulziji. Jedro
srebra ali broma je zajelo pocasni delec K-, ki je priletel z leve, in se razletelo v
to¢ki P. Ena izmed razbitin je bila hiperonsko jedro aBe®, ki se je gibalo na levo
navzdol do tocéke S in tu razpadlo v dva delca o (1, 2, sledi sta zelo blizu skupaj),
proton (3) in negativni pion (4).® Slika je nekolko nepregledna, ker se sledi prekrivajo.

£=, 2~ ali K~ v neposredno blizino jedra in v izredno kratkem casu reagira

s protoni in nevtroni v jedru. Delec 2~ reagira po enacbi (1a), delec Z~ po
enacbi (2), delec K~ pa po eni izmed enacb

K-+n—>4+a,

©)
K-+p—4+a°

Najveckrat jedro absorbira nastali pion in se razleti, v eni izmed razbitin pa

obti¢i delec A. Tako nastajajo hiperonska jedra pogosteje kot pri trku zelo
hitrih delcev z jedri.

Omenili smo Ze, da razpade prosti delec 4 z razpadnim ¢asom 2,7. 10—10 s,
pri ¢emer nastane negativni ali neviralni pion:

A—>p+a, (4a)
A—n+ al ' (4b)
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Na enak naéin lahko razpade tudi vezani delec 4 v hiperonskem jedru. Nastala
delca se pri tem po navadi iztrgata iz jedra, preostali del jedra pa se dostikrat
razleti na ve¢ razbitin. Vezani delec 4 pa lahko razpade tudi drugace, ne da bi
pri tem nastali pioni:

A+ n—>n-+n, (5a)

A+ p—=>n-+op. (5b)

Sprosceno energijo prevzameta pri tem nastala nevtrona in proton kot kinetiéno
energijo. Razpad vezanega delca 4 konca tudi Zivljenje hiperonskega jedra. Vse
kaZe, da vezava ne vpliva dosti na razpadni ¢as delca A. Za razpadni cas
hiperonskih jeder, to je za razpadni ¢as vezanih delcev A, ki razpadejo bodisi
po (4) bodisi po (5), so namreé tudi izmerili vrednosti okoli 10~1° s, Zelo zanimivo
bi bilo poznati natanéno odvisnost tega razpadnega ¢asa od masnega S$tevila.
Vendar zaradi teZzav pri merjenju Se ni popolnih podatkov.

Hiperonska jedra zaznajo najveCkrat po sledeh v fotografski emulziji,
lahko pa jih zaznajo tudi po sledeh v mehuréni ali megli¢ni celici.? ¥ Najlaze je
opaziti hiperonska jedra, ki jih rodijo hitri delci pri trku z jedri v fotografski
emulziji. Razbitine prvotnega jedra odletijo narazen, tako da tvorijo njihove
sledi znadilno zvezdo. Ce se razleti katera izmed razbitin v sekundarno zvezdo,
ie precej gotovo, da gre za hiperonsko jedro, ki je razpadlo. Majhna nevarnost
za zamenjavo so lazne sekundarne zvezde, ki nastanejo pri trkih pocasnih
pionov, delcev K, hiperonov ali razbitin iz primarne zvezde s kakim jedrom.

Prvo dvojno hiperonsko jedro pa so odkrili po treh zaporednih zvezdah.
Fotografske plosce so obsevali z delci K—. Delec K~ je pri reakciji s protonom
ali nevtronom rodil delec 5, ki se je zaustavil, tako da ga je zajelo jedro
broma ali srebra. V jedru je delec £~ reagiral po enacbi (2), pri é¢emer se je
_jedro razletelo (primarna zvezda). V eni izmed razbitin, v tem primeru v 5 Be?!?
(sli morda ApBe!), sta obti¢ala oba nastala delca 4. Dvojno hiperonsko jedro
aaBe!? je razpadlo v papBe?, v proton in negativni pion (sekundarna zvezda),
hiperonsko jedro ABe? pa je razpadlo dalje v dva delca @, v proton in negativni
pion (terciarna zvezda).

Pri dolo¢anju mase in naboja hiperonskih jeder upostevajo debelino sledi,
morebitno zakrivljenost sledi zaradi sipanja, profil sledi in stanjSanje sledi
pred zaustavitvijo.® Seveda vseh navedenih stvari ni mogoce doloéiti pri vsaki
sledi. Tako mora biti npr. sled obidajno daljsa kot 1 mm, da pride do sipanja,
in daljSa kot 50 u, da lahko z gotovostjo dolodijo po stanjsanju sledi, ali se je
delec zaustavil. DolZzina sledi hiperonskih jeder v fotografski emulziji pa je
velinoma krajsa kot 20 u, daljSe sledi kot 80 ¢ so Ze prav redke. Zato so
natanéna merjenja dokaj teZavna.

Velika vedina hiperonskih jeder se zaustavi, preden razpade. Za doloditev
razpadnega c¢asa pa so uporabni samo izredno redki razpadi v letu. Zaradi
tega natancnost pri dolocanju razpadnega c¢asa ni posebno dobra.

Koli¢ina, ki jo tudi navajajo pri hiperonskih jedrih, je vezavna energija
delca 4. To je energija, ki bi se sprostila pri spojitvi delca A z ostankom jedra

WA = (m*—m p—m)c2.

Tu je m* masa hiperonskega jedra, ms masa delca 4 in m masa preostalega
jedra brez delca 4. Obe nazadnje navedeni koli¢ini poznajo, maso hiperonskega
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jedra pa morajo dolo¢iti posredno iz mirovnih in kineti¢nih energij razbitin,
na katere se razleti hiperonsko jedro v mirovanju. Skupna mirovna in kineti¢na
energija vseh razbitin je enaka mirovni energiji hiperonskega jedra. Negotovosti
pri dolodanju mase razbitin se pridruzi Se negotovost pri dolodanju njihove
kineti¢ne energije iz dolZine sledi. Zaradi tega napake pri dolodanju vezavne
energije W niso majhne.

NajugodnejSi za doloanje vezavne energije Wx so razpadi po (4a), ker
zapustita proton in negativni pion vidni sledi. Razpad po (4b) opazijo le
v primeru, ko sta vidni slédi elektronskega para, v katerega razpade nevtralni
pion. Vendar nevtralni pion le poredko razpade v elektronski par, po navadi raz-
pade v dva Zarka y. Razpadi po (5) lahko sluZijo za dolo¢itev vezavne energije
W A le v primeru, ko se jedro ob razpadu razleti na veé¢ delov, med katerimi razen

B s it s TS S P LS A S SN KR eV B e PRl e

Sl. 2. Nastanek in razpad (5b) hiperonskega jedra ABe® v fotografski emulziji. Delec

z veliko energijo iz kozmiénih Zarkov je v toéki P razbil jedro broma ali srebra. Ena

izmed razbitin (F) je bila hiperonsko jedroa Be®, ki se je zaustavilo in razpadlo (S)
v delec « in jedro He® (1, 2) in v nevtron, ki ni zapustil vidne sledi.®

enega nevtrona ni nobenega drugega nevtralnega delca. Samo tedaj je mogode z
merjenjem gibalnih koli¢in dobiti tudi kineti¢no energijo iztrganega nevtrona.
Skupna gibalna koli¢ina mora namreé biti enaka ni¢ ¢ée je hiperonsko jedro
razpadlo v mirovanju.

Doslej Se niso opazili hiperonskega jedra pH2, &eprav ga ne bi bilo tezko
zaznati. Zato sklepajo, da en sam proton in delec 4 nimata vezanega stanja.
Vezano stanje pa imata nevtron in proton (devteron), kar kaZe, da je sila
med protonom in nevtronom mocnejsa od sile med protonom in deleem A.

Hiperonskima jedroma paH* in yHe’ bi ustrezali navadni jedri H* in He5,
ki nimama vezanega stanja. To dejstvo pojasnimo s Paulijevim naéelom. Po
lupinskem modelu jedra® bi moral biti v H* in He’ tretji nevtron v stanju
z obhodnim kvantnim Stevilom I = 1. To pa pomeni, da bi se moral nevtron
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znatno oddaljiti od preostalih delcev in bi zaSel izven dosega jedrskih sil.
Delca, A v AH* in pHe® ne zadeva Paulijevo nacelo, saj se delec 4 razlikuje od
protonov in nevtronov po drugih (internih) kvantnih S$tevilih. V vsakem pri-
meru lahko tedaj delec 4 zasede stanje z obhodmm kvantnim $tevilom nié¢, kar
je energijsko najugodnejse.

Vezavna energija delca 4 nara$fa dokaj enakomerno z nara$¢anjem mas-
nega $tevila hiperonskega jedra. Pri dovolj velikem masnem S§tevilu bi morala
sicer pou pri¢akovanju postati neodvisna od masnega Stevila, vendar doslej
znana hiperonska jedra $e ne dosezajo te meje. Primerjava med vezavno ener-
gijo delca 4 in vezavno energijo nevtrona v izobarnih navadnih jedrih pokaZze,
da je odvisnost vezavne energije nevtrona bolj neenakomerna, najbrz predvsem
zaradi Paulijevega nacela.

Vezavni energiji delcev 4 v pH% in pHe? se samo neznatno razlikujeta.
To pomeni, da je sila med delcem A in nevtronom pribliZzno enaka sili med
delcem A in protonom.

Silo med delcem A in drugimi barioni podobno kot jedrske sile opiSemo z
izmenjavanjem virtualnih mezonov. Delec 4 lahko izseva po en virtualni mezon
na tele nacine:

A=A+ a7 3T+ 77, 20+ 7% -+ at, p+ K-, n+ K°.

Priznati pa je treba, da vedo o teh silah dosti manj kot o silah med protoni
in nevtroni.
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NOVICE

O »KVADRIRANIH« PRAVOKOTNIKIH IN KVADRATIH

Pred nekaj leti je bil v Obzorniku za matematiko in fiziko objavljen
odgovor na vpraSanje o najmanjSem §tevilu razliénih kvadratov, iz katerih
se da sestaviti pravokotnik (OMF VI,1957/58, str. 47).

To nalogo je prvi stavil H. Toepken v Casopisu Jahresbericht der DMV
(1939). Zanimivo vprasanje je pritegnilo celo vrsto matematikov, ki so problem
raz8irili in ga skuSali splo$no refiti. Iskali so namre¢ tudi pravkotnike, ki se
dajo sestaviti iz ve¢ kot devetih kvadratov. Prve metode pri reSevanju tega
problema so bile empiri¢ne: najprej suponiramo doloeno razdelitev pravo-
kotnika na kvadrate, nato pa z raéunom preverimo, ali je re§itev moZna ali ne.
Jasno je, da takine metode niso zadovoljile matematikov. Ze 1.1940 je bilo
okjavljeno prvo delo, ki je sploSno obravnavalo ta problem. Avtorji Brooks,
Stone, Smith in Tutte so pri tem nasli zanimivo zvezo med razdelitvijo pravo-
kotnika na kvadrate in elektri¢nimi vezji. Nedavno (1960) pa so nizozemski
matematiki Bouwkamp, Duijvestijn in Medema izdelali posebno metodo, s ka-
tero je moZno dobiti vse pravokotnike, ki se dajo sestaviti iz razli¢nih kvadra-
tov. Izdali so katalog vseh pravokotnikov, ki se dajo sestaviti iz devetih do
petnajstih kvadratov, pri éemer so uporabljali elektronski ra¢unalnik. Stevilo
takih pravokotnikov je 3663.

Istolasno s problemom razdelitve pravokotnika na kvadrate se je po-
javilo tudi vpraSanje razdelitve kvadrata na n razliénih kvadratov. L. 1939 je -
bila objavljena prva resitev pri m = 55, naslednje leto pa reSitev pri n = 26
in dve resitvi pri n = 28. L. 1948 je T.H. Willcocks naSel reSitev pri n = 24.
Do danes pa se Se ni posrecilo dobiti reSitve pri manjSem n. Lansko leto je
Duijvestijn dokazal, da je » najmanj 20, torej je Se vedno ostalo odprto vpra-
ganje, koliko je najmanjSe mozno S§tevilo kvadratov, iz katerih se da na
netrivialen naéin sestaviti kvadrat. Izdelane so bile nekatere splo$ne metode
za tvorbo skvadriranih« kvadratov, vendar niso dale reSitev pri manjsih n.

Kot zgled opi§imo Willcocksovo re§itev. Kvadrat ima stranico 175. Na
zgornjem robu so kvadrati s stranicami 55, 39 in 81. Pod kvadratom s stranico
39 so kvadrati s stranicami 16, 9 in 14. Ce nadaljujemo tako, da po vrsti
napiSemo stranice kvadratov, ki so pod naslednjim kvadratom z najvigjim
spodnjim robom, moremo ostale kvadrate opisati z zaporedjem stranic: (4,5)
(3,1) (20) (56,18) (38) (30,51) (64,31,29) (8,43) (2,35) (33). Ker zaradi pre-
majhnega formata v Obzorniku ne moremo priobditi slike, na katerem bi bila
navedena razdelitev kvadrata dobro vidna, prosimo bralca, naj si sam nariSe
to sliko.
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VESTI

XII. MATEMATICNA OLIMPIADA NA POLJSKEM 1960—1961

Naloge za pripravljalno tekmovanje I stopnje

1. Koliko dobimo paralelogramov, ¢ presekamo k vzporednic z =
vzporednicami?

2. Dokazi, da velja neenacba

e, +a,+a, b,Tb,+0b, S¢:¢1b1+a;,717)2-l—cc,,bt,'
3 ) 3 _" 3

Cejea;<a,<a,in b, <b, < b,

3. V ravnini sta dana krog K in to¢ka A. Doloéi tak krog L, ki gre skozi
totko A, da bo imela leca, ki predstavlja skupni del obeh krogov, dani premer
(tetivo) @ in dano debelino b.

4. Naj bodo A, B, C, D oglii¢a tetraedra in S teZi%le trikotnica ABC.
Dokazi, da je
AD + BD + CD

3

SD <

5. Resi v celih $tevilih enaébo y2 —1 = 2%,

6. Realna &tevila a, b, ¢, ki niso vsa enaka ni&, izpolnjujejo pogoja
1. a+ b+ c=abe, 2. a®> = be

Dokazi, da je a2 > 3!

7. Dan je konveksni krozni izsek AOB (O je sredi¢e kroga). Nadrtaj
na lok AB tako tangento, da bo dotikalig¢e delilo njen odsek znotraj kota AOB
v razmerju 1:3.

8. V krog sta vértana dva enakostrani¢na trikotnika. Oglis¢a A, B, C
enega trikotnika si slede po krogu v istem smislu kakor ogliséa A, B, C,
drugega trikotnika. Premici AB in A4,B, se sekata v totki P, premici BC in
B,C, v totki M, premici CA in C,A, pa v tocki N. Dokazi, da so tocke M, N, P
oglis¢a enakostrani¢nega trikotnika. )

9. Dokazi, da je $tevilo 24" + 5 deljivo z 21, & je eksponent n naravno
Stevilo.

10. Enacba ax® + bx? + cx +d = 0 ima tri realne korene. DokaZ, da je
tedaj b? = ac in ¢ = bd. Ali je pravilen obratni izrek?

11. Dan je enakokrak trikotnik ABC (AB = AC). Naértaj tak enakokrak
trikotnik A;B,C, (4,B, = A,C,), da bodo trikotniki AB,C,, A,BC, in A,B,C:
a) lezali izven f{rikotnika A,B,C,, b) bodo enakokraki z osnovnicami BICY
C;A, in A,B,, ¢) bodo podobni trikotniku A4,B,C,.
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12. Mejne ploskve tetraedra so skladni trikotniki. DokaZi, da so v tem
primeru ti trikotniki ostrokotni.

Naloge za lekmovanje IL stopnje (po okroZjih)

13. Doka%i, da ni nobeno §tevilo oblike 27, kjer je m naravno S§tevilo,
vsota dveh ali ved¢ zaporednih naravnih Stevil.

14. Dokazi, da se vse viSine tetraedra sekajo v eni toc¢ki tedaj in le
tedaj, kadar so vsote kvadratov po dveh nasprotnih robov enake.

15. Dokazi, da velja za poljubne kote x, y, z enakost
1 —cos2ax —cos?y—cos?2z + 2cosx cosy cosz =

x—y + rt+y—=z x+y+tz — + y +
L sin v sin o/ sin = NEAE
2 2 2

= 4 sin

16. Pois¢i zadnje §tiri Stevilke Stevila 59995,
17. Realna $tevila a, b, ¢ izpolnjujejo neenakosti

l.a+b+c¢c>0, 2 ab+bc+ca>0, 3.abc>0

Dokazi, da je a >0, b>0, c> 0.

18. V ravnini ostrokotnega trikotnika ABC se pomika pas s §irino d << AB
in robovoma, pravokotnima na AB. V kateri legi pokriva pas najvecji del
trikotnika?

Naloge za tekmovanje IIL stopnje (konéno).

19. Dokazi, da je vsako naravno S§tevilo, ki ni cela potenca Stevila 2,
vsota dveh ali ve¢ zaporednih naravnih $tevil.

1
20. Doka%i, da je a® + b = 16’ éejea+b=1

21. Ravninski presek tetraedra je paralelogram. Dokazi, da leZi polovica
njegovega obsega med dolZzino najmanjSega in dolZino najveljega roba te-
traedra.

22. Vsaka stranica v nekem trikcitniku je manjSa od 1. Dokazi, da je

3
ploséina takega trikotnika manjsa od T

23. Stiri premice, ki se sekajo v 6 totkah, tvorijo Stiri trikotnike. Dokazi,
da imajo krogi, ki so o¢rtani tem trikotnikom, skupno tocko.

24. Nekdo je napisal Sest pisem Sestim osebam in na Sest ovitkov je
napisal njih naslove. Na koliko nadinov je mogoce pisma tako vloZiti v ovitke,
da ne bi nobeno pismo priflo v pravilen ovitek?

Prev. Milan Ziegler
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MATEMATICNA OLIMPIADA V WROCLAWU 1963

Ko smo $li 11.maja Slovenci v Beograd na zvezno tekmovanje, si pac
nismo mislili, da bomo &li trije od nas na Poljsko na mednarodno matematiéno
olimpiado. Poleg Franca Dacarja, Staneta Vri¢aja in mene so se udeleili
tekmovanja Se: Valerijan Bijelik (Vinkoveci)), Ivan Boljevski (Pirot), Ferenc
Kalmar (Sombor), Mila Mrsevi¢ (Beograd) in Katica Stevanovié (Nis).

Moram reé¢i, da smo se vsi izredno dobro razumeli in da $e nikdar nisem
7ivel v tako slonem in tovariskem kolektivu. V Sportnem centru na Ko3$utnjaku
smo bili deset dni ter »trenirali« za matemati¢no olimpiado. Prostega ¢asa smo
imeli malo, v Beograd pa tako in tako nismo smeli, da smo se chranili v skon-
diciji«. Sicer pa je bilo Ze v naSem centru tako vrode (37°C v senci), da je moral
biti v mestu pravi pekel. Priprave je vodil Milosav Marjanovié, asistent beo-
grajske univerze. Jasno je, da nam v tem ¢asu ni mogel vliti vse elementarne
matematike v glavo, delo je bilo pa vseeno koristno. Naudili smo se predvsem
sistematitnega reSevanja nalog in pa nac¢ine dokazovanja.

Na Poljsko smo odpotovali 4. julija zveder z vlakom. Vodja nage ekipe
je bila Milica Ilié-Dajovié, profesor beograJske univerze, Milosav Marjanovié
pa je bil njen pomocnik., : :

Po precej dolgi voZnji smo prispeli v Var$avo. To mesto je res polno
znamenitosti. Najbolj pa mi je ostala v spominu palada kulture, ki kraljuje
nad mestom s svojo impozantno vi&ino in belino. Vendar pa nekoliko disharmo-
nira s starinskimi stavbami okoli sebe.

8. julija smo $li iz VarSave v Wroclaw. To je srce Slezije, stare poljske
pokrajine, ki je -bila stoletja, prav do leta 1945 pod nemsko okupacijo.
Wroclaw se ponaSa s slavno matemati¢no zgodovino in zato ni éudno, da so ga
Poljaki izbrali za prizori§¢e olimpiade.

Stanovali smo v nekem irternatu v okolici Wroclawa, sredi zelenja. S ¢lani
ostalih ekip smo izmenjali podpise, sporazumevali smo se pa v nems¢ini, ruséini,
franco$¢ini, angle¢ini in seveda tudi s pomo&jo mesanega esperanta in kreten]
Najvedji mojster za slednji naéin govora Je bil prav gotovo Ivan Boljevski.

Tako v Wroclawu kot v VarSavi so nas prireditelji peljali na nekaj za-
nimivih izletov po mestu in okolici. :

9. julija smo dobili prve tri naloge in §tiri ure asa za refevanje. Vsak
udeleZenec je dobil kuverto z nalogam1 v namonalnem jeziku (mi paé¢ v srbo-
hrvagéini). Naloge prvega tekmovalnega dne so bile:

1. Pois¢i realne korene enacbe

Var—p+2)x2—1=nx, kjer je p realen parameter!

2. Dologi v prostoru geometrijsko mesto vrhov pravega kota, katerega en
krak gre skozi to¢ko 4, drugi krak pa vsaj sk021 eno tocko daljice BC!!
' 3. Dokazi, da v n—kotmku, ki ima vse kote enake in v katerem obstaja
med stramcam1 odnos
@ 2a,2a,>... 20
velja samo ’
‘ a,=a,=0a,...=ay!
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Jugoslovani smo imeli $e posebno smolo, ker sta nam zbolela Stanko in
Ferenc. Ze 9. sta delala z vroéino, 10. pa je bilo nujno, da so ju prepeljali v bol-
nidnico. Hotela sta pa kljub bolezni delati naloge in komisija je izjemoma
dovolila, da sta tekmovala v bolniski postelji.

11. julija smo imeli naslednje naloge:
4. Redi sistem: x; + &, = Y%,

x, + x; = yx,

x, T, =YX,

x, + x; = yx,

x, T X, = Yx;
kjer so x,, &, &y, X, in ; neznanke; y je realen parameter!

2
5. Dokazi: cosi;— — cos i + cos E’E =

1
2
6. Na nekem tekmovanju je sodelovalo 5 dijakov: A B C D in E. Konéni

vrstni red nam ni znan, naj bo X Y Z U V. Vemo pa tole: Nekdo je povedal
konéeni vrsti red A B C D E in s tem ni zadel mesta niti enega udeleZenca, niti
se v tej napovedi nikjer ne pojavlja nobeden od parov XY, YZ, ZU ali UV iz
pravilnega vrstnega reda.

" Druga oseba je dala prognozo D A E C B. Natanko je uganila mesta dveh
tekmovalcev, v njeni prognozi se tudi pojavita dva izmed parov XY, YZ, ZU,
UV. Ugotovi pravilni vrsti red! ‘

Naloge so se nam zdele lazje kot smo jih pri¢akovali, bile pa so kar
zanimive in se niso dale reSevati Sablonsko. Sesta naloga pa je bila precej
nerazumljivo formulirana in sva jo oba z Milo narobe razumela. Ker pa sva jo
redila paé tako, kot sva jo razumela, sva dobila po 5 tock od 8 moznih. Se isti
veder smo izvedeli za rezultate. S Francijem sva skakala do stropa od veselja.
Za naju so bili to brez dvoma najlepsi treriutki olimpiade. Bilo pa nam je
obenem %al, ker je bil Stane bolan in' ni mogel delati tako, kot bi lahko, ¢e bi
bil zdrav. ' ' ‘ ' ' e '

13, julija so ham v znameniti wroclawski mestni hisi podelili nagrade.
Svedanosti so prisostvovali profeso«rj'i wroclawske univerze in predstavniki po-
liti¢nega Zivljenja. Naslednji dan smo se preko Ceskoslovadke 'in MadZzarske
vrnili v Beograd. : '

V Wroclawu pa se je ravno v ¢asu nafe olimpiade zacela epidemija ¢rnih
koz. Zato so nas v Ljubljani vse tri zaprli v karanteno. Ker k sreéi nihée od nas
ni dobil nevarne bolezni, so nas po preteku inkubacijske dobe spustili na
svobodo.

Peter Petek
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DOMACE VESTI

VISJI PREDAVATELJ JANKO BRANC

Dne 19. septembra 1963 je po dolgoletni tezki bo-
lezni umrl vi§ji predavatelj za matematiko na fakulteti
za naravoslovje in tehnologijo Janko Branc. Z njegovo
smrtjo se je spet zmanjSalo Ze tako majhno &tevilo
matematikov pri nas.

Prof. J. Branc je bil rojen 12. februarja 1902
v Podkuzah pri Kranjski gori. Klasi¢no gimnazijo je
obiskoval v Ljubljani in v Kranju, kjer je leta 1924
maturiral. Po maturi je &tudiral matematiko in
fiziko na filozofski fakulteti ljubljanske univerze.
Diplomiral je 1.1928. Ker je #e kot $tudent pokazal
veliko nadarjenost in bil ob koncu svojega Studija do-
bro podkovan v vseh podro&jih matematike, ki so se
tedaj predavala, je postal 1.1929, takoj po odsluZitvi
vojaskega roka, asistent v inStitutu za uporabno matematiko na tehnigki
fakulteti univerze v Ljubljani (in sicer je bil do aprila 1934 asistent pripravnik,
pozneje pa redni asistent). Po vojni je bil najprej nekaj ¢asa v Trstu referent
za tisk pri PNOO. Marca 1946 je bil imenovan za docenta na tehniski fakulteti.
Leta 1961 pa je postal viji predavatelj za matematiko na matemati¢no fizikal-
nem oddelku fakultete za naravoslovje in tehnologijo, kar je ostal do upokojitve
spomladi 1963. Bil je dvakrat predstojnik oddelka za splosne predmete. Pred
vojno je kot asistent sodeloval pri seminarskih vajah iz matematike in deloma
tudi pri predavanjih. Tako je pomagal pri vzgoji §tevilnih srednjeSolskih pro-
fesorjev matematike in fizike. Kot docent pa je predaval vi§jo matematiko
velikemu S$tevilu Studentov kemikov. Razen z matematiko se je prof. Branc
intenzivno ukvarjal tudi s fotografijo in si pridobil velike zasluge za razvoj
tega podroéja pri nas.

Prof. Branc je bil med vojno sodelavec Okrosne tehnike v Ljubljani.
Zbiral je za Osvobodilne fronto material, denar, radijske in druge vesti. Zato
je bil februarja 1945 aretiran. Neé¢lovesko ravnanje v zaporu, kjer je ostal do
osvoboditve, mu je pustilo hude posledice na zdravju in je bilo verjetno vzrok
njegovi tezki bolezni, ki mu je zadnja leta prizadela veliko trpljenja in mu
onemogocdila skoraj vse delo.

Njegova smrt je za na$o matematiko velika izguba, ki jo bomo obé&utili
Se toliko bolj, ker nas je matematikov zelo malo. Vsi, ki smo prof. Branca
poznali, ga bomo ohranili v trajnem dobrem spominu.

I. Vidav
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SOLA

DOMACE NALOGE 1Z MATEMATIKE IN FIZIKE PRI MATURI

Ze &etrto leto imamo pri zakljuénem izpitu na gimnazijah in strokovnih
Solah domaco nalogo. Na gimnazijah so si v Solskem letu 1962/63 v Sloveniji
izbirali domace naloge iz naslednjih predmetov:

slovenski jezik 169 dijakov ali 10,7 %
tuji jezik 130 dijakov ali 8,3 %/
zgodovina 206 dijakov ali 13,19
sociologija 16 dijakcv ali 1,09
filozofija 17 dijakov ali 1,19,
psihologija 25 dijakov ali 1,69
umetnost 51 dijakov ali 3,2
Skupaj druzbeno jezikovno podrodje 615 dijakov ali 39,0 %
matematika 39 dijakov ali 2,59
fizika 216 dijakov ali 13,7 %
kemija ] 202 dijakov ali 12,8 9/
biologija z geologijo 312 dijakov ali 19,8 %
geografija 171 dijakov ali 10,9 %o

Skupaj matemati¢no naravoslovno podrodje 940 dijakov ali 59,7 %

Ostalo (telesna in predvojaska vzgoja) 21 dijakov ali 1,39

Kakor prejsnja leta tudi letos prevladujejo naloge iz naravoslovnih pred-
metov.

Naslovi domacih nalog iz matematike in fizike so:
Naslovi nalog iz matematike:

Determinante.

Determinante in sistem linearnih enach.

Stevila.

Funkcije.

Zaporedja v matematiki.

Racionalne funkcije.

Sistemati¢en pregled u¢il in njihov razvoj.

Realna $tevila.

Verjetnostni racun.

Verjetnostni ra¢un s posebnim ozirom na zavarovalnistvo.
Elementi verjetnostnega racuna.

Enacbe (2 X).

Linearne enacbe.

ReSevanje algebrajskih in transcendentnih enadb.
Kontokorenti.

Kvadratne funkcije.

Kompleksna $tevila.

Funkcije realnih spremenljivk.

Enacbe v srednji Soli..
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Sorazmerne daljice in podobnost likov.

Pitagorov izrek.

Trikotnik (4 X).

Vektorji v geometriji in fiziki.

Osnove Evklidove geometrije.

Znamenite to¢ke trikotnika.

Pitagorov izrek, pitagorejska Stevila, Fermatov problem.

Trigonometriéne funkcije.

Trigonometriéne enacbe.

Krozne funkcije.

Uporaba trigonometrije v planimetriji in stereometriji.

Prvi zaletki matematike.
Razvoj in pomen matematiéne znanosti od pradavnine do XX. stoletja.

Naslovi nalog iz fizike:

Turbine (5 X).

Enostavni mehanski stroji.

Newtonovi zakoni (2 X).

O energiji. '

Energija in delo.

Pritisk v zaprtih teko¢inah — hidrostati¢ni . pritisk.
Aerodinamika in fizikalne osnove letalstva.

Jadralno letalo v letu.

Letalski instrumenti.

Pospesek prostega pada in teza.

Aerodinamika in uporaba v malih hitrostih.

Akcija — reakcija (s-posebnim ozirom na. let raket).
Sestavljanje in razstavljanje sil v zvezi s tehni¢no uporabnimi aparati.
Statika togega telesa.

Osnove hidromehanike in uporabe tal.
Sila in gibanje.

Osnove statike s posebnim oziroma na nosilce.
Vodni stroji.

Uporaba trigonometrije v fiziki.
Osnove letalstva. ,
Preiskava trdnosti gradbenega materiala.
Stroji.

Fizikalne zakonitosti letenja.

Ventili.

Aerodinamika.

Fizikalne osnove letalstva (3 X).
Mehanski stroji v gradbenistvu.,
Vrste letalskih motorjev.

Fizikalne osnove plovbe.

Spremembe agregatnih stanj.
Letalstvo.

Trenje, koristnost in Skedljivost.
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Letalstvo v Jugoslaviji.

Osnove aero in hidrodinamike.

Fizikalne osnove jadralnega letalstva.

Metode za dolodevanje gostote trdnih snovi in tekodin.

Parni batni stroji (2 X).

Reakcijski motorji.

Parni stroji.

Motorji z notranjim zgorevanjem (2 X).

Bencinski in Dieslov $tiritaktni motor.

Fizikalne osnove toplotnih strojev.

Mehanika plinov in plinski zakoni.

Toplotni stroji (3 X).

Fizika in tehnika strojev na notranje izgorevanje.

Zakoni termodinamike v zvezi s praktiéno uporabo.

Prvo in drugo pravilo termodinamike v zvezi s taljenjem v teoriji in praksi.
Stroji z notranjim izgorevanjem.

Eksplozijski motorji.

Plinski zakoni. ‘
Stiritaktni motor in prenos energije pri avtomobilu.
Motorji z notranjm izgorevanjem od Daimlerja do Wankla.
Mehanska orodja in toplotni stroji ter njihova uporaba.
Sirjenje toplote.

Zapis in reprodukcija zvoka.

Fizikalne osnove instrumentov (pihala).
Ultrazvok.

Zvok. ,

Merjenje valovnih dolZin in hitrosti zvo¢nih valov.
Resonanca in njen pomen (2 X).

Od 0 do 10%* Hz.

Nihanje in valovanje (2 X). :

Postopno transverzalno in longitudinalno valovanje.
Mehansko valovanje (2 X).

Nihanje. :

Lom valovanj.

Fotografija (2 X).

Opazovalne opti¢ne priprave.
Valovna optika.

Polarizacia svetlobe in uporaba.
Spektroskopija in barve.
Svetlobni spektrum.
Interferenca v optiki.
Geometrijska optika (2 X).
Mikroskop.

Kinoprojektor in sodobni opti¢éni instrumenti.
Spektri in spektralna analiza.
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Opti¢ni instrumenti.

Daljnogled.

Svet nevidne svetlobe.

Spektroskopija.

Valovna optika.

Svetloba in barve.

Globinska ostrina in uporaba zaslonke.
Lece in opti¢ni instrumenti.

Zarkovije.

Sonéni spektri.

Fizikalne osnove mikroskopa in njegov pomen v biologiji.
Lom in odboj svetlobe.

Zrcala in lece.

Opti¢ne lece.

O¢i in optiéna pomagala ¢loveskemu vidu.

Transformator (8 X).

Generatorji.

Instrumenti za merjenje jakosti in napetosti elektriénega toka.
Kapaciteta in kondenzator.

Prenos elektri¢éne energije (2 X).

Proizvodnja in prenos elektriéne energije.

Fizika elektriéne uporabnosti.

Akumulator.

Nikola Tesla med utemeljitelji moderne elektrotehnike.
Elektriéna energija — pogoj sodobne industrializacije v Sloveniji.
Osnove telefonije in radiotelefonije.

Elektromagnetna indukcija (4 X).

Elektri¢ni merilni instrumenti in meritve.

Nikola Tesla in njegovo delo v fiziki in elektrotehniki.
Uporaba elektromagnetne indukcije.

Elektroakusti¢ni pretvorniki.

Elektriéni upor in njegovo merjenje (2 X).

Enosmerni tok in njegovi izvori.

Elektriéni akumulator;ji.

Hidrocentrala Vuhred.

Avtomatska telefonska centrala.

Konstrukcija HE Fala.

Ampermetri.

Trofazni tok.

Nikola Tesla in njegov pomen za elektrotehniko.
Elektromagnetno valovanje in uporaba.

Elektromotorji.

Elektriéni merski aparati in njih uporaba v elektrotehniki.
Elektromagnetno valovanje.

Elektrika v naSem domu in industriji.

Elektri¢éni polprevodniki.
Elektromagnetni spektrum.
Tranzistor (2 X).



Elekironka v splo§nem in kot ojacevalka.
Polprevodniki v fiziki in radiotehniki.
Elektromagnetno nihanje in nihalni krogi.
Elektri¢ni tok v plinih in vakuumu.
Eslektromagnetno nihanje in valovanje (2 X).
Elektronske cevi.

Radar.

Polvodniki in njihova uporaba.
Ojadevalec.

Polprevodniki.

Elektronika v medicini.

Katodna cev.

Sprejemna antena.

Usmerjevalci elektri¢nega toka pri radioaparatih.

Fotocelica in njena uporaba.

Elektronski mikroskop.

FElektronka.

Elektronski ra¢unski stroji.

Elektronke in tranzistorji.

Fizikalne osnove elektronskih cevi.

Razvoj sprejemnika (od detektorja do superja).

Zgradba atoma (2 X).
Radioaktivnost (3 X).

Bohrov model atoma.

Atomski reaktor — vir energije.
Radioaktivnost in uporaba.
Izotopija — izotopi in uporaba.
Jedrski reaktorji.

Transmutacija in akceleratorji.
Radiocaktivni izotopi (2 X).
PospesSevalniki.

Atom za mir.

Atomska goriva in njih tehnologija.
Pridobivanje in uporaba izotopov.
Atomska energija.

Planetni sistem.

Nasa osoncja.

Gravitacija v fiziki in astronomiji.
Opti¢ni instrumenti v astronomiji.
Soncni sistem.

Clovek in vesolje.

S. Ursié
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KOLIKC FIZIKE ZNAJO STUDENTI PRVEGA LETNIKA
MATEMATICNO-FIZIKALNEGA ODDELKA

Po ustaljeni navadi so tudi v zaletku letoSnjega Solskega leta Studenti
1. letnika tehniSke fizike, tehniske matematike in pedagoske $tudijske skupine
matematika-fizika pisali preskusno vajo iz fizike. Pri tej vaji naj bi se pokazalo,
v kolik$ni meri znajo Studenti samostojno reSevati preproste rac¢unske naloge
iz srednjesolske snovi. Pri vaji, ki je trajala poldrugo uro, so se §tudenti lahko
posluzevali uc¢benikov in priro¢nikov. Od skupno 92 studentov je oddalo izdelke
86 studentov.

Vajo so sestavljale Stiri naloge in §tiri kratka vpraSanja. V oklepaju za
vsako nalogo ali vpraSanjem je Ze naveden odstotek od vseh 86 $tudentov, ki so
tisto nalogo ali vpra$anje pravilno reili.

1. Vrtiljak se sprva enakomerno vrti in sicer se zavrti enakrat vsaki 2 sekundi.
Ko pa vkljuéimo zavore, se enakomerno pojemajote zaustavi po $triih vrtljajih. Ko-
likSen je pri tem kotni pojemek? (10 %)

2, V jeklenki je plin pri tlaku 1kp/em?® in temperaturi 20 °C. Do kolik$ne tem-
perature je treba plin segreti, da se poveda tlak na 1,5 kp/em?*? (30 %)

3. Zarnica, ki je grajena za napetost 150 V in mo¢ 50 W, bi radi prikljuéili na
napetost 220 V. KolikSen predupor moramo vkljuditi? Narisi vezje! (30 %)

4. Objektiv projekcijskega aparata z gori$éno razdaljo 60 cm je 40 m oddaljen
od zaslona. Kako visoka je slika 24 mm visokega diapozitiva? (40 %)

5. Oceni volumen povpretno tezkega (70 kg) ¢loveka! (50 %)

6. Kaj merimo v kilowatturah? Izrazi 1 kWh z drugimi enotami! (50 %)

7. log 2 = 0,30, koliko je log 5? (30 %)

8. Nastej nekaj osnovnih delcev! (70 %)

Razen petega (do manjkajodega podatka naj bi pripomogel spomin na
poletno kepanje) in sedmega vpraSanja (logaritmirati je treba 2.5 = 10) so bila
vsa vpraSanja in naloge kolikor mogoce Sablonske.

Zgovorni so tudi podatki, ki jih je dala Ze poprej izvedena anketa: od 47
tehniskih fizikov jih je priblizno 80 %o, od 39 tehniskih matematikov in matema-
tikov-fizikov pa samo priblizno 40 ¢/ izjavilo, da so v srednji $oli delali ra¢unske
naloge iz fizike. O¢itno se ne da zatajiti povezave med odloéitvijo abiturienta za
vpis na tehnisko fiziko in med tem, ali so ga Ze v srednji $oli naucdili delati
racunske vaje iz fizike ali ne.

Najbolj zanimiva pa je kombinacija obojih podatkov. Tehniski fiziki so
refili v povpredju pribliZno 4 naloge, drugi $tudenti pa v povpredju samo
2,5 nalogi. Od tistih $tudentov, ki so se podpisali na izdelke (obvezna je bila
namre¢ le navedba stroke, vendar je bilo §tevilo nepodpisanih izdelkov manjse
od 15 %) so tisti, ki so v srednji $oli delali ra¢unske naloge iz fizike, v povpre&ju
pravilno re§ili okoli 4 naloge, tisti pa, ki niso delali ra¢unskih nalog, samo okoli
2 nalogi. Tisti $tudenti, ki so navedli, da so delali ra¢unske naloge poredko ali
vcasih, so resili pravilno v povpredju okoli 2,3 naloge.

J. Strnad
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ZA MLADE MATEMATIKE IN FIZIKE

Ponovno prosimo vse profesorje matematike in fizike na srednjih Solah,
da posredujejo dijakom te naloge ter jih napotijo, da sodelujejo v naSem koticku
s predlogi novih nalog ali z reSitviqo Ze predlaganih nalog.

Matematika.
7. naloga. Dokazi, da je

VetV ot Va1
2—]/2+l/2+ 1/2+ Vz

&e je v $teveu n korenov a v imenovalcu n — 1 koren!

V
|

(Tekmovanje v Kijevu)

8. naloga. Dolodi najvedjo vrednost prostornine pokonénega valja, ki je
vértan kocki z robom a tako, da njegova os leZi na telesni diagonali kocke.
Izraunaj pri tem pogoju polmer osnovne ploskve in visino valja!

(Josip Globevnik — Ljubljana)

9. naloga. ReSi enacbo

=X 1
x = —

2 (Peter Petek — Ljubljana)

10. naloga. Izra¢unaj diagonali in plo§éino cetverokotnika, vpisanega v
krogu, ako so dane vse §tiri stranice etverokotnika.
11. naloga. Doloc¢i vrednost x v izrazu

x=sin®A +sin?B +sin Asin B, ¢ je A+ B = %!

(Iz Bolgarske zbirke nalog)

12. naloga. Enakostrani¢ni trikotnik ABC s stranico 1m leZzi v ravnini,
kjer deluje nanj sistem sil. Rezultanta sil ima pozitiven navor 9 Nm glede
na vrh A ter 3 Nm glede na vrh C ter negativni navor 3 Nm glede na vrh B.
Dolodi rezultanto sistema sil ter njen navor glede na sredisce stranice AC!

(Naloga iz maturitetnega testa v Angliji — Advanced Level)

In Se ena reSena naloga:

1. Doloédi realno $tevilo a tako, da bosta korena enacbe

x2 — 3 ax + 2 a®* = 0 zadoscala pogoju 9.013 + x,® = 72!

ResSitev Andreja Kmeta iz Ljubljane:

LRGN =F3IC

r,.x, =20

z,3 + 2} = (x; + x,) (22— 2,3, T x,7)
= (x; + x) [(x, + x,)*— 3 xy2,]
zato je: z3+ x3=3a(9a*—6a?
iR is=80lq3
9a3 =72
a =2 S. Ursié
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Fizika.

1. V brezteZnem praznem prostoru tréi popolnoma gladka prozna kroglica
(model protona z mirujo¢o drugo tako kroglico, ki ima 1800-krat manjSo maso
(model elektrona). Trk ni centralen. Za kve¢jemu koliken kot se odkloni prva
kroglica od svoje prvotne smeri gibanja?

2. Koliko kinetitne energije ima delec alfa, ki ga odda mirujode jedro
radona 222, in koliko kineti¢ne energije dobi preostalo jedro? Atomske mase
izotopov Rn*%2, Po?'® in He? so po vrsti: 222,0175, 218,0089, 4,0026.

3. V kozarcu je voda z 0°C, v kateri plava kos ledu. Led se tali. Ali se
zaradi tega gladina vode dviga ali zniZuje?

4. V vodo poveznemo in potopimo zvon tako, da je do roba poln zraka.
Zvon je tako obteZen, da brez teZe visi v vodi (teZa je uravnove$ena z vzgonom).
Potapljavec vtakne od spodaj roko v zvon, ne da bi se ga dotaknil; pa& pa
izpodrine nekaj zraka, ki uide. Ali se bo zvon sedaj zacel dvigati ali pogrezati,
Ce potapljavec roke ni¢ veé¢ ne premika?

5. Preprost model toplotnega stroja lahko naredimo s kroZno cevjo, ki je
polna vode in ki jo postavimo v navpi¢no lego. En krak cevi segrevamo, drugega
pa hladimo. Voda zaéne kroziti in lahko poganja mlinéek, ki ga vstavimo v cev.
Pojasni, odkod prihaja energija, ki jo v obliki dela prejema mlin¢ek? Na prvi
pogled se namre¢ zdi, kot da dobi voda v enem kraku ravno toliko toplote,
kot je potem v drugem odda, tako da ni razvidno, odkod jemlje energijo za
delo. — Dodatno vpraSanje: Kako je z izkoristkom takega stroja?

6. Tanko bikonveksno le¢o s krivinskima radijema r, in 7, in z lomnim
kvocientom n posrebrimo na eni strani. Ako pada svetloba na neposrebreno
stran, deluje le¢a podobno kot konkavno zrcalo. Kolik$na je goris¢na razdalja?
Primerjaj rezultat z gori§¢no razdaljo neposrebrene lede!

Ivan Kuséer

POPRAVEK

V prvi nalogi rubrike »Za mlade matematike in fizike« v prejénji Stevilki

mora biti sin 33” in ne 33°.
®

Pri ¢lanku »Moderna matematika in pouk na srednji $oli (Jean Dieudonné
— prevedel Niko Prijatelj)« prav tako v prejs$nji $tevilki je izpadlo naslednje
pojasnilo pod ¢érto:

»Originalni ¢lanek je bil tiskan v reviji Mathematisch-physicalischen
Semesterberichte, Géttingen. Prevod je objavljen z dovoljenjem urednistva iste
revije in se mu za ljubeznivost najlepSe zahvaljujemo.
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UREDNISTVO JE PREJELO V ZAMENO

Bilten Drustva matematifara i fizitara NRBIH, Sarajevo 1963, br. 6.

Bulletin of the Boris Kidrish Institut of Nuclear Sciences, Beograd 1963, Vol. 14,
No. 1, 2.

Bulletin scientifique, Zagreb 1963, T. 8, No. 1-2.

Elektrotehniski vestnik, Ljubljana 1962/63, §t. 3-4.

Farmacevtski vestnik, Ljubljana 1963, §t. 1-3, 4-6.

Fotokemijska industrija, Zagreb 1963, br. 1, 2, 3.

Glasnik matematic¢ko fizi¢ki i astronomski, Zagreb 1962, T. 17, No. 1-2, 3-4.

Idrijski razgledi, Idrija 1963, &t. 2, 3.

Matematicko fizicki list, Zagreb 1962/63, st. 4.

Nuklearni institut JoZzef Stefan, Poroéila 101, 102, Report 412-414, 417.

Proteus, Ljubljana 1963/64, st. 1, 2.

Publikacije elektrotehnic¢kog fakulteta, Beograd 1963, No. 100-108.

Ukrainskij matematiéeskij Zurnal, Kijev 1963, T. XV, No. 1, 2.

Uspehi matematiceskih nauk, Moskva 1963, T. XVIII, Vyp. 2, 3, 4.

Varilna tehnika, Ljubljana 1963, §t. 2, 3, 4.

Vestnik Moskovskogo universiteta, Moskva 1963, No. 1, 2, 3, 4.

Zdravstveni vestnik, Ljubljana 1963, §t. 1-2, 3-4, 5-6, 7-8.



Zveza Drustev matematikov in fizikov FLRJ izdaja &asopis:

Nastava matematike i fizike

Naro¢nina je za ¢lane vseh republiskih drustev matematikov in fizikov
300 din, za ostale narocnike, Sole in biblioteke 400 din. Narocila in naroénino
posiljajte na Ziro raéun Nastave 101-701-5-1262 z oznako »za Nastavus«.

Drustvoe matematikov in fizikov NRS izdaja

Vesnik DrusStva matemati¢ara i fizi¢ara NRS

Letno izide v dveh dvojnih §tevilkah, letna naro¢nina je 400 din. Naro¢nino
posiljajte na ¢ek. ratun 101-707-3-119 Drustvu matematicara i fiziéara NRS pod
oznatbo »Za Vesnik«. Dopise pogiljajte na naslov drus§tva Beograd post. fah 791.

Drustvo matematikov in fizikov NRH izdaja za vso drzavo

MATEMATICKO-FIZICKI LIST

za ulence srednjih Sol. Letnik ima S&tiri Stevilke, med poéitnicami ne izhaja.
Letna naro¢nina je 300 din, posamezna $tevilka 75 din.

Profesorji srednjih Sol, priporocajte list dijakom! Narodila in naroénino
posiljajte na naslov:

Matematicko-fizicki list, Zagreb, Ilica 16/III, p. p. 165 ali na éekovni racun
st. 400-21-5-883.

Drus$tvo matematikov in fizikov LR Hrvatske izdaja &asopis

- Glasnik
matemati¢ko-fizi¢ki i astronomski

Naro¢nina znaSa 600 din, za redne ¢lane Drustva 300din, za
ustanove 1000 din. Casopis naro¢ite pri administraciji Glasnika:
Hrvatsko prirodoslovno drustvo, Zagreb, Ilica §t. 16-III. Cekovni
radun 400-21-3-323 za Drustvo matematiara i fiziara NRH.

Obzornik za matematiko in fiziko izhaja vsak tretji mesec. 1zdaja ga Drustvo
matematikov in fizikov SRS. Urejujejo ga: R. Bline, P. Gosar, F. KriZzanigc,
I. Ku$der, A. Moljk, N. Prijatelj, S. Ursi¢, I. Vidav. Odgovorni in tehniéni urednik:
F. Kvaternik. Upravo vodi F. Kvaternik. — Tiska tiskarna CZP »Ljudska pravica«
v Ljubljani. — Naro¢nina je 400 din, za podjetja in ustanove, ki pladajo pe racunu,
in za naroénike, ki pla¢ajo po terjatvi, pa 450 din. Posamezna Stevilka 120 din. Na-
rotnino nakazite na ¢ekovni ratun 600-14-608-34.

Dopise posiljajte in list narocajte na naslov:
Obzornik za matematiko in fiziko. Liubliana. nodtni nredal 227.



